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Calculated potential of mean force (PMF) curves for acid-base clusters 

 

Figure S1. Potentials of Mean Force as a function of the center of mass distance between the 

investigated acid-base “monomers” in Hamaker's approach, obtained from well-tempered 

metadynamics simulations at T=300 K using an OPLS-AA force field. 

 

Extracted 𝝐 and 𝝈 values from the calculated PMF curves 

Table S1. Extracted 𝜖 and 𝜎 values 

 (CH3)2NH & 

(CH3)2NH 

H2SO4 & 

H2SO4 

H2SO4 & 

(CH3)2NH 

H2SO4 & 

HSO4
− ∙ (CH3)2NH2

+ 

(CH3)2NH & 

HSO4
− ∙ (CH3)2NH2

+ 

𝜖 [eV] ~0 0.29 0.26 0.93 0.35 

𝜎 [Å] N/A 3.71 3.54 3.19 3.36 
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Two example cases where the interacting hard-sphere model and the central field approach 

result in significantly different critical impact parameters 

 

 

Figure S2. Critical impact parameter for collisions of carbon dioxide monomers at 100 K.  

The Lennard-Jones parameters are 𝜖 = 0.0108 eV and 𝜎 = 3.04 Å1. 

 

Figure S3. Critical impact parameter for collisions of water monomers at 250 K.  

The Lennard-Jones parameters are 𝜖 = 0.031 eV and 𝜎 = 2.928 Å2. 
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The root of Eq. 14 in the main text 

In this part, we provide a reasoning to the statement that Eq. 14 in the main text always has exactly 

one real root that is larger than 𝑅𝑐, and we shall identify that root. Substitution of Eq. 13 in the 

main text into 𝜔𝑣(𝑟) yields: 

𝜔𝑣(𝑟, 𝑈mc) = 𝑟
2 [1 +

8𝑛c𝜖𝜎
6

𝜇𝑣02
∙

1

(𝑟2−𝑅c
2)3
].      (S1) 

We take the derivative of Eq. S1 with respect to 𝑟 and obtain:  

𝜔𝑣
′(𝑟, 𝑈mc) = 2𝑟 [1 −

8𝑛c𝜖𝜎
6

𝜇𝑣02
∙
2𝑟2+𝑅c

2

(𝑟2−𝑅c
2)4
] ≡ 2𝑟[1 − 𝜃𝑓(𝑟)],    (S2)  

where, 𝜃 =
8𝑛c𝜖𝜎

6

𝜇𝑣02
 is a positive constant and  

𝑓(𝑟) =
2𝑟2+𝑅c

2

(𝑟2−𝑅c
2)4
=

2

(𝑟2−𝑅c
2)3
+

3𝑅c
2

(𝑟2−𝑅c
2)4

      (S3) 

decreases monotonically from +∞ to 0 as 𝑟 increases from 𝑅c to +∞. Therefore, 𝜔𝑣
′(𝑟,𝑈mc) =

0 ⟺ 𝑓(𝑟) =
1

𝜃
 should have a single root for 𝑟 > 𝑅c. Note that 𝜔𝑣

′(𝑟, 𝑈mc) = 0 is equivalent to 

Eq. 14 in the main text, so now it is safe to say that Eq. 14 has a single real root larger than 𝑅c. 

This single real root 𝑅m should correspond to the maximum of the four roots of the quartic function 

defined by Eq. 14, which is: 

𝑅m
2 = −

𝑎3

4𝑎4
+𝑀 +

1

2
√−4𝑀2 − 2𝑝 +

𝑞

𝑀
,      (S4) 

where 𝑝 =
8𝑎4𝑎2−3𝑎3

2

8𝑎42
= 0 , 𝑞 =

𝑎3
3−4𝑎4𝑎3𝑎2+8𝑎4

2𝑎1

8𝑎43
= −2𝑙𝑐

6
, 𝑀 =

1

2
√−

2

3
𝑝 +

1

3𝑎4
(𝑁 +

Δ0

𝑁
) ,  

𝑁 = √Δ1+√Δ1
2−4Δ0

3

2

3

, Δ0 = 𝑎2
2 − 3𝑎3𝑎1 + 12𝑎4𝑎0 = −36𝑅c

2𝑙c
6

, and Δ1 = 2𝑎2
3 − 9𝑎3𝑎2𝑎1 +

27𝑎3
2𝑎0 + 27𝑎1

2𝑎4 − 72𝑎4𝑎2𝑎0 = 108𝑙c
12

 with 𝑙c ≡ (
8𝑛c𝜖𝜎

6

𝜇𝑣02
)

1

6
. Substituting the expressions of 

coefficients 𝑎𝑖 into Eq. S4 and rearranging leads to Eq. 15 in the main text. 
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Temperature dependence of collision and sticking rates for clusters of different sizes 

 

 

Figure S4. Temperature dependence of collision (CR) and sticking rates (SR) for  

H2SO4 + [HSO4
− ∙ (CH3)2NH2

+]𝑛 collisions (n = 1, 2, 4, 8, 16, and 32). 

