

Supplement of

Biogenic and anthropogenic sources of isoprene and monoterpenes and their secondary organic aerosol in Delhi, India

Daniel J. Bryant et al.

Correspondence to: Daniel J. Bryant (daniel.bryant@york.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

1 Data Processing

- 2 Identified compounds were input into the compound library in the generic form: C_cH_hO_oN_nS_s (where
- 3 c,h,o,n,s represent the number of carbon, hydrogen, oxygen, nitrogen and sulfur atoms
- 4 respectively). Where multiple isomers were observed, each isomer was added to the library
- 5 independently, based on its retention time (RT). The UHPLC/ESI-HR-MS data for each standard and
- 6 ambient sample were analysed using Tracefinder general Quan software (Thermo Fisher Scientific).
- 7 Blank subtractions were undertaken for all ambient samples, using a field blank. Tracefinder
- 8 extracted compound peak areas from each sample based on the assigned library. The mass
- 9 tolerance of the method was set to 3 ppm, with the RT window set to 10 s. The peak tailing factor
- 10 was set to 2.0 and the detection algorithm used was ICIS, with a nearest RT detection strategy.
- 11 Minimum signal-to-noise (S/N) for a positive identification was set to 3.0. The suitability of the peak
- 12 was also assessed for a positive identification, with the peak height at which to compare symmetry
- 13 of the left and right side of the peaks set to 40 % and symmetry threshold which is the minimum
- 14 percentage difference considered symmetrical set to 70 %.

15 Matrix effects

16 The measured signal intensity of the standards in a blank solvent matrix were compared to the

- 17 ambient aerosol matrix. A 10 μL mixture containing camphorsulfonic acid, 2-MG-OS and 2-MT-OS at
- 10 ppm was spiked into either 100 μL of ambient filter sample extract or into 100 μL of blank 50:50
- 19 (MeOH:H₂O) solvent. The samples were run as described above. The matrix effect factors were then
- 20 calculated by taking the compound areas from the spiked ambient samples, subtracting the areas of
- 21 compounds that were already present in the ambient sample, and then dividing by the compound
- areas in the blank matrix. If no matrix effect was present the ratio would equal 1. More details of the
- 23 matrix effects associated with the different compound classes and quantification errors are
- discussed in the SI. Table S1 shows the ratios across 8 ambient samples collected during both
- 25 campaigns, which represent a mixture of high and low PM_{2.5} concentrations across different times of
- 26 day. 2-MT-OS and 2-MG-OS showed significant matrix effects, with average ± SD matrix ratios of
- 27 0.17 \pm 0.06 and 0.40 \pm 0.23, suggesting 83% and 60% suppressions in signal response.
- 28 Camphorsulfonic acid exhibited a much smaller matrix suppression, with an average of 0.76 ± 0.16
- suggesting a 24 % suppression, in line with Bryant et al., 2021. The suppression is likely due to the
- 30 large numbers of co-eluting inorganic and organic species, reducing the ionisation efficiency of the
- 31 marker compounds. Matrix correction factors were applied alongside calibrations to different
- 32 compound classes and for compounds eluting at different times.
- 33
- 34
- _ _
- 35
- 36
- 37
- 38
- 39
- 40
- ⁴¹ Table S1. Matrix effect analysis results from 5 filter samples on three different organosulfate standards (CAM-OS Camphorsulfonic acid, MG-OS 2-methyl glyceric acid organosulfate, MT-OS 2-methyl tetrol organosulfate). Alongside PM_{2.5} and SO₄ concentrations. The values in bold are the average ratios between a clean matrix and an ambient sample matrix.

