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Text S1. Calculation of Henry’s law constant

The effective Henry’s law constants of NO2 and SOz, denoted by Hy,, and Hgg,,
respectively, as a function of time, were estimated based on the experimental data

points, and the expressions were input into the kinetic model for further simulations.
(1) Calculation of Hy 3.

Gaseous NO: is first absorbed onto the surface of the droplets, followed by diffusion
to the bulk of particles, and then participates in a series of reactions afterward. The
NO: (aq) hydrolysis (NO2(aq) + NO2(aq) + H2O — NO3z™ + NO2 + 2 H*, k; = 1.0 x
108 M sty would be the sole reaction in forming nitrate during unary uptake of NO2

under dark. Therefore, the nitrate production rate can be estimated as below:

d[NO3]
dat

= k1(Hyo2Pno2)* (Equation 1)

Therefore, Hy,, can be calculated as below:

* d[NO5 .
Hyop = J [dt3]/k1P1\?02 (Equation 2)
In the present study, %Was obtained via solving the differentiation of the [NO37]

equation as a function of time. Consequently, Hy,, can be expressed as a function of
time, which was input into the kinetic model for further simulations. For unary/co-
uptake experiments under irradiation, the equation derived from unary uptake under

dark was adjusted to fit experimentally measured nitrate and sulfate.

(2) Calculation of Hg,,(Stewart et al., 2004; Griffiths et al., 2009; Kolb et al., 2002;
Gutzwiller et al., 2002)

There are a few pathways that could yield sulfate production. Thus, it is difficult to
derive the expression of Hg,, directly with the same method for Hy,, described
above. In this case, we calculated the reactive uptake coefficient of SO2, y5g5, from

experimentally measured sulfate concentration as follows:

2_
Yso2 = % /Z (Equation 3)

Z = %USOZAS[SOZ] (Equatlon 4)
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VUso2 = +/ 8RT/T[M502 (Equatlon 5)

As = 4mrf x (4mrg /3)71, (Equation 6)
d[s037] . . . . . 9 .
where —, — was obtained via solving the differentiation of [SO4~] equation as a

function of time. Finally, we can obtain the expression of y¢,, as a function of time.

Besides, the y5o, can also be described via the resistor model. According to
the theory of gas uptake into liquid aerosol droplets, the measured uptake coefficients
are given by Equation 3. Specifically, the canonical kinetic model assumes that gas
molecules are accommodated at the surface first, followed by diffusion from the
surface to the bulk where the reaction takes place (Galib and Limmer, 2021). The bulk
reaction with rate ki should be slow enough that an equilibrium can be established
between the gas and the liquid phase, with concentrations determined by Hg,,. Under
these assumptions for the mass transfer kinetics, the reactive uptake coefficient can be

estimated as below:(Galib and Limmer, 2021)

1 1 Vson 1.1 .
—= + ——————(cothg-- Equation 7
Yso2 Uso2  4HgooRT. \/DSOZkh( 1 q ) (Eq )

Where agp, is the accommodation coefficient of SO, (~0.11), vsy, is the thermal
velocity in the gas phase, T and R are the absolute temperature and gas constant,

respectively, Dg, is the liquid diffusion coefficient (~1.32x10° m? s). ki is a the

pseudo-first-order rate constant for the reaction between S(IV) and oxidants (kn =
kang[oxidants]). It should be noted that uptake coefficients are measured on a
relatively thick liquid film compared to liquid films occurring on aerosol particles (Li
et al., 2022), The diffusoreactive length is defined as the distance from the surface
where the reaction occurs (Li et al., 2022; Mekic et al., 2018). The (cothg-1/q) is the
correction factor that should be used to extrapolate the measured uptake coefficients
under laboratory conditions to small particles (Li et al., 2022). The parameter q is the
ratio of particle radius, rp, to the reacto-diffusive length, I. The reacto-diffusive length,

I=\/Dgok;, , is a measure of the mean distance from the gas/liquid interface that a
molecule diffuses in the droplets before the reaction occurs (Stewart et al., 2004).

Therefore, the Hg,, can be estimated by the equation as follows:
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-1
1
vs02 (Cothq-;)

Hép, =
502 1 1
4G — )RT\/Dsozkn

Ysoz2 %502

As a result, the calculated time profiles of Hg,, was input into the kinetic model.

Text S2. Calculation of ysoz in premixed NH4Cl + NH4sNO3 system.

