

Supplement of

Transported aerosols regulate the pre-monsoon rainfall over north-east India: a WRF-Chem modelling study

Neeldip Barman and Sharad Gokhale

Correspondence to: Sharad Gokhale (sharadbg@iitg.ac.in)

The copyright of individual parts of the supplement might differ from the article licence.

	Bangalore	Delhi	Guwahati	Kolkata	Mumbai	Patna				
Temperature										
RMSE (°C)	2.58	2.23	2.88	4.02	2.61	1.89				
IOA	0.91	0.94	0.75	0.79	0.80	0.95				
ME (°C)	-2.32	-0.34	-1.97	-3.16	-1.99	-0.74				
	Relative humidity									
RMSE (%)	9.33	8.71	11.21	15.68	10.49	11.63				
IOA	0.97	0.92	0.79	0.79	0.85	0.91				
ME (%)	0.06	0.53	3.09	12.09	3.99	5.98				
		Win	d speed							
RMSE (m s ⁻¹)	1.47	1.91	1.84	1.90	1.44	2.11				
IOA	0.49	0.59	0.40	0.48	0.83	0.55				
ME (m s ⁻¹)	0.51	-0.22	-0.35	0.07	-0.71	1.22				
	Wind direction									
RMSE (°)	44.06	108.48	146.95	64.29	76.91	104.87				
IOA	0.79	0.72	0.47	0.43	0.68	0.75				
ME (°)	-18.48	10.28	6.07	22.41	14.23	-26.17				

Table S1: Model performance statistics for meteorological parameters

Table S2: Model p	performance stat	istics for chemical	species compare	d against MERRA2
-------------------	------------------	---------------------	-----------------	------------------

	NOR-I									
	BC									
	BANGALORE	DELHI	KOLKATA	MUMBAI	PATNA	GUWAHATI				
RMSE (µg m ⁻³)	1.49	20.03	27.31	47.12	7.12	1.04				
IOA	0.44	0.13	0.03	0.01	0.28	0.48				
ME (μg m ⁻³)	0.74	13.81	21.71	32.84	3.81	0.00				
			Dus	t						
RMSE (µg m ⁻³)	18.85	122.19	32.02	82.17	64.17	33.40				
IOA	0.41	0.33	0.35	0.35	0.35	0.26				
ME (μg m ⁻³)	-15.13	-76.40	-30.09	-76.21	-50.50	-31.91				
			Organic (Carbon						
RMSE (µg m ⁻³)	2.57	34.63	49.02	87.04	12.12	4.64				
IOA	0.71	0.24	0.07	0.02	0.51	0.50				
ME (μg m ⁻³)	0.73	24.55	38.29	60.88	3.87	-1.41				
			Sulfa	te						
RMSE (µg m ⁻³)	1.66	4.36	2.43	3.34	7.48	4.12				
IOA	0.42	0.56	0.68	0.36	0.35	0.30				
ME (μg m ⁻³)	-0.16	3.19	0.58	2.87	5.11	-2.22				
			NOR							

	BC								
	BANGALORE	DELHI	KOLKATA	MUMBAI	PATNA	GUWAHATI			
RMSE $(\mu g m^{-3})$	0.69	7.13	15.14	24.16	2.86	0.77			
IOA	0.64	0.29	0.06	0.02	0.51	0.61			
ME (μg m ⁻³)	0.48	5.76	13.21	19.76	2.16	0.11			
			Dus	t					
RMSE (µg m ⁻³)	18.43	120.49	29.71	74.03	57.77	20.48			
IOA	0.40	0.23	0.36	0.38	0.33	0.39			
ME (μg m ⁻³)	-14.52	-61.58	-26.64	-65.36	-40.90	-18.49			
			Organic o	carbon					
RMSE (µg m ⁻³)	1.44	11.21	25.73	44.48	5.34	3.64			
IOA	0.81	0.51	0.14	0.04	0.70	0.61			
ME (μg m ⁻³)	0.44	8.61	22.04	36.26	0.02	-2.02			
			Sulfa	ite					
RMSE (µg m ⁻³)	1.56	3.48	1.88	3.99	3.30	3.04			
IOA	0.38	0.45	0.73	0.31	0.60	0.30			
ME (μg m ⁻³)	-0.30	1.63	0.12	3.61	1.27	-1.62			

