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Text S1. Solutions with a continuous emission to tp
(Warwick et al., 2022) considered a continuous emission scenario to the time tp. In our analytic

solutions, considering a continuous unit emission scenario to time tp where:

fu,®) =1,ift < tp s1)
fu,(®) =0,ift > tp
Radiative forcing can be represented as:
min(t,tp)
= Ry - (52)
0
Radiative forcing is thus:
_t /s tn __t tp
Aty cn,Th,Tcn, | The M2 (esz - 1) — Tey,e CHa (eTCH4 — 1)
RHz,cont(t) =
TH, — TcH,
_t 7/ tp _t /s ip
Ap, 00, Ty,To, | TH,e M2 (eTHz — 1) —Tgp,e 03 (e’os — 1) s3)
+
THZ - TOS
_t 7/ tp _t 7/t
Ap,001,0TH,TH,0 | TH,€ M2 (eTHz - 1) — Ty,0€ "H20 (eTHZO - 1)
+
TH, — THyo0
Correspondingly, the time-integrated radiative forcing under a continuous emission scenario to
time tp is:
CAGWPy,(H)
—H/ tp —H tp
Aty Acn,Th,Ten, | Th,e ™2 (eTHz — 1) — Tfy, e CHa (eTCH4 — 1) + to(ten, — Tu,)
TcH, — TH,
—H/ tp —H/ tp
2 2
Ap, A0, Ty,To, | Th,e M2 (e’Hz - 1) — 15,6703 (efos - 1) + tp(ro3 - THZ) 59
+
T03 - THZ
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—H tp —H tp
2 T T 2 T T
Ap,004,0TH, TH,0 | Thy€ 12 (e Hz — 1) — Th,0€ 120 (e Hz0 — 1

+

) +tp(Tu,0 — TH2)>

Ty,0 — T,

Note that this equation differs slightly from that given in Warwick et al. (2022), which included a

minor mistake in integration bounds after communications with the authors of Warwick et al.

(2022).

The corresponding equations for continuous emissions of CO; and CHj4 to time tp can be

represented as:

3
i=1

Rco,,cont(t) = Aco, (aotp +

Lot
a;te T (efl -

And CAGWP for continuous emissions of CO> and CHj4 to time tp is:

3
A
CAGW Py, (H) = C202 (aotp(ZH —tp) + Z 2a,7T; (
i=1

CAGWPcy,(H) = (1 + f1 + f2)Acn,Tcn, (

_ H
tp — Tcy,e "CHe

1)>

__t tp
RCH4,cont(t) = (1 + f1 + fZ)ACH4TCH4e TCH, (eTCH4- — 1)

[

H tp

tp —Tie T <eT_i -

_t_
e*CHs — 1

)
)

(55)

(56)

(57)

(58)
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Text S2. CAGWP components from analytic solutions

In this section, we show equations calculating the three components used in (Ocko and Hamburg,
2022), which are denoted as CAGWP here. These equations are derived based on analytic
solutions as discussed in the main text and are considered for continuous emissions scenarios.
The physical meanings of these equations are explained in Warwick et al. (2022).

The first component (CAGW P;, ) represents radiative forcing caused by chemical perturbations

to radiative forcing during the emission period tp:

_tp _tp
Aia;ty, T | Ty, (1 —e TH2> —tp|—1 (1 —e Ti) —tp 1)

CAGWP, (H) = ——
3 2

Where 4; is the scaling factor that converts molar mass of species i (i.e., CHa4, O3, or H0) to
W m™2, a; is the factor representing the impact of remaining hydrogen in the atmosphere on the

atmospheric molar mass of different species, 7; is the lifetime of different species, 7y, is the

lifetime of Hz, and tp is the emission period.

