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Abstract. The nature and origin of organic aerosol in the atmosphere remain unclear. The gas—particle parti-
tioning of semi-volatile organic compounds (SVOCs) that constitute primary organic aerosols (POAs) and the
multigenerational chemical aging of SVOCs are particularly poorly understood. The volatility basis set (VBS)
approach, implemented in air quality models such as WRF-Chem (Weather Research and Forecasting model
with Chemistry), can be a useful tool to describe emissions of POA and its chemical evolution. However, the
evaluation of model uncertainty and the optimal model parameterization may be expensive to probe using only
WRF-Chem simulations. Gaussian process emulators, trained on simulations from relatively few WRF-Chem
simulations, are capable of reproducing model results and estimating the sources of model uncertainty within
a defined range of model parameters. In this study, a WRF-Chem VBS parameterization is proposed; we then
generate a perturbed parameter ensemble of 111 model runs, perturbing 10 parameters of the WRF-Chem model
relating to organic aerosol emissions and the VBS oxidation reactions. This allowed us to cover the model’s
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uncertainty space and to compare outputs from each run to aerosol mass spectrometer observations of organic
aerosol concentrations and O : C ratios measured in New Delhi, India. The simulations spanned the organic
aerosol concentrations measured with the aerosol mass spectrometer (AMS). However, they also highlighted po-
tential structural errors in the model that may be related to unsuitable diurnal cycles in the emissions and/or fail-
ure to adequately represent the dynamics of the planetary boundary layer. While the structural errors prevented
us from clearly identifying an optimized VBS approach in WRF-Chem, we were able to apply the emulator in
the following two periods: the full period (1-29 May) and a subperiod period of 14:00-16:00 h LT (local time) on
1-29 May. The combination of emulator analysis and model evaluation metrics allowed us to identify plausible
parameter combinations for the analyzed periods. We demonstrate that the methodology presented in this study
can be used to determine the model uncertainty and to identify the appropriate parameter combination for the
VBS approach and hence to provide valuable information to improve our understanding of OA production.

1 Introduction

Over the last decades, India has been facing air pollution
problems and is ranked fifth in the 2020 world air qual-
ity ranking (World Air Quality, 2021), and Delhi ranked as
one of the most polluted cities in the world, with the re-
lated health burden of about 10000 premature deaths annu-
ally (Chen et al., 2020a), based on PM> 5 measurements (par-
ticulate matter lower than 2.5 um in diameter). This situation
has a remarkable impact on Indian citizens due to India hav-
ing a population that is larger than 1 billion inhabitants.
Organic aerosols (OAs) are one of the main constituents of
submicron particulate matter, accounting for between 20 %—
90 % of the total aerosol mass concentration in urban envi-
ronments (Kanakidou et al., 2005; Zhang et al., 2007). Vari-
ous studies have been performed in India looking at the par-
ticulate matter composition and source identification of OAs
using receptor-modeling tools (Kompalli et al., 2020; Jain et
al., 2020; Cash et al., 2021; Reyes-Villegas et al., 2021) along
with investigating the health risks associated with aerosols
(Shivani et al., 2019; Gadi et al., 2019). However, one limita-
tion of receptor models is that they do not involve chemical
processing. The use of regional atmospheric models allows
the study of the temporal and spatial behavior of various
chemical species of OA. The Weather Research and Fore-
casting model coupled with Chemistry (WRF-Chem) is a re-
gional 3-D atmospheric model that simulates the emissions
and dispersion of gaseous and particulate species, including
the chemical processes and their interaction with meteorol-
ogy. There have been recent WRF-Chem studies investigat-
ing PM> 5 concentrations (Bran and Srivastava, 2017; Chen
et al., 2020b; Jat et al., 2021; Ghosh et al., 2021) and volatile
organic compounds (VOCs; Chutia et al., 2019) over India.
Despite the recent studies on aerosol sources and pro-
cesses involving both observations and modeling, there is
still a gap between observations and modeling studies, for
example with particulate organic matter being generally un-
derestimated by models (Bergstrom et al., 2012; Tsigaridis
et al., 2014), mainly attributed to the lack of understand-
ing of the emission sources, the OA processes and the SOA
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mechanisms. Hence, we need to understand the capability of
organic matter to produce and retain fine particulate mass
in order to fully understand their processes and impacts on
air quality and climate (Carlton et al., 2010; von Schnei-
demesser et al., 2015). It is here where the volatility basis
set (VBS) scheme can be valuable when implemented in
chemical transport models. The VBS scheme describes the
chemical aging of particulate organic matter, its chemical
processing and associated volatility (Donahue et al., 2006;
Shrivastava et al., 2011; Bianchi et al., 2019). It treats POA
emissions as semi-volatile and distributes particulate organic
matter by its volatility. This distribution, based on their sat-
uration concentration (C*), includes low-volatility (LVOCs),
semi-volatile (SVOCs) and intermediate-volatility (IVOCs)
organic compounds (Tsimpidi et al., 2016). POA consti-
tutes emissions from anthropogenic combustion processes
and open biomass burning (Stewart et al., 2021a, b), and by
being considered to be semi-volatile, the initial particulate
organic matter partially evaporates due to atmospheric dilu-
tion followed by the oxidation of evaporated semi-volatile
organic vapors. The resulting low-volatility oxidized organic
vapors can condense to produce secondary organic aerosol
(SOA; Shrivastava et al., 2008). This favors the formation of
IVOCs and SVOCs in the gas phase. Previous studies have
found that IVOCs and SVOCs can act as a reservoir of or-
ganic species that are able to repartition to the particle phase
after suffering chemical processing (Robinson et al., 2007;
Lane et al., 2008).

Regional (Li et al., 2016; Akherati et al., 2019) and global
models (Tsigaridis et al., 2014; Tilmes et al., 2019) have
been successfully used to simulate aerosol dispersion and
chemical processing to some extent. However, they can be
highly uncertain (Bellouin et al., 2016; Johnson et al., 2020),
particularly when comparing with on-site observations in a
high time resolution. This uncertainty can be due to a wide
range of parameter settings, emission sources Or missing pro-
cesses and is challenging to comprehensively evaluate by
only running direct model simulations due to the comput-
ing time and expense involved. Statistical analysis to evaluate
model performance over parameter uncertainty can be made
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tractable through the use of a statistical emulator (Carslaw
et al., 2018). With a trained emulator, it is possible to study
thousands or millions of model variants (parameter combina-
tions) and to estimate the sources of uncertainty (Lee et al.,
2011; Johnson et al., 2018; Wild et al., 2020)