		NOR			NOR-I		
		RMSE	IOA	ME	RMSE	IOA	ME
DELHI	NO	24.82	0.35	-23.28	23.86	0.36	-22.48
	NO ₂	30.22	0.17	28.47	35.58	0.14	33.22
	PM ₁₀	37.87	0.48	-19.65	73.84	0.37	-47.57
	PM _{2.5}	15.72	0.62	-10.12	21.15	0.62	15.14
KANPUR	NO	42.17	0.43	-36.42	42.38	0.43	-36.65
	NO ₂	54.22	0.25	-53.52	59.32	0.22	-58.60
	PM _{2.5}	24.10	0.48	-20.02	17.70	0.43	-9.34
	SO ₂	20.44	0.45	18.49	10.97	0.53	8.90
PATNA	NO	12.18	0.35	-10.69	12.14	0.35	-10.67
	NO ₂	8.79	0.55	-0.60	8.49	0.57	0.06
	PM _{2.5}	55.62	0.22	-55.28	49.78	0.21	-48.48
SILIGURI	NO	5.77	0.25	-5.64	5.77	0.24	-5.64
	NO ₂	14.17	0.42	-9.90	16.94	0.22	-16.76
	PM ₁₀	22.28	0.52	-19.53	30.07	0.44	-27.76
	PM _{2.5}	14.51	0.52	-12.90	14.27	0.52	-12.94

Table S3: Model performance statistics for chemical species compared against observation stations. RMSE and ME units in μ g m⁻³.

Figure S1: Spatial distributions of geopotential heights (m) of model level a) 0 (near surface) b) 15

	No_EM	o_EMISS_NE Onl		Only_EMISS_NE			(No_EMISS_NE/ (No_EMISS_NE + Only_EMISS_NE))*100%	
Model level	0	15	0	15	0	15	0	15
Region 1	18.18	32.67	6.49	1.01	30.25	42.99	73.70	97.00
Region 2	12.78	21.70	6.33	1.14	26.64	33.75	66.86	95.02
Region 3	5.25	7.33	3.43	0.90	12.69	12.39	60.48	89.03
Region 4	21.62	36.01	16.03	0.88	40.12	47.38	57.43	97.62
Average	14.46	24.43	8.07	0.98	27.43	34.13	64.18	96.14

Table S4: Region-wise PM_{10} concentration (µg m⁻³) in different scenarios at different atmospheric heights

Figure S2: Regional average vertical profile of PM_{10} concentration (µg m⁻³) in different scenarios

Figure S3: Spatial distribution of column integrated BC mass (g m⁻²) in a) No_EMISS_NE b) Only_EMISS_NE

Figure S4: Spatial distribution of column integrated organic carbon mass (g m⁻²) in a) No_EMISS_NE b) Only_EMISS_NE

Figure S5: Spatial distribution of column integrated sulfate mass (g m⁻²) in a) No_EMISS_NE b) Only_EMISS_NE

Figure S6: Spatial distribution of column integrated nitrate mass (g m⁻²) in a) No_EMISS_NE b) Only_EMISS_NE

Figure S7: Spatial distribution of column integrated ammonium mass (g m⁻²) in a) No_EMISS_NE b) Only_EMISS_NE

Figure S8: Spatial distribution of column integrated dust mass (g m⁻²) in a) No_EMISS_NE b) Only_EMISS_NE

