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Abstract. The heterogeneous nucleation of ice is an important atmospheric process facilitated by a wide range
of aerosols. Drop-freezing experiments are key for the determination of the ice nucleation activity of biotic and
abiotic ice nucleators (INs). The results of these experiments are reported as the fraction of frozen droplets
fice(T ) as a function of decreasing temperature and the corresponding cumulative freezing spectra Nm(T ) com-
puted using Gabor Vali’s methodology. The differential freezing spectrum nm(T ) is an approximant to the under-
lying distribution of heterogeneous ice nucleation temperatures Pu(T ) that represents the characteristic freezing
temperatures of all INs in the sample. However, Nm(T ) can be noisy, resulting in a differential form nm (T )
that is challenging to interpret. Furthermore, there is no rigorous statistical analysis of how many droplets and
dilutions are needed to obtain a well-converged nm(T ) that represents the underlying distribution Pu(T ). Here,
we present the HUB (heterogeneous underlying-based) method and associated Python codes that model (HUB-
forward code) and interpret (HUB-backward code) the results of drop-freezing experiments. HUB-forward pre-
dicts fice(T ) and Nm(T ) from a proposed distribution Pu(T ) of IN temperatures, allowing its users to test hy-
potheses regarding the role of subpopulations of nuclei in freezing spectra and providing a guide for a more
efficient collection of freezing data. HUB-backward uses a stochastic optimization method to compute nm(T )
from either Nm(T ) or fice(T ). The differential spectrum computed with HUB-backward is an analytical function
that can be used to reveal and characterize the underlying number of IN subpopulations of complex biological
samples (e.g., ice-nucleating bacteria, fungi, pollen) and to quantify the dependence of these subpopulations on
environmental variables. By delivering a way to compute the differential spectrum from drop-freezing data, and
vice versa, the HUB-forward and HUB-backward codes provide a hub to connect experiments and interpretative
physical quantities that can be analyzed with kinetic models and nucleation theory.

1 Introduction

Ice nucleators (INs) of biological and abiotic origins present
in aerosols are responsible for facilitating the heterogeneous
freezing of atmospheric water droplets above the homoge-
neous nucleation temperature (Murray et al., 2012; DeMott
et al., 2016, 2003). The potential of these aerosols as ice
nuclei has significant implications for cloud properties and

precipitation patterns (Gettelman et al., 2012; Mülmenstädt
et al., 2015; Froyd et al., 2022). Freezing experiments are
key sources of information to determine the range of tem-
peratures over which INs promote ice nucleation. The most
common method to characterize INs is through immersion
freezing experiments, for which a wide range of assays and
instruments have been developed. A comprehensive report
of various drop-freezing techniques can be found in Miller et
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al. (2021). The assays are typically performed by placing uni-
formly sized water droplets with a known IN concentration
or area on a substrate or in a multiwall plate that is gradually
cooled from a temperature above 0 ◦C until all droplets are
frozen (Kunert et al., 2018; Budke and Koop, 2015). Droplet
freezing is detected visually or through the measurement of
the latent heat release (Stratmann et al., 2004; Budke and
Koop, 2015; Kunert et al., 2018; Reicher et al., 2018), allow-
ing the assignment of a heterogeneous nucleation tempera-
ture to each droplet. Drop-freezing experiments record the
fraction of frozen droplets, fice (T ), as a function of decreas-
ing temperature; for soluble or dispersible INs fice (T ) curves
are typically collected at various 10-fold dilutions of the IN
sample.

Historically, there have been two interpretations of the dis-
persion of nucleation temperatures in heterogeneous freezing
experiments. The first approach suggests that the stochas-
tic nature of the nucleation process dominates the variabil-
ity in freezing temperatures (Bigg, 1953; Carte, 1956), while
the second approach assumes that the dispersion in temper-
atures mostly arises from a distribution of nucleation sites
(Fletcher, 1969), each with a deterministic, singular nucle-
ation temperature (Levine, 1950; Vali and Stansbury, 1966).
Variability in the temperature, volume, and amount of ice-
nucleating particles per droplet can also contribute to the dis-
persion of freezing temperatures (Vali, 2019; Knopf et al.,
2020). There is consensus now that both stochastic effects
and sample heterogeneities contribute to the distribution of
freezing temperatures, and both approaches are used for the
modeling of drop-freezing experiments (Vali, 1971; Marcolli
et al., 2007; Niedermeier et al., 2011; Murray et al., 2011;
Broadley et al., 2012; Wright and Petters, 2013; Herbert et
al., 2014; Harrison et al., 2016; Alpert and Knopf, 2016;
Vali, 2019; Fahy et al., 2022b). Stochastic modeling of the
freezing curves is based on predicting the survival probabil-
ity of liquid water containing INs as a function of supercool-
ing, and it requires a model for the temperature dependence
of the nucleation rate of the IN components. These models
have been solved numerically or evolved with Monte Carlo
simulations to interpret or resolve the distribution of ice nu-
cleation properties of minerals (Marcolli et al., 2007; Murray
et al., 2011; Broadley et al., 2012; Wright and Petters, 2013;
Herbert et al., 2014; Harrison et al., 2016) and organics (Zo-
brist et al., 2007; Alpert and Knopf, 2016) and to perform
parametric bootstrapping of experimental data (Wright and
Petters, 2013; Harrison et al., 2016). The advantage of the
stochastic modeling approach is that it enables a direct link
to microscopic properties of the nuclei and can account for
the cooling rate dependence of the fice (T ) data. These ap-
proaches require the use of analytical models for the freezing
rates and their distribution in the sample.