The VBS approach is often tuned to the environment of in-
terest (Bergstrom et al., 2012; Shrivastava et al., 2013; Tilmes
et al., 2019; Shrivastava et al., 2019, 2022), and as mentioned
before, doing this only with WRF-Chem runs is particularly
challenging and time consuming. The aim of this study is to
determine an effective way of tuning the VBS scheme using
observations and also to learn about the processes controlling
OAs in Delhi. Hence, we need to explore the combination of
different techniques, i.e., observations, WRF-Chem model-
ing with VBS implementation and statistical emulators, to
better understand the partitioning of organic matter and the
evolution of POAs. In this study, a WRF-Chem parameter-
ization is proposed to simulate organic mass concentrations
and organic-to-carbon (O : C) ratios over the region of New
Delhi, India; this parameterization includes primary and ag-
ing parameters in the VBS scheme. In this parameteriza-
tion, we explore the perturbation to the chosen anthropogenic
POA and biomass burning POA parameters that would be
needed to give the best fit to the observed OAs. We perturb
neither the SOA parameters from the base case nor the dry
and wet deposition simulation uncertainties, as such an anal-
ysis is out of scope of this work. We also appreciate that there
will be sensitivity to the deposition rate of OA components.
We have focused our study on the sensitivity of the OA pro-
duction processes at a constant deposition rate within WRF-
Chem, allowing reasonable conclusions about the plausible
range of the other parameters to be drawn notwithstanding
this limitation. The model performance is evaluated over a
multi-dimensional parameter uncertainty space that explores
parameter uncertainty in these schemes. We generate a per-
turbed parameter ensemble (PPE) of 111 model runs that
cover the model’s uncertainty space and compare the out-
put from each run to AMS observations of OA concentra-
tions and O : C ratios measured at New Delhi, India. The PPE
is then used to construct statistical emulators and to sample
densely over the uncertainty for a more detailed comparison
of the observations over a specific time period. The evalu-
ation over specific time periods will allow us to study the
behavior of the model setup under different conditions, i.e.,
high vs low mass concentrations, and to analyze the impact
the different parameter setups have on the organic mass con-
centrations.

2 Methodology

2.1  WRF-Chem parameterization and setup

The Weather Research and Forecasting model coupled with
Chemistry (WRF-Chem) is used to simulate the emission,
transport, mixing and chemical transformation of trace gases
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Figure 1. WRF-Chem model domain with topography data. The
red marker highlights the location of IMD New Delhi, where the
AMS observations were taken, and the red rectangle shows the area
that covers the model results.

and aerosols concurrently with meteorological data (Grell et
al., 2005; Fast et al., 2006). Here, WRF-Chem version 3.8.1
is run with a 15km domain, 127 x 127 grid cells (Fig. 1)
and a simulation period from 19 April-29 May 2018, with
substantial modification — for more details, see below. This
period was selected in order to compare with aerosol mea-
surements performed at New Delhi (Reyes-Villegas et al.,
2021). Table 1 lists the components that contribute to our
model setup, including the chemistry and aerosol schemes,
emission inventories and boundary condition specifications.
Gas-phase chemistry is simulated with the Common Repre-
sentative Intermediates (CRI) mechanism, which permits a
reasonably detailed representation of volatile organic com-
pound oxidation. The aerosol chemistry is simulated us-
ing the sectional MOSAIC module (Zaveri et al., 2008),
including N>Os heterogeneous chemical reactions (Archer-
Nicholls et al., 2014; Bertram and Thornton, 2009), and is
coupled to the aqueous phase, which allows aerosols to act
as cloud condensation nuclei, as well as to the removal of
aerosols through wet deposition processes. The aerosol size
distribution in MOSAIC is described by eight size bins span-
ning a dry particle diameter range of 39 nm to 10 um (Zaveri
et al., 2008).

Our main modifications are focused on the treatment of the
organic aerosol (OA) components. Primary organic aerosol
(POA) is treated as semi-volatile, using the volatility ba-
sis set (VBS) treatment of Shrivastava et al. (2011). Their
nine-volatility-bins VBS scheme has been adapted for use in
the eight-size-bins version of MOSAIC. Secondary organic
aerosol (SOA) has been included based on the scheme de-
scribed in Tsimpidi et al. (2010), providing anthropogenic
(ARO1 and ARO2 in the original scheme, SAPRC99)

Atmos. Chem. Phys., 23, 5763-5782, 2023



5766

Table 1. WRF-Chem setup.
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Parameter Setup

Gas-phase mechanism

CRI-v2R5 (Watson et al., 2008; Archer-Nicholls et al., 2014)

Aerosol module

MOSAIC (Zaveri et al., 2008; Fast et al., 2006)

with VBS (Shrivastava et al., 2011)
with SOA (Tsimpidi et al., 2010)

Anthropogenic emissions

EDGAR-HTAP and SAFAR-India (CRI-v2R5 speciation)

Fire emissions

FINN 1.5 (Wiedinmyer et al., 2011)

Biogenic emissions
Chemical boundaries
Meteorological boundaries

MEGAN 2.04 (Guenther et al., 2006)
CESM2/WACCM (Danabasoglu et al., 2020)
ECMWEF reanalysis (Hersbach et al., 2018)

and “biogenic” (isoprene and monoterpenes) SOA compo-
nents, each covering four volatility bins with C* values (at
298K) of 1, 10, 100 and 1000ugm=3. AROI represents
the aromatics with hydroxide (OH) reaction rates less than
2 x 10* ppm~! min~!, and ARO2 represents the aromatics
with OH reaction rates greater than 2 x 10* ppm~! min~!.
In mapping these to the CRI-v2RS scheme, we have used
toluene and benzene as the precursors for the AROI1 re-
actions, oxyl (xylene and other aromatics) for the ARO2
reactions, and a pinene for the monoterpenes. Indicative
SOA vyields are given in Table S1 in the Supplement. Co-
condensation of water has been added for these semi-volatile
organics, and they have been coupled to the aqueous phase in
the same manner as other aerosol compounds in MOSAIC.
Previous studies have demonstrated that the condensation of
semi-volatile organic material onto aerosol particles substan-
tially increases the soluble mass of particles, their chemical
composition and eventually their effective dry size (Topping
et al., 2013; Crooks et al., 2018). The mapping of CESM2
(Community Earth System Model 2) and WACCM (Whole
Atmosphere Community Climate Model, version 5) com-
pounds to CRI-v2R5 (Common Representative Intermedi-
ates) and MOSAIC components for the chemical boundaries
is detailed in Table S2 in the Supplement. A spin-up period
of 11d (from 19 April to 1 May) was used. The meteoro-
logical driving fields were taken from ERAS reanalysis data.
Spectral nudging of the UV wind parameters, temperature
and geopotential height variables to those above model level
18 and for wavelengths greater than 950 km was used. The
domain is made up of 38 model layers, variable height and
terrain following model levels up to a pressure of 50 hPa. The
first model layer has a mean height of 59 m over Delhi (and
a mean height of 56 m over the whole model domain).
Previous studies using the VBS have used scaling fac-
tors from POA to derive SVOC emissions in each volatility
bin based on equilibrium-partitioning calculations, as well
as volatility distributions based on laboratory studies and as-
sumed oxygenation and chemical reaction rates (Shrivastava
et al., 2011; Fountoukis et al., 2014). To investigate the im-
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pact of these assumptions on the model predictions, we have
modified the model code so that the VBS emissions, the oxy-
genation rates and VBS reaction rates can be directly con-
trolled via namelist options. The parameters which are per-
turbed in this way for this study are described in more detail
in Sect. 2.3.