Sample start date	Time of day	Length (hour)	PM _{2.5}	SO_4			MT-OS	
(dd/mm)	Time of day		(µg m⁻³)	(µg m ⁻³)	CAIVI-US	1019-02		
16/10	13:30-14:30	1	NA	18.2	0.67	0.49	0.21	
18/10	09:30-10:00	0.5	NA	25	0.60	0.58	0.23	
18/10	19:00-09:30	14.5	120.2	11	0.69	0.10	0.16	
30/05	17:30-08:00	14.5	134	12.8	0.84	0.22	0.06	
04/06	08:30-11:30	3	124.7	19.7	1.01	0.59	0.16	
Average					0.76 ± 0.16	0.40 ± 0.23	0.17 ± 0.06	

 Table S2. Average pollutant and meteorological values across the pre- and postmonsoon campaigns.

		Pre	Post-					
Pollutant	Mean	Median	SD	Max	Mean	Median	SD	Max
NO (ppbv)	17.8	1.65	66.1	474	176	71.8	223	871
NO2 (ppbv)	30.8	25	17.9	109	41.7	38.1	21.1	169
NO _x (ppbv)	48.7	27.2	77.3	548	218	123	221	900
SO ₂ (ppbv)	5.29	3.55	15.8	431	5.41	4.72	3.95	69.6
O₃ (ppbv)	50.8	46.8	30.6	182	22.4	5.91	29.4	285
PM _{2.5} (μg m ⁻³)	141	125	66.2	672	182	170	93.9	695
Inorg SO4 (µg m ⁻³)	16.9	17.7	4.56	26.7	16.5	16.2	3.38	26.4
Org SO₄ (µg m⁻³)	7.5	7.3	1.78	13.2	5.55	5.16	2.68	14.2
Organics (µg m⁻³)	19.8	15.8	13.7	114	48.7	37.8	35.4	221
Nitrate (µg m⁻³)	1.58	1.13	1.36	8.01	5.83	4.68	4.18	28.8
PBLH (m)	891	508	879	4064	412	84.9	601	2722
ws (ms⁻¹)	3.81	4.1	1.44	8.23	1.71	1.8	1.33	5.4
Temp (°C)	35.8	35.5	4.53	46.5	24.7	24.5	4.56	35
RH (%)	39.4	39.3	13.6	70.6	57.3	58.1	16.6	90.1
lsoprene (ppbv)	1.22	0.51	1.28	4.62	0.93	0.79	0.65	6.67
limonene (ppbv)	0.0095	0.0065	0.017	0.19	0.42	0.19	0.51	2.12
α-pinene (ppbv)	0.034	0.034	0.011	0.078	0.1	0.052	0.11	0.56

- 58 Figure S1. Time series variations of measured temperature, planetary boundary layer height (PBLH), relative humidity (RH) and ventilation coefficient (VC, PBLH x wind speed) across pre-
- 59 (left, a, c, e, g) and post- (right, b, d, f, h) monsoon.

Figure S2. Diurnal variations of temperature, relative humidity (RH), planetary boundary layer height (PBLH) and ventilation coefficient (VC, PBLH * wind speed) across the pre- (left, a, c, e, g) and post-monsoon (right, b, d, f, h) campaigns. The grey shaded area represents the 95 % confidence interval. The green shaded area represents the times driven by biogenic emissions, as defined by the isoprene diurnals (Figure 3).

Figure S3. Diurnal variations of NO, NO₂ and O₃ across the pre (left, a,c,e) and postmonsoon (right, b,d,f) campaigns. The grey shaded area represents the 95 % confidence interval. The green shaded area represents the times driven by biogenic emissions, as defined by the isoprene diurnals (Figure 3).

⁹⁸ Figure S5. Mean diurnal variations for the aerosol chemical species, sulfate and total organics and
⁹⁹ PM_{2.5} concentrations across the pre-mosnoon (left, a,c,e) and post-monsoon (right, b,d,f). The 95
% confidence interval is given in grey. The green sections highlight the daytime hours as defined
by the isoprene diurnal.

¹⁰⁹ Figure S6. Time series across the pre- (left,a) and post-monsoon (right,b) campaigns of inorganic sulfate quantified by ion chromatography. The vertical dotted lines represent midnight for each day. Only species identified in more than 40 % of the samples for each campaign were included.