The second component (CAGW P;,)) represents the chemical perturbation to radiative forcing at

timescale H resulting from the emitted species remaining in the atmosphere following the end of

tp tp H tp tp H
Ajah, | 1-e'H2 || ty,| e Hz—e "H2 |41ie THZ(efi Ti—1> (52)

Ti_THZ

the emission period:

CAGWP,,(H) =

The third component (CAGW P;,) is the decay of radiative forcing generated during continuous

emission period tp:

HTH2+tp(Ti+TH2) H tp tp tp tp tp
2 TiTH T, _ pT; T — pTHy | — +.pTH — pTi
Al-aiTHzrie itHy (e i—e 1) Th,€ l(l e 2> T;e Hz <1 e 1) (53)

T; — 1Ty,

CAGWP,,(H) =

As in (Ocko and Hamburg, 2022), the overall CAGWP for each species i under given period tp
and timescale H is:
CAGWP;(H) = CAGWP;,(H) + CAGWP;,(H) + CAGW P;,(H) (54)
And CAGWP for emissions of hydrogen is:
CAGWPy,(H) = (1 + f; + f,)CAGWPcy, (H) + CAGW Py, (H) + CAGW Py, o (H) (S5)
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Comparisons between our newly derived equations and equations used in Ocko and Hamburg
(2022) are shown in Figure S11. In addition, we tested our solutions by calculating the following
cases:

Case 1: set tp = 2 and H = 2, which represents CAGWP at year 2 for a 2-year emission;

Case 2: set tp = 1 and H = 2, which represents CAGWP at year 2 for a 1-year emission;

Case 3: set tp = 1 and H = 1, which represents CAGWP at year 1 for a 1-year emission.

For a linear system, CAGWP for case 1 should equal the sum of CAGWP for case 2 and case 3.
Equations from our analytic solutions give the same numerical values for the above cases,

indicating robustness of our conceptual solutions.
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Text S3. Uncertainty in temperature response

We compare results of equation (24) in the main text with results of the following: equation from

(Boucher and Reddy, 2008):

0.595 _t 0.405 t
= 84 ~4095 S6
T(t) 1.06( YRR ) (56)
OSCAR v2.2 (average of ensemble):
0.572 t 0428 __¢
—0. ~350 ~166 S7
T(t) 0852<3.506 HETT ) (§7)
and equation from (Caldeira and Myhrvold, 2013) using CMIP5 ensemble results:
t t
T(t) = 0.987 (T e7oei + e Tomd) (58)
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Text S4. Climate impact of hydrogen or fossil fuels

For green hydrogen, radiative forcing and temperature response from hydrogen leakages (Ly,)

arc:
Rgreen—hydrogen = RHZ LHZ

AGTPgreen—hydrogen = AGTPHZ LHZ

For blue hydrogen, both hydrogen and methane leakages (Ly, and L¢y, ) are included, and

radiative forcing and temperature response are represented as:
Rblue—hydrogen = RHZLHZ + RCH4LCH4

AGTPblue—hydrogen = AGTPHZ LHZ + AGTPCH4LCH4

For fossil fuel, we only consider the avoided CO: emissions (E¢,, ) in our central cases in line

with Ocko and Hamburg (2022):
Rfossit—fuet = Reo,Eco,
AGT Prossit—fuer = AGTPeo,Eco,
and we compared results with those that included both CO; emissions and methane leakages:

Rfossit—fuet = Reo,Eco, + Ren,Len,

AGT Prossit—fuet = AGTPeo,Eco, + AGTPey, Len,

(59a)

(S9b)

(510a)

(S10b)

(S1la)

(S11b)

(S12a)

(S12b)
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Figure S1. Same as Figure 1 but showing ratios of the climate impact of methane (CH4) and
hydrogen (H») to carbon dioxide (CO>) emissions. While the residence time of hydrogen is
shorter than that of methane, hydrogen emissions result in an increase in methane concentration

that decays on the methane time scale. Thus, while the effects of methane and hydrogen differ in

magnitude, the temporal pattern of response is similar.
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100  Figure S2. Climate impact from emissions of different species. Similar to Figure 1, but for 1 ppb
101 increase scenarios. Note that CHs generates substantially larger climate impacts and has a y-axis