The volatility distribution of open biomass burning emis-
sions is taken from May et al. (2013) and multiplied by a
scaling factor of 3 (based on equilibrium-partitioning cal-
culations) to ensure a reasonably similar condensed mass at
emission as that reported in the Fire INventory from NCAR
(FINN) 1.5 emission dataset. Similar calculations have been
made in previous studies, giving roughly the same scaling
factor (Shrivastava et al., 2011; Fountoukis et al., 2014; De-
nier van der Gon et al., 2015; Ciarelli et al., 2017). Before ap-
plying the scaling factor, we assumed a ratio of matter mass
to carbon mass of 1.4, dividing the emission inventory mat-
ter mass by this to obtain the carbon mass. Within the model,
each VBS compound is stored as two variables, the oxygen
part and the non-oxygen part. When adding the emissions,
we multiply the carbon mass by 1.17 to get the non-oxygen
mass (carbon plus other atoms) and by 0.08 to get the oxy-
gen mass. These scaling factors were taken from Shrivastava
et al. (2011). We then apply the SVOC scaling factor and
volatility distribution to give the final SVOC emission pro-
file. The IVOC scaling factor is applied to the same base
emissions to get the IVOC emission profile. The volatility
distribution for anthropogenic emissions is also multiplied by
a scaling factor of 3 for the same reasons as above. It is worth
mentioning that the perturbed space explored here is embed-
ded in the parent VBS scheme that has been adopted. There
have been a large number of developments in and variants
of the VBS aiming to address particular questions related to
SOA formation at various levels of complexity, for example
the mechanistic measurement-constrained radical 2D-VBS,
which examines the role of extremely low-volatility organic
compounds (ELVOCs) and ultra-low-volatility organic com-
pounds (ULVOCs) in new-particle formation (Zhao et al.,
2020, 2021). In the current study, our implementation has
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been developed from the VBS version available in the dis-
tribution version of WRF-Chem, and our results should be
interpreted in the context of the structural capabilities and
limitations therein. More information about the VBS distri-
butions and parameter space setup is in Section S1 in the
Supplement.

Anthropogenic emissions are derived from the EDGAR-
HTAP, SAFAR-India (CRI-v2RS speciation) and NMVOC
global emission datasets, with NMVOC emissions speciated
for the CRI-v2RS chemical scheme, and diurnal activity cy-
cles are applied to the emissions based on emission sectors
in Europe (Olivier et al., 2003). We used these diurnal ac-
tivity cycles (Fig. S1 in the Supplement), as there were no
data available for activity behavior in Delhi. Biogenic emis-
sions are calculated online using the MEGAN model (Guen-
ther et al., 2006). Biomass burning emissions are taken from
the FINNv1.5 global inventory (Wiedinmyer et al., 2011).

2.2 Observations

Aerosol observations were made at the Indian Meteorol-
ogy Department (IMD) at Lodhi Road in New Delhi, India
(lat 28.588, long 77.217), from 26 April to 30 May 2018
as part of the PROMOTE campaign (Reyes-Villegas et al.,
2021). A high-resolution time-of-flight aerosol mass spec-
trometer (HR-TOF-AMS, Aerodyne Research Inc.), here-
after referred to as AMS, was used to measure mass spec-
tra of non-refractory particulate matter with an aerodynamic
diameter equal to or lower than 1 um (PM;), including or-
ganic aerosols (OAs), sulfate (SOif), nitrate (NO; ), ammo-
nium (NHI) and chloride (C17), in a 5 min time resolution.
The AMS operation principle has been previously described
by DeCarlo et al. (2006). The AMS was calibrated during
the campaign for the ionization efficiency (IE) of nitrate and
the relative ionization efficiency (RIE) of other inorganic
compounds using nebulized ammonium nitrate and ammo-
nium sulfate with a diameter of 300 nm. The data were ana-
lyzed using the IGOR Pro (WaveMetrics Inc., Portland, OR,
USA)-based software SQUIRREL (SeQUential Igor data Re-
tRiEval) v.1.63I and PIKA (Peak Integration by Key Analy-
sis) v.1.231. The organic-to-carbon (O : C) ratios were cal-
culated with PIKA using the Improved-Ambient elemen-
tal analysis method for AMS spectra measured in the air
(Canagaratna et al., 2015). The AMS data, OA mass con-
centrations and O : C ratios are used to compare with the
following WRF-Chem model outputs: total organic matter
mass concentration (Total_OM) and organic-to-carbon ratios
(OC_ratio).

There were no planetary boundary layer height (PBLH)
measurements available at IMD Lodhi Road; hence, PBLH
data were sourced from ECMWF ERAS5 with 0.25° results at
a 1 h resolution for the coordinates closest to the IMD site.
Meteorology data were downloaded from https://ncdc.noaa.
gov/ (last access: 5 January 2019) for the Indira Gandhi In-
ternational Airport, India, meteorology station.
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The meteorology data were used to interpret the diurnal
behavior of the chemical species and to compare with mete-
orology outputs from WRF-Chem. A dataset of meteorology
was not available at IMD. The use of meteorology from air-
ports has been previously used and is considered to be repre-
sentative of regional meteorology without being affected by
surrounding buildings (Reyes-Villegas et al., 2016).

2.3 Perturbed parameter ensemble

To evaluate the sensitivity to variations in the VBS emission
and processing parameters of our WRF-Chem model of the
simulated OA over the New Delhi region, we generated a per-
turbed parameter ensemble (PPE). We choose a set of simu-
lations with optimal space-filling properties that provide ef-
fective coverage across the multi-dimensional space of the
uncertain model parameters. Here, we perturb 10 parameters
of the WRF-Chem model that relate to semi-volatile POA
emissions and the aging of these VBS compounds. The pa-
rameters correspond to five processes in the model, which are
perturbed with respect to both anthropogenic emissions and
biomass burning emissions. These process parameters are as
follows:

1. VBS aging rate. This refers to the reaction rates of
VBS compounds with OH — each reaction reduces the
volatility of the compound by a factor of 10 (1 decade
in saturation concentration, Ci* and position) and adds
between 7.5 % and 40 % oxygen (determined by the
SVOC oxidation rate parameter, as below). Ci* is the
condensed mass loading at which half of the organic
material in that volatility bin will be in the condensed
phase and half will be in gas phase (Donahue et al.,
2006).