According to the kinetic model simulation, the fitted nitrate and chloride photolysis
rate constants are 1.0 x 10° s* and 1.6 x 10° s, respectively. In experiments of
premixed NH4Cl + NH4NO3 droplets equilibrated at 75% RH, the initial concentration
of nitrate and chloride are 1.0 M and 4.0 M, respectively. Unlike co-uptake
experiments, the concentrations of nitrate and chloride did not change much in the
premixed droplets, and hence we assumed their concentrations remained constant.
Hence, the nitrate photolysis rate, Pnos-, and chloride photolysis rate, Pci., are the 1.0

x 108 M st and 6.5 x 10° M s, respectively. The estimated yso2 based on the derived

equation (ysoz = 0.41 x Pnos- + 0.34 x Pcy.) is 2.6 x 10°°,

Table S1. The mechanisms used in the kinetic model.

Reactions Rate constant Note
NOsz + hv + H* — NO, + OH . .
SR1 NO3 + hv — NOy* + O(CP) JNOs- This study
N(IIT) + hv + H* — NO + OH JNo2- = 2 jNos-
SR2 N(111): NO>/HNO, o = 10 jnos. (Genetal., 2019)
NO2 + NO2 + H20 — NO2 + 8 (Seinfeld and
SR3 | Oy + 2 HY 10>10 Pandis, 2006)
SR4 S 9 (Benner et al.,
NO; + OH — NO3z + H 45 x 10 1988)
SR5 | NOz + OH — NO; + OH- 1.0 x 10% (Scharko etal.,
2014)
SR6 | HNO; + OH — NO2 + H,0 3.0 x 10° (SChaerk1°4§t al.,
SR7 | NO2+ NO + H20 — 2 NO; +2 20 x 108 (Seinfeld and
; : :
H Pandis, 2006)
e 10 (Seinfeld and
SR8 | NO + OH — NO; + H 2.0 x 10 pandis, 2006)
SR9 9 (Katsumura et al.,
N03 + NOZ — N205 1.7 x 10 1991)
SR10 | N2Os — NO2* + NO3™ >1.0 x 10* (Behnke et al.,
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1997)

SR11 | NO2* + H,0 — NOg + 2 H* 8.9 x 107 (Beh{l;ge?t;t al.,
SR12 | NO,»* + CI' — CINO, 3.9 x 100 (Beh{g(;t;t al.,
SR14 | NO3 + HO2 — NOg + Oz + H* 45 x 10° I(Difr’]'dnl‘;e'g 0%”6‘;
SR15 | OH + OH — H,0; 5.5 x 10° (Zhg%% 1e)t al.,
SR16 | OCP) + 02 — O3 4.0 x 10° (Klériglggt al,,
SR17 | OH + O3 — HO2 + O, 1.0 x 108 (Sehelségi)et al.,
SR18 | OH + H,0, — HO2 + H,0 27 % 107 (BU><1thr;8<;t al.,
SR24 | SO4 + SO4 — S;0¢> 4.5 x 108 éiﬁgzelgoznﬁc;
SR25 | SO4 + NOg — SO4% + NOs 5.0 x 10° (ngiggg ;et al.,
SR27 | SO4” + H202 — S04* + H" + HO 1.2 x 107 Igz(ra]idnig?lgoa})nﬁci
s soccon—onrsor | sexin | it
SR29 | SO4 + OH — HSOs 9.5 x 10° (K'arl‘g‘gl()et al.,
o | ey
malsosesoisodeo | aer |
SR32 | SOs + SO5" — 2 S04 + O; 6.0 x 10° éiﬁgze'goan
SR33 ;iags' +HSO3 + H" — 2 SO4% + 21 % 108 éiﬁh”.?'go%néi
SR34 | HSOs + SO4 — SOs™ + SO4* + <1.0 x 10° (Seinfeld and
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H+

Pandis, 2006)