102  scale that is 24 times than that of H, and COa».
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Figure S3. Impact of considering decayed CH4 to COx. In contrast to our central cases where

CHj4 concentration diminishes over time, here we consider the conversion of decayed CH4 to

COz, which has a longer lifetime and adds a long-term climate impact to the warming potential

of methane.
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109  Figure S4. Climate impact from different hydrogen lifetimes. Radiative forcing and the global
110  mean temperature response from emission of hydrogen under different scenarios. Solid line
111  shows results under our central case, and shaded area represents results considering different

112 hydrogen lifetimes (i.e., 1.4 years to 2.5 years).
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114  Figure S5. Contributions of methane (CH4) and hydrogen (Hz) to clean hydrogen’s warming
115  potentials. Here we show contributions to increases in radiative forcing and global mean

116  temperature response between the low and high leakage cases. Our results show that additional
117  leakages of methane (3 % in the high leakage case vs. 1 % in the low leakage case) contribute
118  more warming to blue hydrogen, with hydrogen leakages (10 % in the high leakage case vs. 1 %
119  in the low leakage case) playing a less important role. Results showing contributions for per

120  percentage increase in leakage rate are plotted in Figure S15.
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Figure S6. Factors influencing radiative forcing. Same as Figure 2, but here we examine the

change in radiative forcing associated with different parameters. These parameters include:

considering different hydrogen lifetimes (1.4 years or 2.5 years), include methane leakage for the

avoided CO; emissions, and considering the conversion of the decayed methane to CO,. The last

two factors have substantial impacts on the climate impact of fossil fuels and the net climate

impact of clean hydrogen, whereas hydrogen lifetime shows only a minor impact.
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129  Figure S7. Factors influencing temperature response. Same as Figure S6, but considering
130  temperature instead of radiative forcing.
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132 Figure S8. Uncertainty of avoided CO; amount. Radiative forcing and global mean temperature
133 response under different assumptions of the avoided CO2 amount per kg hydrogen consumption
134  asin Ocko and Hamburg (2022). Solid line represents our central case (11 kg) and shaded area

135  represents results under alternative assumptions (i.e., 5 kg and 15 kg CO, avoided).
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Figure S9. Uncertainty of the climate response functions. Same as Figure 3, but combining the

137
138

radiative forcing equations with different climate response functions.
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Figure S10. Comparisons of different metrics. Ratios of the time-integrated relative radiative
forcing (CGWP) and ratios of the global mean temperature response (GTP) are compared under
continuous emission scenarios. The solid lines are the ratios of the time-integrated radiative
forcing shown in Figure 2 panel (e) and (f), and dashed lines are ratios of the temperature
changes shown in Figure 3 panel (e) and (f).
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Figure S11. Comparisons between results from our newly derived equations and those used in

Ocko and Hamburg (2022). Time-integrated radiative forcing (CAGWP defined in this analysis)

from one-year emission and continuous emission scenarios are compared. All parameter values

are taken from Ocko and Hamburg (2022).
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Figure S12. Similar to Figure 1 but for 100-year timescale.
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153  Figure S13. Similar to Figure 2 but for 100-year timescale.
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Figure S14. Similar to Figure 3 but for 100-year timescale.
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Figure S15. Similar to Figure S5 but showing increases in climate impact per percentage

157
158

increase in the methane and hydrogen leakage rate.
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160  Table S1. Input parameters for radiative forcing calculations. Values are taken directly from