2. SVOC volatility distribution. This parameter is ex-
pressed in terms of an equivalent age, determined using
a simple aging model. At time =0, all VBS molecules
will be highly volatile, with a Ci*=4. These com-
pounds are processed at a fixed reaction rate (at each
step, 0.1 % of the gaseous mass in a volatility bin is
moved to the next volatility bin), with simple equilib-
rium partitioning of the VBS components between the
gas and condensed phases (to roughly simulate the man-
ner in which VBS compounds are partitioned and aged
within the WRF-Chem scheme). This processing re-
duces the overall volatility of the VBS compounds, first
providing a spread of mass across the volatility range
before accumulating the mass in the lowest-volatility
bins until 90 % of the VBS mass is in the Ci* =—-2
volatility bin (time = 1). This parameter is a scalar vari-
able (between 0-1) that indicates the dimensionless
position between these two points and has an associ-
ated volatility distribution. After examining the range of
volatility distributions given by this simple aging model,
we have chosen to use distributions within the range of
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0.05 to 0.4. Using values above 0.05 ensures that there
will always be some lower-volatility compounds to con-
dense. Above 0.4, almost everything is condensed, so
we have excluded values above this so that our PPE does
not become too heavily weighted towards these scenar-
ios. The scalar variable represents a sensible range of
possible emitted-volatility distributions. A method was
needed by which we could represent the variation of
possible volatility distributions within the process em-
ulator. The direct approach would be to include a scal-
ing factor for each volatility bin as separate parameters.
However, this would have greatly increased the com-
plexity and size of our parameter space, and these pa-
rameters would not be independent of each other, lead-
ing to a lot of wasted parameter space, waste in the use
of our limited computer resources available for the PPE
simulations and the assumptions for our variance-based
sensitivity analysis becoming invalid. Instead, we used
a simple reaction model, where each step in a fraction of
each volatility bin would be aged and moved to the next
volatility bin. This approach also allowed us to include
some simple partitioning, with aging process stopped
for any condensed matter, replicating the behavior of
the model these distributions will later be injected into.
Given that we used a simple, fractional aging process,
it would not be appropriate for us to try to relate it to
a physical variable. We have included Fig. S2 instead,
which gives an example volatility distributions through
the range of this scalar value used in our study.

3. SVOC oxidation rate. This parameter represents the de-
gree of oxidation that occurs with (or is induced by)
each reaction with an OH molecule. Previous studies
have used values between 0.075 (7.5 %) extra oxygen
(or one oxygen atom; Robinson et al., 2007) and 0.40
(40 %) extra oxygen (or five extra oxygen atoms per
reaction; Grieshop et al., 2009). Grieshop et al. (2009)
stated that, with 7.5 %, there is not enough addition of
oxygen to the organic mass, while with the 40 %, there
is a noticeable improvement to the OA oxygen content
with little effect on the predicted organic mass produc-
tion. In our study, the lowest level is 0.075 extra oxygen
(or one oxygen atom), and the uppermost level is 0.45
(or six extra oxygen atoms per reaction).

4. IVOC scaling. IVOC compounds bridge the gap from
SVOCs to VOCs (log 10(C*) 4-6). Including the IVOCs
independently to parameter (2) (based on our simple
aging model) enables us to still include these within
the volatility distribution (this does restrict the im-
pact of parameter (2) in terms of influencing the shape
of the volatility distribution for the lower C* values
only). These IVOC emissions are calculated using a
fixed volatility distribution, which scales from the non-
volatile OA mass in the emissions inventory. The frac-
tional emitted masses are as follows: 0.2 for Ci* =4,
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0.5 for Ci* =5 and 0.8 for Ci* = 6 (as shown in Fig. S2;
0.240.540.8 = 1.5); this is the initial emission amount
that then will be scaled by another factor, between 0-3,
to probe the sensitivity of the model to the abundance of
IVOCs.

5. SVOC scaling. This parameter is the scaling factor of
the SVOC emissions, which have been given a volatility
distribution by parameter 2. Traditionally, such scaling
has been used to ensure that the condensed mass of the
emitted SVOC is the same as the non-volatile OA mass
in the emissions inventory; however, this scaling could
also be used to off-set errors in the emission inventory
estimates of OA emissions. The scaling needed to en-
sure that the emitted condensed mass is the same will
never be less than 1 but could go to x20 (or more) for
the younger SVOC volatility ranges (as estimated using
the equilibrium-partitioning tool for parameter 2). How-
ever, in order to accommodate potential overestimates
of the emission inventories and to avoid too much OA
being generated after aging of any highly volatile emis-
sions, we chose an SVOC scaling range of 0.5 to 4.

Table 2 shows the uncertainty ranges applied to each of
the parameters that we explore with the PPE, and Table S3
in the Supplement shows an example of a “namelist.input”
file with the parameters to control the VBS scheme that was
used to create the model simulation. A total of 111 model
simulations make up the ensemble. Following the statisti-
cal methodology outlined in Lee et al. (2011), the combi-
nations of input parameters used for the simulations in the
PPE were selected using an optimal Latin hypercube statis-
tical design algorithm (Stocki, 2005), providing good cov-
erage of the multi-dimensional parameter space. The selec-
tion of combinations was performed in three subsets for
use in building statistical emulators to densely sample key
outputs from the model over its uncertainties. First, a sin-
gle design of 61 runs was generated for training the em-
ulators (subset 1), and then a second set of 20 runs was
made that augmented the emulators into the larger gaps of
the first design, for use in validating the emulators (subset
2). On an initial comparison to observations, the observa-
tions were found to be outside the range of the PPE’s out-
put, and following an investigation into this, the lower bound
of the anthropogenic SVOC scaling parameter (parameter
5) was extended from 0.5x down to 0.1x. Hence, an extra
(third) set of 30 runs was designed and simulated to cover
the extended parameter space (subset 3), leading to a to-
tal of 111 runs in the final PPE. The configuration files for
each model run are given in the Lowe et al. (2023b) dataset
(https://doi.org/10.5281/zenodo.7904011), and Table S4 in
the Supplement provides a list of model runs that make up
the PPE with their respective values.

https://doi.org/10.5194/acp-23-5763-2023
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Table 2. Range of the parameter space used for SVOCs co-emitted within anthropogenic POAs in the PPE with 111 model variants.

Parameter number  Parameter name min Max
1 Anthropogenic VBS aging rate (cm3 molec.~! s~ 1) 1.00 x 1013 1.00 x 10~ !!
2 Anthropogenic SVOC volatility distribution 0.05 0.4
3 Added oxygen per generation of aging 0.075 0.45
4 Anthropogenic IVOC scaling 0 3
5 Anthropogenic SVOC scaling *0.1 4
6 Biomass burning VBS aging rate (cm3molec.”1s™1)  1.00x 10713 1.00x 10711
7 Biomass burning SVOC volatility distribution 0.05 0.4
8 Added oxygen per generation of aging 0.075 0.45
9 Biomass burning IVOC scaling 0 3
10 Biomass burning SVOC scaling 0.5 4

* A total of 81 runs were performed with an anthropogenic SVOC scaling min =0.5 and max =4, and 30 runs were performed with an
anthropogenic SVOC scaling min = 0.1 and max = 0.5. This due to a min = 0.5 and max = 4 giving high organic mass concentrations when

compared with AMS.

2.4 Emulation

For each PPE member, a time series of the OC_ratio and To-
tal_OM from the WRF-Chem model run was extracted at the
closest coordinates to the IMD site (lat 28.628, long 77.209)
in the model output. Gaussian process emulators (O’Hagan,
2006; Lee et al., 2011) were built using the PPE. Similarly to
the approach described in Johnson et al. (2018), initial emu-
lators were constructed using only training simulations (sub-
sets 1 and 3), and these were validated using the validation
runs (subset 2). Once validated, a further new emulator was
then constructed using both the training and validation sim-
ulations of the PPE together as training data to obtain a final
emulator based on all of the information that the PPE con-
tains. An additional verification of the quality of each final
emulator was obtained via a leave-one-out validation proce-
dure (where each simulation in turn is removed from the full
set of 111 runs, and a new emulator is built and used to pre-
dict that removed simulation).