 

Figure S5. Temperature dependence of collision (CR) and sticking rates (SR) for  
(CH3)2NH + [HSO4

− ∙ (CH3)2NH2
+]𝑛 collisions (𝑛 = 1, 2, 4, 8, 16, and 32). 
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When the temperature is increased, the Maxwell Boltzmann distribution is shifted to higher speeds, 

which has two consequences: First, the monomer flux per unit collision cross section is increased 

due to higher average relative velocities. Second, the area of the collision cross section is decreased 

due to the diminished influence of the attractive forces at higher relative velocities. The rate of 

collision and sticking is hence the net effect of the above two competing factors. The second factor 

(i.e., decreased collision cross section due to increased temperature) is more significant for small 

clusters, as the attractive forces play a greater role (leading to higher collision enhancement 

factors). Therefore, the collision rate decreases with temperature for small clusters, while it 

increases with temperature for larger clusters. 

For H2SO4 + [HSO4
− ∙ (CH3)2NH2

+]𝑛 collisions, the temperature dependence of the collision and 

sticking rates are similar, as the mass accommodation coefficient is always close to 1 in the studied 

temperature range. For (CH3)2NH + [HSO4
− ∙ (CH3)2NH2

+]𝑛 collisions, the mass accommodation 

coefficient decreases sharply with temperature, hence the sticking coefficient also drops sharply 

with temperature. 

 

Step-by-step procedure for implementing the interacting hard-sphere model 

Step 1. Input parameters to supply 

As input parameters for the interacting hard-sphere model, we need the energy 𝜀 and length 𝜎 

Lennard-Jones self-interaction parameters and the radius 𝑅  for each molecule in the collision 

system. For a collision between two molecules, this means the 𝜀 , 𝜎 , and 𝑅  of each of these 

molecules. For a collision between a molecule and a cluster, this means the 𝜀, 𝜎, and 𝑅 of each 

type of monomer in the cluster, as well as the molecule colliding with the cluster. 

The Lennard-Jones self-interaction parameters can be obtained from literature (e.g., the following 

references3-7), potential of mean force calculations (as is done in the main text) or fitting to 

experimental or quantum chemistry data. 

The radii of the molecules can be obtained from literature, calculated from liquid bulk density, or 

taken as the radius of gyration. 

The radius 𝑅c  of a cluster consisting of 𝑁t  different types of monomers can be roughly, but 

sufficiently, estimated from the density 𝜌𝑖  and molecular mass 𝑚𝑖 of each monomer type in the 

cluster by assuming spherical monomer volumes: 

𝑅c = (
3

4𝜋
∑ 𝑛c,𝑖𝑚𝑖/𝜌𝑖
𝑁t
𝑖 )

1/3
,        (S5) 

where 𝑛c,𝑖 is the number of monomers of type 𝑖 in the cluster. 
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Step 2. Calculating the collision cross section 

Molecule-molecule collision 

We first need to calculate the distance 𝑅m. 

𝑅m = 𝜎 (
16𝜀

𝜇𝑣0
2)
1/6
,         (S6) 

where 𝜇 is the reduced mass of the collision system. Depending on the relative magnitude of 𝑅m 

and the sum of hard-sphere radii of the two colliding molecules 𝑅𝑖 + 𝑅𝑗, the collision cross section 

is calculated from one of the following equations: 

Ω(𝑣0) = {
3𝜋𝜎2 (

2𝜀

𝜇𝑣0
2)
1/3
,                                       if 𝑅m > 𝑅𝑖 + 𝑅𝑗

𝜋(𝑅𝑖 + 𝑅𝑗)
2
[1 +

8𝜀

𝜇𝑣0
2 (

𝑅𝑖+𝑅𝑗

𝜎
)
−6
] ,     if 𝑅m ≤ 𝑅𝑖 + 𝑅𝑗  

.   (S7) 

Molecule-cluster collision 

We consider collisions between a molecule and a cluster consisting of 𝑁t  different types of 

monomers. First, we need to calculate the distance 𝑅m. 