161  Table 1 of Ocko and Hamburg (2022).

Variable' Definition Unit Value
H Time horizon Years 1-500
Aco, Radiative forcing scaling factor W m?2 ppb! 1.33 x 10
. . L . ag = 0.2173; a; = 0.224; a, =
Ag-3 Coefticient for fraction of CO, remaining in the atmosphere Unitless 0.2824; a3 = 0.2763
Ti_3 Timescale for fraction of CO2 remaining in the atmosphere Years T, = 394.4; 1, = 36.54; 13 = 4.304;
Ach, Radiative forcing scaling factor W m?2 ppb! 3.88 x 10
T Perturbation lifetime Years 11.8
1 ropospheric ozone indirect effect scaling nitless .
T heri indi ffi li Unitl 0.37
2 tratospheric water vapor indirect eftect scaling nitless .
S heri indi 3it li Unitl 0.106
TH, Ha lifetime (combined chemical and deposition lifetime) Years 1.9[1.4,2.5]
tp Length of step emission Years 1
CHa W m?2 ppb! 3.88 x 10
A; [ Radiative forcing scaling factor W m? DU"! 0.042
H0 W m? ppb! 1x10*
CHa ppb(CHa) ppb(Ha)! yr! 1.46 x 102
Production rate of species resulting in the indirect forcing (mixing ratio R
& 0 per year) per ppb Ha change at steady state DU(CH) ppb(H2)" yr 0.0056
HO ppb(H20) ppb(Ha)! yr! 0.042
CH4 11.8
T O3 Perturbation lifetime of species causing the radiative forcing Years 0.07
H20 8

162 ! For conversion factors that convert mixing ratio into mass (in units of ppb kg'!), we used the relationship described in the IPCC
163  ARS report (Myhre et al., 2013). The resulting number is 2.82 x 10° ppb kg™ for Hz, 3.53 x 10" ppb kg! for CH,, and 1.28 x
164 10°1° ppb kg! for CO,.
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168

Table S2. Radiative forcing, absolute global warming potential (AGWP), absolute global

temperature change potential (AGTP), and their ratios for 1 kg pulse emission of hydrogen,

methane, and carbon dioxide under different timescales (i.e., 20, 100, and 500 years).

Time horizon 20 100 500
RF 105 W m? 12.13 0.01 2.09x10""7
Hydrogen (Hy) AGWP 105 W m™2 654.64 788.54 788.67
AGTP 105 K 10.54 0.82 0.16
RF 1075 W m 36.98 0.04 7.97 x 107
Methane (CH,) AGWP 105 W m 1940.06 2375.91 2376.40
AGTP 105 K 30.93 2.48 0.49
RF 1075 W m 1.02 0.70 0.48
Carbon dioxide AGWP 1075 W m 24.27 89.24 313.05
(COy)
AGTP 105 K 0.58 0.47 0.43
RF Unitless 11.94 0.02 4.39x10""7
Ratio of H; to CO, AGWP Unitless 26.97 8.84 2.52
AGTP Unitless 18.02 1.74 0.38
RF Unitless 3639 0.06 1.67x10°16
Ratio of CH to AGWP Unitless 79.94 26.63 7.59
Co,
AGTP Unitless 52.87 5.26 1.15
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169  Table S3. Radiative forcing, absolute global warming potential (CAGWP), absolute global
170  temperature change potential (AGTP), and their ratios for 0.01 kg yr'! continuous emissions of

171  hydrogen, methane, and carbon dioxide under different timescales (i.e., 20, 100, and 500 years).

172

Time horizon 20 100 500
RF 1075 W m2 6.55 7.89 7.89
Hydrogen (Hy) CAGWP | 105 W m? 81.58 697.45 3852.13
AGTP 105K 3.12 4.96 6.57
RF 1075 W m2 19.40 23.76 23.76
Methane (CH,) CAGWP | 105 W m? 24635 2096.05 11601.61
AGTP 105K 9.27 14.93 19.81
RF 1075 W m2 0.24 0.89 3.13
Carbon dioxide CAGWP | 105 W m? 2.62 49.61 880.81
(COy)
AGTP 105K 0.11 0.51 2.32
RF Unitless 26.97 8.84 2.52
Ratio of H; to CO; CAGWP Unitless 31.14 14.06 4.37
AGTP Unitless 29.12 9.68 2.84
RF Unitless 79.94 26.63 7.59
Ratio C"f)EH“ to CAGWP Unitless 94.04 4225 13.17
AGTP Unitless 86.47 29.15 8.54
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177

Table S4. Radiative forcing, absolute global warming potential (AGWP), absolute global

temperature change potential (AGTP), and their ratios for 1 kg consumption of green and blue

hydrogen, and corresponding avoided CO- emissions under different timescales (i.e., 20, 100,

and 500 years).