Aerosol effects of local and transported aerosols on radiative forcing

At surface,

Net total $RF = NOR - I_{((SWDNB+LWDNB)-(SWUPB+LWUPB))} - NOCHEM_{((SWDNB+LWDNB)-(SWUPB+LWUPB))}$

Net indirect $RF = NOFEED-I_{((SWDNB+LWDNB)-(SWUPB+LWUPB))} - NOCHEM_{((SWDNB+LWDNB)-(SWUPB+LWUPB))}$

 $Net \ direct + semi-direct \ RF = NOR - I_{((SWDNB + LWDNB) - (SWUPB + LWUPB))} - NOFEED - I_{((SWDNB + LWDNB) - (SWUPB + LWUPB)} - NOFEED - I_{((SWDNB + LWDNB) - (SWUPB + LWUPB)} - NOFEED - I_{((SWDNB + LWDNB) - (SWUPB + LWUPB)} - NOFEED - I_{((SWDNB + LWDNB) - (SWUPB + LWDNB)} - NOFEED - I_{((SWDNB + LWDNB) - (SWUPB + LWDNB)} - NOFEED - I_{((SWDNB + LWDNB) - (SWUPB + LWDNB)} - NOFEED - I_{((SWDNB + LWDNB) - (SWUPB + LWDNB)} - NOFEED - I_{((SWDNB + LWDNB)} - NOFEED - I_{((SWDNB + LWDNB) - (SWUPB + LWDNB)} - NOFEED - I_{((SWDNB + LWDNB) - (SWUPB + I_{((SWDNB + LWDNB)}) - NOFEED - I_{((SWDNB + LWDNB)} - NOFEED$

 $Net \ direct \ RF = NOR - I_{((SWDNBC + LWDNBC) - (SWUPBC + LWUPBC))} - NOFEED - I_{((SWDNBC + LWDNBC) - (SWUPBC + LWUPBC))} - NOFEED - I_{((SWDNBC + LWDNBC) - (SWUPBC + LWUPBC))} - NOFEED - I_{((SWDNBC + LWDNBC) - (SWUPBC + LWUPBC))} - NOFEED - I_{((SWDNBC + LWDNBC) - (SWUPBC + LWUPBC))} - NOFEED - I_{((SWDNBC + LWDNBC) - (SWUPBC + LWUPBC))}$

Net semi-direct RF = (Direct + semi-direct RF) - Net direct RF

At TOA,

Net total $RF = NOR - I_{((SWDNT+LWDNT)-(SWUPT+LWUPT))} - NOCHEM_{((SWDNT+LWDNT)-(SWUPT+LWUPT))}$

Net indirect $RF = NOFEED - I_{((SWDNT+LWDNT)-(SWUPT+LWUPT))} - NOCHEM_{((SWDNT+LWDNT)-(SWUPT+LWUPT))}$

 $Net \ direct + semi-direct \ RF = NOR-I_{((SWDNT+LWDNT)-(SWUPT+LWUPT))} - NOFEED-I_{((SWDNT+LWDNT)-(SWUPT+LWUPT))} - NOFEED-I_{((SWDNT+LWDNT)-(SWUPT+LWUPT)) - NOFEED-I_{((SWDNT+LWDNT)-(SWUPT+LWUPT))} - NOFEED-I_{((SWDNT+LWDNT)-(SWUPT+LWUPT))} - NOFEED-I_{((SWDNT+LWDNT)-(SWUPT+LWUPT))} - NOFEED-I_{((SWDNT+LWDNT)-(SWUPT+LWUPT))} - NOFEED-I_{((SWDNT+LWDNT)-(SWUPT+LWDNT)-(SWUPT+LWDNT))} - NOFEED-I_{((SWDNT+LWDNT)-(SWUPT+LWDNT))} - NOFEED-I_{((SWDNT+LWDNT)-(SWUPT+LWDNT))} - NOFEED-I_{((SWDNT+LWDNT)-(SWUPT+LWDNT)) - NOFEED-I_{((SWDNT+LWDNT)-(SWUPT+NT)}) - NOFEED-I_{((SWDNT+LWDNT)-($

Net direct $RF = NOR - I_{((SWDNTC+LWDNTC)-(SWUPTC+LWUPTC))} - NOFEED - I_{((SWDNTC+LWDNTC)-(SWUPTC+LWUPTC))}$

Net semi-direct RF = (Direct + semi-direct RF) - Net direct RF

Thus, Net atmospheric RF = Total RFTOA - Total RFSURFACE

Similarly, the short-wave (SW) or long-wave (LW) was similarly found by using either or SW or LW radiation instead of combined radiations. NOR-I was replaced by No_EMISS_NE or Only_EMISS_NE while NOFEED was replaced by No_EMISS_NE_NOFEED or Only_EMISS_NE_NOFEED to find contributions of local and transported aerosols.