(Seinfeld and

SR | HS0s + OF = 805+ O L7x10' Pandis, 2006)
SR37 | HSOg + H20; — SO + H0 7.45 x 107 I(Dif]'dnl‘;e'goaor‘(g
SR30| 505 Lo H = NOH+ 38x10° | (Genetal, 2019)
SR40 | CI' +hv — Cl jer- This study
SR41 | CI' + OH <> CIOH" t: - g:i z 182 gﬁndnlielgozn(g
SR42 | CI' + Cl < Cly k: § gg - igj (Zhgrcl)% g)t al.,
(Seinfeld and
2020)
SR44 | Cl +Cl - Cl 8.8 x 107 (BU'Zmoalngt)?t al.,
SR45 | Cl +Cl; — Clz + CI 21 x 10° (Yu azngolgftrker,
s anos cvorer | LG OO
s cvoarron | wewo | L
sl oo vvou | ssri | g
SR49 | Cly + OH — HOCI + CI 1.0 x 10° (BU'zmoalng;lt al,
SR50 | Cl" + NO3 — NOs™ + Cl 1.0 x 10° (POZT,e%(Sg;}V et
SR51 | Cl;’ + HO, — 2 CI' + Oz + H* 4.5 x 10° éiﬁidr?zlgo%ne(;
SR52 | Clz + OH — 2 CI'+ OH 73x 100 s éiml;e'goznﬁt;
SR53 | Cly + H202 — 2 CI' + HOp + H* 1.4 % 10° éim];elgoznﬁt;
SR54 | HOCI <> H* + OCI kfkle-;‘% x }L%jg'l (Bulrznoalngt)et al.,
ol osorcsorea | L0 | Oeied
SR57 | Cl + HSOs" — CI'+ H* + SO5° 3.4 x 10° (Huielgg%Neta,
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HOCI + HSO3  — SO4* + CI" + 2 (Horvéth et al.,

8
SR58 H 7.6 x10 2006)
] ] L ] 8 (Seinfeld and
SR59 | Cl;” + HSOs” — 2 CI' + H* + SO3 3.4x10 Pandis, 2006)

Table S2. Initial chloride concentration input in the kinetic model.

Exp. Experimental conditions E-AIM predicted | Corrected [CI]
# [CIT (M) (M)
1 NaCl droplets equilibrated at | 4.6 3.9
80% RH
2 NaCl droplets equilibrated at | 6.2 55
70% RH
3 NaCl droplets equilibrated at | 7.7 6.3
60% RH

Table S3. Summary of nitrate photolysis rate constant, jnos-, and chloride photolysis

rate constant, jci-.

Conditions jnos- (s joi (1)
NaCl + SO; + light at 80% RH N/A 1.8 x 10”7
NaCl + SO; + light at 70% RH N/A 4.7 x 107
NaCl + SO; + light at 60% RH N/A 5.6 x 10
NaCl + NO; + light at 80% RH 1.2 x 10° 5.3 x 107
NaCl + NO; + light at 70% RH 1.2 x 10°° 5.1 x 107
NaCl + NO; + light at 60% RH 1.2 x10° 5.0 x 10”7
NaCl + SO, + NO. + light at 80% | 1.4 x 10 3.8 x 107
RH

NaCl + SO, + NO. + light at 70% | 1.4 x 10 4.4 x 107
RH

NaCl + SO, + NO. + light at 60% | 1.6 x 10 4.1x107
RH

NH4Cl + NH4NOs + SO + light at | 1.0 x 10 1.6 x 10®
75% RH

S7



Table S4. Sulfate production rate under various conditions.

Exp. | Experimental conditions Averaged Sulfate Averaged Sulfate
# production rate (first production rate
stage) (Mes™) (second stage) (Mes™)

1 | NaCl+NO; +SO; + 1.6 x 10° 2.7x10°
light + air + 80% RH

2 | NaCl + SO; + light + air 1.3 x10°
+80% RH

3 | NaCl+NO2 + SO, + 2.3x10° 5.9 x 10°®
light + air + 70% RH

4 | NaCl + SO + light + air 2.3x10°
+70% RH

5 | NaCl + NO2 + SO + 3.1x10° 8.6 x 10°®
light + air + 60% RH

6 | NaCl + SO; + light + air 3.3x10°
+60% RH

7 | NaCl + SO; + light (low 1.7 x 10

intensity) + air + 60%
RH

Table S5. Uptake coefficient of SO2, y502, at different RHs.

Exp. | Experimental conditions Yso2, (first stage) Yso2, (Second stage)

#

1 | NaCl+NO; +SO; + (0.7 £ 0.12) x 10 (1.2 £0.09) x 10
light + air + 80% RH

2 | NaCl + SO; + light + air (0.7 £0.03) x 10°
+80% RH

3 | NaCl + NO; + SO + (1.1 £0.06) x 10 (2.8 +£0.06) x 10
light + air + 70% RH

4 | NaCl + SO; + light + air (1.1 £0.08) x 10°
+70% RH

5 | NaCl + NO2 + SO, + (1.4 +0.11) x 10 (4.0 £0.10) x 10
light + air + 60% RH

6 | NaCl + SO; + light + air (1.4 +£0.10) x 10°

+ 60% RH
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Figure S1

Figure S2. Calibration curve of (a) Na2SO4 and (b) NaNOs.