Emission assumptions

1% hydrogen and 1% methane

10% hydrogen and 3% methane

Time horizon 20 100 500 20 100 500
RF 10715 W m 0.12 113x10% | 2.12x101° 1.35 124x10°% | 2.33x10°18
GreenH; | AGWP | 1075 W m? 6.61 7.97 7.97 72.74 87.62 87.63
AGTP 105 K 0.11 0.01 1.65x10° 1.17 0.09 0.02
RF 10715 W m 1.24 0.00 2.63x10°18 4.78 0.01 9.73x1018
BlueH, | AGWP | 105 W m? 65.40 79.96 79.98 25274 | 308.06 308.12
AGTP 105 K 1.04 0.08 0.02 4.04 0.32 0.06
RF 10715 W m 11.18 7.68 5.26 11.18 7.68 5.26
AVC"(‘;’:" AGWP | 105 W m? 26696 | 981.59 3443.59 26696 | 981.59 3443.59
AGTP 105 K 6.43 5.19 4.69 6.43 5.19 4.69
. RF Unitless 0.01 1.47x105 | 4.03x1020 0.12 1.62x10% | 4.43x10°1
Ratio of
greenHato |\ oop Unitless 0.02 0.01 2.31x10°% 0.27 0.09 0.03
avoided
€0, AGTP Unitless 0.02 1.60x10°% | 3.51x10 0.18 0.02 3.86x10°
. RF Unitless 0.11 1.81x10% 5x10°19 043 | 6.70x10* | 1.85x10°'8
Ratio of
blue H: to |\ ywp Unitless 0.24 0.08 0.02 0.95 031 0.09
avoided
C0, AGTP Unitless 0.16 0.02 3.53x107 0.63 0.06 0.01
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178  Table SS. Radiative forcing, absolute global warming potential (CAGWP), absolute global
179  temperature change potential (AGTP), and their ratios for 0.01 kg yr'! continuous consumption

180  of green and blue hydrogen, and corresponding avoided CO; emission under different timescales

181 (i.e., 20, 100, and 500 years).

Emission assumptions 1% hydrogen and 1% methane 10% hydrogen and 3% methane
Time horizon 20 100 500 20 100 500
RF 105 W m? 0.07 0.08 0.08 0.73 0.88 0.88
Green H, | CAGWP 105 W m? 0.82 7.04 3891 9.06 77.49 428.01
AGTP 105K 0.03 0.05 0.07 0.35 0.55 0.73
RF 105 W m? 0.65 0.80 0.80 2.53 3.08 3.08
Blue H; CAGWP 1075 W m? 8.29 70.56 390.47 31.92 271.97 1504.45
AGTP 105K 0.31 0.50 0.67 1.21 1.94 2.57
RF 105 W m? 2.67 9.82 34.44 2.67 9.82 34.44
Avcoglzed CAGWP 105 W m? 28.82 545.67 9688.89 28.82 545.67 9688.89
AGTP 105K 1.18 5.63 25.50 1.18 5.63 25.50
Ratio of RF Unitless 0.02 0.01 2.31x1073 0.27 0.09 0.03
green H
to CAGWP Unitless 0.03 0.01 4.02x1073 0.31 0.14 0.04
avoided
CO, AGTP Unitless 0.03 0.01 2.60%x1073 0.29 0.10 0.03
. RF Unitless 0.24 0.08 0.02 0.95 0.31 0.09
Ratio of
blue H to |- -\ Gwyp Unitless 0.29 0.13 0.04 111 0.50 0.16
avoided
CO, AGTP Unitless 0.26 0.09 0.03 1.02 0.34 0.10

182
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