Monte Carlo sampling of the emulators enabled dense
samples of model output to be generated over the 10-
dimensional parameter uncertainty of the model. We pro-
duced output samples for a set of 0.5 million input parameter
combinations across the uncertainty space, hereafter called
model variants, to explore the model’s uncertainty.

2.5 Model evaluation

Alongside the emulation, outputs from the 111 model
runs (OC_ratio and Total_OM) were additionally evaluated
against the AMS observations (O : C and OA) using various
model evaluation tools, including the fraction of predictions
within a factor of 2 (FAC2), mean bias (MB) and the index
of agreement (IOA). Section S3 of the Supplement provides
a detailed explanation of the calculations for each evaluation
metric and information on how to interpret the values.

https://doi.org/10.5194/acp-23-5763-2023

3 Results and discussion

3.1 Model outputs and observational analysis

The model outputs of the central WRF-Chem run from the
original parameter space (subsets 1 and 2) are used to com-
pare with observations in order to analyze the model perfor-
mance. As mentioned in the methods section, the VBS setup
will directly affect OA concentrations and PM. The oxidative
budget for inorganic chemistry is not directly affected; how-
ever, by changing the aerosol size distribution, there are some
indirect effects on inorganic aerosol and gaseous species
through changes in aerosol water content, cloud fields and
aerosol-radiation interactions. Figure 2 shows the compari-
son for the full dataset (1-29 May 2018) between model out-
puts and observations performed at IMD Lodhi Road, where
we see higher PMj 5 and NO, concentrations in the model
simulation. The high NOx concentrations in the model seem
to be related to high NO, concentrations, as the NO concen-
trations are in line with the range of the observations of NO.
Looking at the meteorological parameters, we can see sim-
ilar temperatures and wind speeds between the model and
observations, with lower RH and higher PBLH in the model.

3.2 Model runs and AMS observations

Here, we analyze and compare the mean values of Total_OM
(modeled particle phase) and OC_ratio for the full period,
1-29 May 2018, of the 111 WRF-Chem model runs (Ta-
ble S4 in the Supplement) with the AMS observations (OA
and O : C). The top panel in Fig. 3 shows a bar plot of the
mean OC_ratio for the model runs colored by the mean to-
tal_OM concentrations. The bottom panel shows the mean
total_OM concentrations for the model runs colored by the
mean OC_ratio. The model runs are sorted from low to high
values of the y variable. The continuous and dashed red lines
show the mean =+ 1 standard deviation (SD) of the O : C ratio
(top) and OA (bottom) measured with the AMS. In general,

Atmos. Chem. Phys., 23, 5763-5782, 2023
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Figure 2. Comparison of observations (At Lodhi Road for air quality and at IGI Airport for meteorology parameters) and model outputs of
various parameters. May 2018. Bars highlight medians, quartiles and 95 %; triangles highlight the mean.

compared to mean values measured with the AMS, a large
number of WRF-Chem runs had a low O:C_ratio and high
mean Total_OM concentrations. The bottom panel shows
the mean total_OM concentrations of 47 runs lying within
1 SD of the mean OA concentration of 21.77 uygm™> mea-
sured with the AMS. Moreover, the model runs with mean
Total_OM concentrations near the mean OA concentrations
have OC_ratio mean values near the O : C mean AMS value
(0.5), with a cyan color. We explored a range of emission
multipliers (both IVOC and SVOC scaling). These upper
limits, which have been of an appropriate magnitude for
previous studies in other locations using different emission
datasets (e.g., Shrivastava et al., 2011), turned out to be too
high for our emission dataset, and these are the model runs
which produced the very high OM mass loadings (rather than
these being predominately caused by high oxidation rates).
When the OM mass loading is high, more of the higher-
volatility (and, here, less-aged) compounds condense into the
condensed phase. The VBS scheme we have used has only
gas-phase reactions, and so once in the condensed phase,
these compounds do not age further. This process leads to
the lower mean O : C ratios that are observed here. This anal-
ysis shows a number of model runs with mean Total_OM
and OC_ratio values near the mean values measured with an
AMS.

3.3 Diurnal analysis of WRF-Chem runs

The high-time-resolution data collected with the AMS pro-
vide the opportunity to analyze the WRF-Chem outputs in
more detail, for example by looking at the diurnal cycles.
Figure 4 shows the diurnal cycles of chosen WRF-Chem
runs with Total_OM concentrations and OC_ratio close to
the AMS observations. In the model runs, we were able to
span high and low Total_OM and OC_ratio. However, in the
case of OC_ratio, we were not able to span the range of

Atmos. Chem. Phys., 23, 5763-5782, 2023

the O : C from AMS observations with mean values of 0.3
at night and 0.7 during the day. Looking at the Total_OM
concentrations, we identified two potential structural errors
in the WRF-Chem outputs, namely the early-morning peak
and the late-evening low concentrations. This could be due to
application of unsuitable diurnal activity cycles to the emis-
sions or WRF-Chem not being able to capture completely the
dynamics of the planetary boundary layer. With no activity
data available for Delhi, we used diurnal cycles of activities
based on emission sectors in Europe (Olivier et al., 2003;
Fig. S1 in the Supplement). We can observe in Fig. S5 in
the Supplement a slightly better comparison in terms of the
CO model vs. observations, with flatter CO concentrations
when looking at the observations. For the diurnal cycles of
meteorology (Fig. S4), we can see that the model agrees with
the PBLH-ERAS in the early morning and until 14:00h, the
time when PBLH-ERAS starts dropping and PBLH-Model
remains high, perhaps preventing concentrations from accu-
mulating. This makes building and testing the emulator chal-
lenging, as we may get the correct concentrations for the
wrong reasons. The emulator can be built over a specific time
period and can be compared with the observations. Hence,
the emulator was built over the following two periods of in-
terest: the full period (1-29 May) and a period where no po-
tential structural errors were identified from 14:00-16:00h
for 1-29 May (2—4 p.m. period). Emulator analysis involv-
ing the filtering of model results to avoid structural errors
has been successfully performed previously in constraining
a climate model (Johnson et al., 2020). Looking at the mean
OC_ratio and Total_OM of the model runs for the 2—4 p.m.
period (Fig. S6), 34 runs lay within 1 SD of the OA mean
concentration (12.20 ug m~3) measured with the AMS com-
pared to the 47 runs identified from Fig. 3. This means that,
even by analyzing the 2—4 p.m. period, we still have model
runs that cover the AMS observations.

https://doi.org/10.5194/acp-23-5763-2023
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Figure 4. Diurnal cycle of selected WRF-Chem runs with values near the AMS observations (black line).