Figure S9: Regional average vertical profile of cloud cover in different scenarios

		Total aerosol effect	Direct + Semi-direct	Indirect
	Region 1	-100.60	-13.21	-87.39
R-I	Region 2	-71.93	-1.34	-70.59
NON	Region 3	-102.60	-2.49	-100.11
	Total	-275.13	-17.04	-258.09
ш	Region 1	-29.81	-18.37	-11.44
	Region 2	-21.52	-5.88	-15.64
IISS	Region 3	-21.73	0.30	-22.04
EV	Total	-73.06	-23.95	-49.11
No				
E	Region 1	-26.81	-6.23	-20.57
N N	Region 2	2.48	-0.17	2.65
MIS	Region 3	-0.12	-2.01	1.89
V_E	Total	-24.45	-8.42	-16.04
Only				

Table S5: Changes in total rainfall (mm) due to different aerosol effects in different scenarios

Figure S10: Region wise rainfall evaluation statistics with NOR-I. RMSE and ME in mm day-1

Figure S11: Regionally averaged vertical profiles of BC concentration ($\mu g \ m^{-3}$) in different scenarios

Figure S12: Spatial distributions of near surface (model level 0) BC concentration ($\mu g \ m^{-3}$) in a) No_NE_BC b) No_NE_2×BC c) Only_NE_BC d) Only_NE_2×BC

Figure S13: Region-wise HE in different scenarios

Figure S14: Column integrated BC concentration

Figure S15: Regionally averaged vertical profiles of water vapor mixing ratio (g kg⁻¹) perturbations

Figure S16: Regional average vertical profile of sulfate aerosol concentration ($\mu g m^{-3}$) in different scenarios

Table S6: Amount of rainfall	(mm) aerosol e	effects increase ((inc) or decrease	e (dec) RAIN	under differen	t rainfall
intensities						

	inc_0_5	inc_5_10	inc_>10	dec_0_5	dec_5_10	dec_>10
Total aerosol effect (NOR-I –						
NOCHEM)	6.17	9.99	137.16	-6.50	-10.61	-411.34
Direct + semi-direct effect (NOR-						
I – NOFEED-I)	6.62	10.17	116.92	-7.07	-10.51	-133.16
Indirect effect (NOFEED-I -						
NOCHEM)	6.52	10.24	141.62	-6.48	-10.57	-399.41
Total aerosol effect with BC						
increase (4NOR-I-NOCHEM)	5.13	8.81	275.47	-6.52	-10.10	-337.23
Direct + semi-direct effect with						
BC increase (4NOR-I-						
NOFEED-I)	5.55	9.66	339.33	-6.95	-10.78	-143.17
BC increase (4NOR-I – NOR-I)	5.63	9.73	343.76	-6.58	-10.45	-131.41

	inc_0_5	inc_5_10	inc_>10	dec_0_5	dec_5_10	dec_>10
Total aerosol effect (NOR-I – NOCHEM)	21.05	4.51	12.32	21.06	4.80	19.23
Direct + semi-direct effect (NOR- I – NOFEED-I)	22.37	4.61	10.85	24.18	4.78	11.38
Indirect effect (NOFEED-I – NOCHEM)	21.44	4.63	12.38	20.58	4.78	18.85
Total aerosol effect with BC increase (4NOR-I – NOCHEM)	17.83	3.97	13.92	23.69	4.58	16.63
Direct + semi-direct effect with BC increase (4NOR-I – NOFEED-I)	17.79	4.36	16.51	24.08	4.87	12.74
BC increase (4NOR-I – NOR-I)	18.45	4.39	16.55	23.57	4.72	12.34

Table S7: Percentage (%) of simulation time aerosol effects increase (inc) or decrease (dec) RAIN under different rainfall intensities