𝑅m
2 = 𝑅c

2 +𝑀 + √−𝑀2 −
𝑞

4𝑀
,       (S8a) 

where 

𝑞 = −2𝑙c
6,          (S8b) 

𝑀 =
√(𝑁+∆0/𝑁)/3

2
,         (S8c) 

𝑁 = [
∆1+√∆1

2−4∆0
3

2
]

1/3

,         (S8d) 

∆0= −36𝑅c
2𝑙c
6,         (S8e) 

∆1= 108𝑙c
12,          (S8f) 

𝑙c = (
8

𝜇𝑣0
2∑ 𝜎𝑖

6𝑛c,𝑖𝜀𝑖
𝑁t
𝑖=1 )

1

6
.        (S8g) 

Note that the equation of 𝑙c simplifies to 𝑙c = (8𝑛c𝜀𝜎
6/𝜇𝑣0

2)1/6 as in the main text if the cluster 

consists of a single type of monomer. 
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Depending on the relative magnitude of 𝑅m and the sum of hard-sphere radii of the colliding 

molecule and cluster 𝑅𝑖 + 𝑅𝑗, the collision cross section is calculated from one of the following 

equations: 

Ω(𝑣0) =

{
 
 

 
 𝜋𝑅m

2 [1 +
8

𝜇𝑣0
2(𝑅m

2 −𝑅c
2)
3∑ 𝑛c,𝑖𝜀𝑖𝜎𝑖

6𝑁t
𝑖=1 ] ,                         if 𝑅m > 𝑅𝑖 + 𝑅𝑗

𝜋(𝑅𝑖 + 𝑅𝑗)
2
[1 +

8

𝜇𝑣0
2((𝑅𝑖+𝑅𝑗)

2
−𝑅c

2)
3∑ 𝑛c,𝑖𝜀𝑖𝜎𝑖

6𝑁t
𝑖=1 ] ,   if 𝑅m ≤ 𝑅𝑖 + 𝑅𝑗  

 (S9) 

Step 3. Calculating the collision rate coefficient 

The collision rate coefficient is given by 

𝑘IHS = ∫ 𝑣0𝑓MB(𝑣0)Ω(𝑣0)𝑑𝑣0
∞

0
≈ ∑ 𝑣0𝑓MB(𝑣0)Ω(𝑣0)∆𝑣0𝑣0=0 .   (S10) 

where Ω(𝑣0) is either the molecule-molecule or molecule-cluster collision cross section calculated 

in step 2, and 𝑓MB(𝑣0) the Maxwell-Boltzmann relative speed distribution 

𝑓MB = 4𝜋𝑣0
2 (

𝜇

2𝜋𝑘B𝑇
)

3

2
𝑒
−
𝜇𝑣0
2

2𝑘B𝑇.        (S11) 

Here, 𝑘B is the Boltzmann constant. When approximating 𝑘IHS as a sum, the sum should run over 

a relative range of 𝑣0 according to the Maxwell-Boltzmann relative speed distribution (e.g., for 

collisions between H2SO4 with [HSO4
- ·(CH3)2NH3

+]1, the range 𝑣0 = 0-850 ms-1 covers more 

than 99.9% of the Maxwell-Boltzmann relative speed distribution at 300 K). Practically, the sum 

can be calculated numerically with an if statement in the code to distinguish between the two cases 

𝑅m > 𝑅𝑖 + 𝑅𝑗 and 𝑅m ≤ 𝑅𝑖 + 𝑅𝑗. 

 

  



 9 

References 

[1] Manos, G.; Dunne, L.; Jalili, S.; Furgani, A.; Neville, T. Monte Carlo Simulation and Exact 

Statistical Mechanical Lattice Models as a Development Tool for Zeolite Multi-Component 

Adsorption Isotherm Derivation. Adsorption Science & Technology 2012, 30, 503-519. 

[2] Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids. 

Molecular theory of gases and liquids 1964. 

[3] Danon, F.; Amdur, I. Averaged Potentials and the Viscosity of Dilute Polar Gases. The Journal 

of Chemical Physics 1969, 50, 4718-4725. 

[4] Mo, H.; You, X.; Luo, K. H.; Robertson, S. H. On the Determination of Lennard-Jones 

Parameters for Polyatomic Molecules. Physical Chemistry Chemical Physics 2022, 24, 10147-

10159. 

[5] Cuadros, F.; Cachadiña, I.; Ahumada, W. Determination of Lennard-Jones Interaction 

Parameters Using a New Procedure. Molecular engineering 1996, 6, 319-325. 

[6] You, X.; Li, Y.; Mo, H.; Gui, Y. Theoretical Studies on Lennard-Jones Parameters of Benzene 

and Polycyclic Aromatic Hydrocarbons. Faraday Discussions 2022, 238, 103-120. 

[7] Clifford, A. A.; Gray, P.; Platts, N. Lennard-Jones 12: 6 Parameters for Ten Small Molecules. 

Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed 

Phases 1977, 73, 381-382. 

 