3.4 Model evaluation

There are various tools that can be used to compare the model
outputs with the observations. In this study, we use a number
of statistical metrics (see Sect. S3 in the Supplement for a
detailed description of each metric we consider) to evaluate
the ensemble of 111 model runs for the 2—4 p.m. period and
the full period. The fraction of predictions within a factor of
2 (FAC2) represents the fraction of data where predictions

https://doi.org/10.5194/acp-23-5763-2023

are within a factor of 2 of observations. The mean bias (MB)
gives an indication of the mean over- or underestimation of
predictions. The Index Of Agreement (IOA) is a commonly
used metric in model evaluation (Willmott et al., 2012), rang-
ing between —1 and +1, with values close to +1 represent-
ing a better model performance. Table S3 in the Supplement
shows the results of the model evaluation for the 2—4 p.m.
period, and Table S4 in the Supplement shows the results

Atmos. Chem. Phys., 23, 5763-5782, 2023
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for the full period. When comparing the performance of the
two periods, the model runs of the 2—4 p.m. period demon-
strate a better performance, with 103 runs for O : C and 29
runs for OA with FAC2 >0.6 compared to 94 runs for O : C
and 4 runs for OA with FAC2 >0.6 for the full period. The
negative MB in O : C suggests that the models underestimate
the O : C ratios (between —0.01 to —0.15) measured with
the AMS. However, the FAC2 values of 0.96 and higher in-
dicate that the models do a good job overall at simulating
the O : C ratios. This is not the same for OA concentrations,
where the models show an overestimate of the concentration
compared to observations and where only 0.56-0.62 of pre-
dictions were within a factor of 2 of the OA observations.

The IOA provides similar results with a better model per-
formance in the 2—4 p.m. period, with 10 model runs for the
2—4 p.m. period and only 2 runs for the full period with IOA
values equal to or higher than 0.45. It is interesting to see that,
while FAC2 was higher for OA and O : C in the 2-4 p.m. pe-
riod runs compared to in the full period, IOA values in 2—4
period were high with OA but low with O : C, which reached
IOA values of 0.53 in the 2—4 p.m. period and 0.56 in the full
period. Previous studies performing modeling evaluation de-
termined similar IOA values using various models (Ciarelli
et al., 2017; Fanourgakis et al., 2019). For instance, Chen et
al. (2021), modeling SOA formation, obtained IOA values
between 0.39-0.49. Huang et al. (2021) published recom-
mendations on model evaluation and identified IOA values
of around 0.5 for organic carbon. Lee et al. (2020) performed
a sensitivity analysis for two different SOA modules and ob-
tained IOA values of 0.46-0.52.

The model evaluation metrics, along with the parameter
setup for each ensemble member, allow us to analyze the
model setup that gives a better performance. Figure 5 shows
the relative variation (%) of the five anthropogenic param-
eters of the PPE (1-5) for the 2—4 p.m. period (Fig. S7 in
the Supplement shows the analysis for the full period). Each
pentagon represents the 5-D parameter space, and the posi-
tions of the dots connected with lines show the position of
each parameter within its range for that specific ensemble
member. The filled area within the dots represents the ex-
plored parameter space in each ensemble member. We an-
alyze the five anthropogenic PPEs only, since the five pa-
rameters related to biomass burning represented a low con-
tribution to the Total_OM concentrations. We are looking for
blue, light-blue or green colors in the lines and dots (high
FAC?2 values from the O : C analysis) and blue, light-blue or
green colors in the filled area (high FAC2 values from the
OA analysis) to identify the model runs with a good eval-
uation. In Fig. 5, we can see that the best runs according
to the O : C and OA model evaluation are TRAIN127 and
TRAIN121, with other TRAIN runs also demonstrating good
performance, such as runs 126, 036, 117, 104, 115, 119 and
058. In general, these model runs have low SVOC volatility
distribution (emitted VBS compounds are more volatile) and
SVOC scaling. TRAIN127 and TRAIN121 have low VBS
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aging rate, SVOC volatility distribution and SVOC scaling,
with either a high SVOC oxidation rate or high IVOC scal-
ing.

3.5 Emulator analysis
3.5.1  Emulator building and testing

Once we confirm that the ensemble of 111 model runs spans
the AMS observations, we can use it to build the emulator.
The emulators are tested using the leave-one-out validation
approach (Johnson et al., 2018). In this analysis, each en-
semble run is first excluded from the emulator build, and
then the emulator is used to predict the output at the param-
eter setting of the excluded run. Figure 6 shows plots of the
emulator predictions (with 95 % credible intervals from the
emulator model) vs. the model outputs of the 111 runs from
the leave-one-out validation for OA. Predictions from a per-
fect emulator would follow exactly along the 1 : 1 line on the
plots.

We built and tested the emulator for the full period (1-
29 May) to have an overview of the emulator performance.
The emulator can be built over a specific time period to
compare with the observations. This allows one to study the
model performance under different conditions, i.e., high or
low aerosol concentrations, day or night, etc. We selected
four period time slots to build and test the emulator under
high and low Total_OM concentrations and two time slots.
These four emulators showed a good validation analysis (Re-
fer to Sect. S5.1.1 in the Supplement). However, due to the
potential structural errors identified from the diurnal analy-
sis (Sect. 3.3), we will focus on the selected period without
structural errors, the 2—4 p.m. period. Figures S11 and S12 in
the Supplement show the spread of Total_OM and OC_ratio,
respectively, for the ensemble of 111 model runs vs. the 10
parameters.

We see in Fig. 6 that, overall, the emulators built for the
two periods (full period (Fig. 6a and b) and 2—4 p.m. period
(Fig. 6¢ and d)) show a good performance. For the 2—4 p.m.
period, in terms of Total_OM, we see only nine runs that are
not within the 95 % CI from prediction (red markers), and
in terms of OC_ratio, we see 10 runs that are not within the
95 % CI from prediction. With the 30 new runs (error bars
in blue), we managed to reduce the Total_OM concentra-
tions with good prediction ability from the emulator. How-
ever, there is a compromise in the OC_ratio, with eight runs
with high OC_ratio values that at not within the 95 % predic-
tion interval of the emulator.

3.6 Emulator sensitivity analysis

We use a variance-based sensitivity analysis (Lee et al., 2011;
Johnson et al., 2018) to decompose the overall variance in
the model output for key variables of interest into percentage
fractions for the 10 parameters. This analysis was performed

https://doi.org/10.5194/acp-23-5763-2023
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Figure 5. Relative variation (%) of the five anthropogenic PPEs (1-5) for the 2—4 p.m. period. Each pentagon represents the 5-D parameter
space, and the positions of the dots connected with lines show the position of each parameter within its range for that specific ensemble
member. The filled area within the dots represents the explored parameter space in each ensemble member. Counterclockwise from the top,
there are the following five anthropogenic parameters: VBS aging rate (P1), SVOC volatility distribution (P2), SVOC oxidation rate (P3),
IVOC scaling (P4) and SVOC scaling (P5). The values of the five parameters have been normalized dividing by their respective maximum
values; hence, their values in this plot range from 0-1. The color in the lines and dots represents the FAC2 values from the O : C analysis,
and the fill color represents the FAC2 values from the OA analysis. Red = 0-0.2, orange = 0.2-0.4, yellow = 0.4-0.6, green = 0.6-0.8, light

blue or cyan = 0.8-0.9, and blue =0.9-1.0.

to the full period and for the 2—4 p.m. period (Fig. 7). Look-
ing at the parameters for the two periods, the anthropogenic
SVOC scaling has the highest contribution to the variance,
which suggests that constraining this parameter would lead
to a reduction in the uncertainty in these outputs from the
model. Anthropogenic SVOC volatility distribution has some
impact on O : C ratios with a fraction of variance of around
15 %.