&

W

ING3T (M)

0.10
0.08
0.06
0.04
0.02

20

[NO3T (M)

e
[
T

3.0

HEPA

W Dry flow
— NO, and SO,

MFC: Mass flow controller

(a)

. The Raman Spectroscopy/Flow cell setup.

(b)

T A
RH sensor

Raman

__——Quartz window

Exhaust

-Substrate
.

Xenon lamp ™ Quartz window

1.0 7
Na,SO, NaNO,
0.8 |y =36.606 x 6y =35.200 x
—~ 5 2
% 0.6 = af
o —
(5r 0.4 %w 3F
@, =50
0.2
1 r
Ofe , , . , \ ok ‘ . , .
0 0.005 0.010 0.015 0.020 0.025 0 004 008 012 016 020
A(SO,%)/A(OH) A(NO;)/A(OH)

(a)

= Experimentally measured [SO,%]

Model predicted [SO,]
NaCl + S0, + light at 80% RH
0 250 500 750 1000 1250 1500

(d)

Time (min)

NaCl + NO, + light at 80% RH

2  Experimentally measured [NO, |
Model predicted [NO; |

0

(9)

250 500 750 1000 1250 1500
Time (min)

® Experimentally measured [NO, |
f—— Model predicted [NO]

NaCl + SO, + NO, + light at 80% RH

Experimentally measured [SO,?]
Wodel predicted [SO,2]

0 250 500 750 1000 1250 1500

Time (min)

[NG;] (M)

(b)

[ & Experimentally measured [SO.7]

Model predicted [SO,?]
NaCl + 80, + light at 70% RH

0 250 500 750 1000 1250 1500
(e) Time (min)

F @ Experimentally measured [NG,7

b Model predicted [NO,]
NaCl + NQ, + light at 70% RH

1 - I L L I L 1
0 200 400 600 800 1000 1200
(h) Time (min)
W Experimentally measured [NO,]
—— Model predicted [NO, ]
[ m Experimentally measured [$0,%]

Model predicted [S0,%] 1
[NaCl + S0, + NO, + light at 70% RH_

500 750 1000 1250 1500
Time (min)

S9

0.30

0.25

S o020

4015
o}
@ 010

0.05

[NOT (M)

[NO3] (M)
Q2N W R O® N ®

{c)

0

®

b % Experimentally measured [SQ,?]

fNaCl+ SO, + light at so%gi

Model predicted [S0,*]

250 500 750 1000 1250 1500
Time (min)

#  Experimentally measured [NO,]
£ Model predicted [NOy7]
ENaCl + NO, + light at 60% RH
0 100 200 300 400 500 600 700 800
i Time (min)
(i 10
A Experimentally measured [NO,]
f—— Model predicied [NO,]
A Experimentally measured [S0,?] 108
j=—— Model predicted [SO,*] .
NaCl + SO, + NO; + light at 80% RH log @
i g8
‘+§H Joa4 é
A =
3 Jo2
L 10

0

250 500 750 1000 1250 1500
Time {min)



Figure S3. Experimentally measured and model-predicted sulfate and nitrate

concentration as a function of time under various conditions.
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Figure S17. E-AIM model predicted nitrate, chloride, and total ions (represent ionic
strength) concentration at different [CI']/[NOs7] at (a) 80% RH, (b) 70% RH, and (c)
60% RH.
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Figure S18. Model simulation of nitrate formation from unary uptake of NO2 under
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Figure S19. Nitrate from the reaction of Cl,” + NOs during unary uptake and co-
uptake at (a) 80% RH, (b) 70% RH, and (c) 60% RH.
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Figure S20. (a) Nitrate concentration as a function of time during unary uptake of
NO: into NaCl droplets at all RHs. (b) The nitrate concentration as a formation of

time at different RHs during co-/unary uptake under irradiation.
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Figure S21. Model simulation of nitrate during co-uptake of NO2 and SO; at 70% and
60% RH.
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Figure S22. HSOs™ concentration as a function of time at 60%, 70%, and 80% RH

during unary uptake of SO, under dark. No sulfate was observed in these three

conditions.
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Figure S23. (a) Sulfate concentration as a function of time in premixed NH4Cl +

NH4NOs (4:1 in mole ratio) and pure NH4NOz droplets under irradiation at 75% RH.

(b) Sulfate concentration normalized by the initial nitrate concentration under the

same conditions as panel (a).
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