3.6.1 Impact of constraint on uncertainty

The emulator was used to predict model outputs for a sample
of size 0.5 million for the full period and for the 2—4 p.m. pe-
riod. Figure 8 shows the probability distribution of OC_ratio

https://doi.org/10.5194/acp-23-5763-2023

and Total_OM predicted over the full parameter uncertainty.
The AMS means &£ 1SD are shown in red. We can see that
the higher density (lower values) of the Total_OM shows a
good agreement with the AMS-OA concentrations. However,
in the case of O : C, the higher density lies on the low side
of the O : C ratios compared to the O : C-AMS observations,
which lie in the upper tail of the predicted distribution. The
OC_ratio varies within the two periods, with a wider den-
sity range for the full period, 0.25-0.55, which represents the
variability of the OC_ratio over the full day. In the case of the
2-4 p.m. period, we can see more-narrow density, 0.3-0.5,
which, while lower than the mean O : C ratio measured with
the AMS (0.65), may be representative of the O : C ratios es-
timated with the WRF-Chem runs. This suggests that, when

Atmos. Chem. Phys., 23, 5763-5782, 2023
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Figure 7. Sensitivity evaluation of the 10 chosen parameters for the
2-4 p.m. period (a) and for the full period (b).

analyzing diurnal behavior of WRF-Chem outputs without
structural errors, we would be able to analyze in more detail
the WRF-Chem performance over different hours of the day.

3.6.2 Constraint effect

The AMS observations, OA concentrations and O : C ratios
are used to constrain the emulation, applying an observation

Atmos. Chem. Phys., 23, 5763-5782, 2023

uncertainty as mean £ SD. With the mean as the emulator
prediction and a 1 SD uncertainty, we apply the constraint
when accounting for emulator prediction uncertainty by re-
taining the variant if the range mean &+ SD overlaps with the
observation uncertainty range.

Figure 9 is a 2-D histogram for joint constraint (Total_OM
and OC_ratio) for the 2—4 p.m. period, with color showing
the frequency of variants in a pixel of an underlying grid ar-
ranged as a pairwise space (shown by the label box on each
axis (above or to the right)). Each 2-D pairwise space has
been split into a 25 x 25 uniform grid to calculate the fre-
quencies. Where the plots show yellow to red, more variants
are retained than in the green and blue areas, highlighting the
most likely (higher-probability) area of space. This analysis
shows that, when constraining both Total_OM and O : C ra-
tios, the emulator retains 52 310 variants from 0.5 million,
which is approximately 10.46 % of the original variants gen-
erated.

White areas indicate that no variants at all are retained in
that pixel, so that 2-D space is ruled out with respect to all
10 dimensions. (probability = 0). Where the color is uniform,
e.g., biomass burning parameter plots in Fig. 9, the parame-
ter is essentially un-constrained, and all parts of parameter
space with respect to those two parameters are equally likely
and/or covered by variants (as it was before the constraint
was applied). These plots show where in the parameter space
is most likely given the comparison to observation. These are
the variants that we cannot rule out (i.e., that are plausible)
given the uncertainty — it does not mean they are all good. It
is worth mentioning that, with this analysis, we do not locate

https://doi.org/10.5194/acp-23-5763-2023
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Figure 8. A total of 0.5 million emulator samples, before constraint, covering the full parameter uncertainty space of the model for the full
period (a and b) and for the 2—4 p.m. period (¢ and d). Red highlights the AMS mean £SD observations.

the exact best run; instead, we provide a range of potential
combinations to test the WRF-Chem setup.

These results agree with the analysis in the model eval-
uation (Sect. 3.4). Figure 9 shows, in red color, the higher
probability that, with low SVOC volatility distribution and
low SVOC scaling, would give a good model performance.
However, there is no clear pattern with the other parameters.

3.6.3 Marginal parameter constraints

Figure 10 shows the marginal constraint (1-D projection) on
the parameters over their ranges. The unconstrained sam-
ple (black) has even coverage (i.e., it is sampled uniformly)
across all parameter ranges and the parameter space. The un-
constrained sample covers the full 10-D space.

Where the probability density function (PDF) of the con-
strained sample is above the black unconstrained PDF, the
likelihood of the parameter taking a value at that point of its
range is increased in terms of constraint (more probability).
Where it is below, it is now less likely in terms of constraint
(Iess probability). The more squashed the unconstrained dis-
tribution is, the more the likelihood of the parameter taking
values in the range with a higher density is. This analysis is
a useful tool to identify the more likely values of the 10 pa-
rameters over all the parameter space. Here, we can see that
low SVOC volatility distribution and low SVOC are clear
parameter values that we can use to improve the WRF-Chem
model setup. Other parameters that we can start testing on
WRF-Chem are high biomass-burning (BB) VBS aging rate
(6) and BB IVOC scaling (9). It is worth highlighting the

https://doi.org/10.5194/acp-23-5763-2023

similarity of the effects on the anthropogenic and biomass
burning parameters.

3.7 Analysis of model evaluation and emulator runs

Table 3 shows the WRF-Chem runs with both mean organic
and mean O : C values close to AMS observations for the
two periods and also for the selected runs from the 2-D
histograms (Fig. 9). Here, we can see a couple of interest-
ing findings. First, the O : C ratios presented a better per-
formance with the model evaluation metrics, specifically in
terms of FAC2 values higher than 0.9 compared with FAC2
values up to 0.73 for the total OM. Looking at the total
OM, there are higher FAC2 values in the 24 p.m. period,
which might be related to the structural errors impacting the
model performance in the full period. The MB provides an
estimation of the overprediction of the Total OM. In this
study, WRF-Chem runs, in generally overpredicted the to-
tal OM concentrations. Hence, MB is an important metric.
In both periods, there are runs where the overprediction was
Sugm~3 or lower, i.e, TRAIN110, TRANI121, TRAIN117,
etc. This highlights the use of all the analyses presented in
this study where we are able to identify probable values for
the VBS model parameters and where we are able to model
total OM and O : C ratios.

4 Conclusions

In this study, we aimed to determine an effective way of tun-
ing the VBS scheme using observations and also to learn

Atmos. Chem. Phys., 23, 5763-5782, 2023
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Figure 9. Two-dimensional histogram for joint constraint effect (Total_ OM and OC_ratio) accounting for emulator uncertainty. Retains

52310 variants from 0.5 million emulations (~ 10.46 %).

about the processes controlling OA in Delhi. The WRF-
Chem model runs with the VBS setup that successfully spans
the OA concentrations, and O : C ratios from AMS observa-
tions can be identified, with many model runs overestimating
organic mass concentrations and underestimating the O : C
ratios compared with AMS observations. However, we iden-
tified two structural errors in the model related to a com-
bination of unsuitable diurnal activity cycles applied to the
emissions and/or WRF-Chem not being able to capture com-
pletely the dynamics of the planetary boundary layer. It is
worth mentioning that these structural errors might also be
related to the representation of other organic aerosol pro-
cesses not represented by the VBS approach. As mentioned
early in the introduction, this study only considers semi-
volatile POA processes without accounting for perturbations
in SOA parameters and deposition processes. Recent stud-
ies, for example, have examined particle-phase and multi-
phase chemistry in aqueous aerosols and clouds (Shrivastava
et al., 2022) and reactions of SOA precursors with other radi-
cals like chlorine relevant to Indian conditions (Gunthe et al.,

Atmos. Chem. Phys., 23, 5763-5782, 2023

2021). Future studies could be focused on studying other pa-
rameters such as deposition processes and the perturbations
in SOA parameters.

The structural errors prevented us from providing an opti-
mized VBS approach in WRF-Chem. However, we were able
to apply the emulator in the following two periods: the full
period (1-29 May) and the 2—4 p.m. period (14:00-16:00,
1-29 May) to present a methodology to evaluate a model’s
performance using Gaussian emulators and metrics such as
FAC2, IOA and MB. Optimization is a stage-by-stage pro-
cess; future analysis would imply conducting an emulation
study to address diurnal activity and PBL directly, perhaps
using NOx or total PM.

The performance of the two emulators, the full period
and the 2—4 p.m. period, was similar, with the two emula-
tors demonstrating a good prediction of the model outputs
and presenting a similar high variance of the anthropogenic
SVOC scaling (parameter 5). The model performance would
be highly improved if we were able to constrain the input
values for parameter 5.
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Figure 10. Marginal parameter constraints: joint constraint effect (Total_OM and OC_ratio).

Table 3. Analysis of model evaluation metrics and comparison with observations for the full and 2—4 p.m. periods. The FAC2 ranking is
based on high FAC2 values of the Total_OM analysis. Mean AMS values for the full period are OA =21.77 ug m~3 and O: C= 0.5. Mean
AMS values for 2—4 p.m. period are OA =12.20 ug m~3 and O: C=0.67.

Full period Total_OM | 0': C ratio

Model FAC2 ranking FAC2 MB IOA Total_ OM mean Total OM SD ‘ FAC2 ranking  FAC2 MB IOA O:Cratiomean O:Cratio SD
TRAIN110 1 0.62 223 045 23.75 16.58 27 094 —0.04 048 0.46 0.12
TRAIN126 2 0.61 513 038 26.42 19.83 20 095 —0.04 0.51 0.46 0.11
TRAIN119 5 0.60 9.54 031 30.83 22.05 7 097 —0.04 0.54 0.47 0.10
TRAIN117 6 0.59 3.18 041 24.56 16.93 10 097 -0.01 0.53 0.49 0.11
TRAINO09 8 0.59 10.54 0.30 68.50 36.13 15 096 —0.08 0.51 0.42 0.11
TRAIN121 9 0.59 2.87 041 24.17 18.59 21 095 —0.05 0.50 0.45 0.11
TRAIN104 11 0.58 5.77 039 24.17 18.59 8 097 —-0.01 0.56 0.45 0.11
VALID002 12 058 1327 0.24 34.49 24.15 2 098 —0.08 0.52 0.43 0.09
TRAINO0O3 13 0.57 1265 024 33.73 23.56 6 0.97 0.00 055 0.50 0.12
TRAIN127 16 056 478 037 26.12 20.02 5 097 -0.02 0.55 0.48 0.10
24 p.m. period Total_OM O : C ratio

Model FAC2 ranking FAC2 MB IOA Total_OM mean Total_ OM SD ‘ FAC2 ranking FAC2 MB IOA O:Cratiomean O:Cratio SD
TRAIN127 1 0.73 437 044 15.64 10.72 3 0.99 0.02 051 0.50 0.06
TRAIN121 3 0.72 1.02 048 14.48 11.67 7 0.98 0.00 052 0.44 0.08
TRAIN126 4 072 435 043 15.77 9.35 12 0.98 0.01 050 0.46 0.08
TRAIN110 5 0.70 2.03 053 13.45 9.42 23 0.96 0.02 047 0.45 0.09
TRAINO036 11 0.69 5.13 040 17.23 12.85 1 1.00 0.03 051 0.52 0.05
TRAIN117 13 0.68 1.27 047 16.66 14.80 5 0.99 0.04 048 0.51 0.08
TRAIN104 14 0.68 5.50 047 16.41 11.18 14 0.98 0.03 047 0.54 0.06
TRAIN115 16 0.68 327 039 18.17 15.48 6 0.99 0.05 046 0.51 0.06
TRAIN119 19 0.67 712 035 18.96 11.26 10 0.98 0.01 051 0.49 0.07
TRAINO58 20 0.67 852 033 22.12 19.15 13 0.98 0.05 048 0.56 0.04
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When looking at the emulator sensibility analysis, we
identified that the parameter anthropogenic SVOC scaling
has the highest contribution to the variance, with fractions
higher than 70 %. This suggests that constraining this param-
eter would lead to a reduction in the uncertainty in these out-
puts from the model. Anthropogenic SVOC volatility distri-
bution has little impact on the fraction of variance on O : C
ratios, with a fraction of variance of around 15 %. None of
the parameters show a clear enough variance to improve the
model performance.

The model evaluation analysis based on FAC2, IOA and
MB agreed with the emulator analysis in identifying that us-
ing low SVOC volatility distribution and low SVOC scaling
would give improved model performance. Based on the MB
analysis, for both the full and the 2—4 p.m. periods, there
are runs where the total OM overprediction was 5pugm™3
or lower, i.e, TRAIN110, TRANI121, TRAIN117, etc. This
overprediction is considered to be low compared to the mean
Total_OM concentrations of ~ 20-30 ug m—>. Hence, we are
able to identify probable values for the VBS model param-
eters and are able to model total OM and O : C ratios in the
range of the AMS observations.

The combination of the emulator analysis and the model
evaluation metrics (FAC2, IOA and mean bias) allowed us
to identify the plausible parameter combinations for the
analyzed periods. The more plausible combinations were
found to be with a low SVOC volatility distribution and low
SVOC scaling, which means a more volatile distribution. The
methodology presented in this study is shown to be a useful
approach to determine the model uncertainty and to deter-
mine the optimal parameterization for the WRF-Chem VBS
setup. This information is valuable to increasing our under-
standing of secondary organic aerosol formation, which in
turn will help to improve regional and global model simula-
tions and emission inventories, as well as in making informed
decisions towards the improvement of air quality in urban en-
vironments.
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scripts are available at https://doi.org/10.5281/zenodo.7903352
(Lowe et al., 2018) and https://doi.org/10.5281/zenodo.7903347
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Scripts for running WRF-Chem (and reduc-
ing the outputs to key diagnostics) are available at
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