The modeling of freezing experiments based on the sin-
gular approach is based on the framework proposed by Vali
(1971). He assumed that each particular IN has a characteris-
tic ice nucleation temperature that is independent of the cool-

ing history. This implies that the IN with the highest charac-
teristic nucleation temperature in a droplet is responsible for
its freezing. Given a total number of droplets N0, the num-
ber of frozen droplets NF(T ) at a temperature T gives the
range of characteristic freezing temperatures that determines
the ice nucleation activity and is used to produce the cumu-
lative freezing spectrum (Vali, 1971, 2014, 2019):

Nm (T )=
1
X
[lnN0− lnNL(T )] = −

1
X

ln[1− fice (T )], (1a)

where NL (T )=N0−NF(T ) is the number of unfrozen
droplets; fice (T )=NF(T )/N0 is the fraction of frozen
droplets at temperature T ; and X is a normalization fac-
tor per unit volume of water, unit mass, or surface of the
INs (Vali, 2019). For soluble INs, the normalization factor
is commonly defined by the mass of the ice-nucleating ma-
terial X = ρ(Vdrop

/
d), where ρ is the density of the initial

solution, Vdrop is the droplet volume, and d is the dilution
factor (Kunert et al., 2018). The IN surface area per drop,
X = Adrop, is sometimes used as the normalization factor for
insoluble INs (e.g., dust, crystals), resulting in a cumulative
spectrum per area denoted asNs (T ). However, it is challeng-
ing to measure the total IN surface area accurately (Knopf
et al., 2020). We note that Eq. (1a) can be used even when
the absolute concentrations or areas of the INs are unknown,
provided that the user knows the relative concentration of the
dilution series derived from a parent sample. The differential
freezing spectrum nm (T ) is obtained by the differentiation of
the cumulative spectrum (Vali, 1971):

nm (T )=
dNm(T )

dT
=−

1
XNL (T )

dNL (T )
dT

. (1b)

The differential spectrum identifies the density of IN active
at each temperature and was identified by Vali as the cen-
tral quantity that can be derived and interpreted from drop-
freezing experiments (Vali, 1971, 2019).

The determination of the differential spectrum from the
cumulative one by finite differentiation is subject to signif-
icant noise, requiring a careful selection of the temperature
intervals and extensive sampling (Vali, 2019). As stochas-
tic effects are not considered in the singular temperature
formalism, the cumulative and differential spectra should –
in principle – depend on the cooling rate (Vali, 1994). The
stochastic nature of ice nucleation, combined with the uncer-
tainties associated with the experimental measurements (e.g.,
different droplet volumes, inhomogeneous samples, differ-
ent detection efficiencies), can produce significant variations
in the cumulative freezing spectra that result in large un-
certainties in nm (T ) and we provide its associated Python
code and user manual (https://github.com/Molinero-Group/
underlying-distribution, last access: 5 May 2023), published
in de Almeida Ribeiro et al., 2023). Parametric and nonpara-
metric bootstrapping based on the singular approximation
and Monte Carlo simulations have been used to estimate con-
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fidence intervals in freezing spectrum measurements (Vali,
2019; Fahy et al., 2022a, b).

A central assumption of the singular freezing approxima-
tion is that the freezing of a droplet containing multiple INs
is promoted by the IN with the highest nucleation tempera-
ture (Levine, 1950). The extreme value sampling is apparent
in the concentration dependence of fice (T ) in experiments
(Marcolli et al., 2007; Budke and Koop, 2015; Kunert et al.,
2018; Lukas et al., 2022). Using probability theory, Joseph
Levine demonstrated that if the distribution of ice nucleation
temperatures of the IN population follows an exponential dis-
tribution, then the sampling of droplet freezing temperatures
corresponds to a Gumbel distribution, and the median freez-
ing temperature TMED of the droplets scales with the log-
arithm of the number (or total nucleating area) of IN per
droplet (Levine, 1950). Richard Sear more recently demon-
strated that Levine’s approach is a particular solution for a
generalized extreme value problem and used modern extreme
value statistics to derive the scaling of TMED with the number
of IN sites per droplet for the three generalized extreme value
(GEV) distributions: Gumbel that would arise from an un-
derlying IN distribution with exponential tails, Frechet from
those with power law tails, and Weibull from those with an
upper cutoff in the freezing temperature of the INs (Sear,
2013). However, there are limitations for the use of the an-
alytical approaches of Sear and Levine for the interpretation
of actual drop-freezing data. First, the extreme value sam-
pling results in one of the three GEV distributions only in the
limit of an extremely large number of INs per droplet, while
in experiments the sampling is typically performed over di-
lutions down to a few INs per droplet. There is no analytical
formulation for the dependence of the extreme value distribu-
tion in the low to intermediate concentration regime. Second,
the analytical theory assumes that the sampling is complete
(i.e., the number of droplets is extremely large), while ex-
periments are typically performed with tens to hundreds of
droplets. Third, Sear notes that there is no general analyti-
cal theory to predict the GEV distributions from a mixture of
populations of nuclei with different temperature dependences
(Sear, 2013). In this study we overcome these three limita-
tions through a numerical implementation of extreme value
statistics for the modeling of drop-freezing experiments.

A consequence of extreme value sampling is that the dif-
ferential spectrum nm (T ) represents the underlying distribu-
tion of ice nucleation temperatures of all INs in the sample,
which we denote as Pu(T ), only when the sampling of INs in
the drop-freezing experiments is complete. The underlying
distribution Pu(T ) is akin to a hub that connects the exper-
imental freezing temperatures to physical analysis based on
nucleation theory or kinetic and equilibrium models that can
elucidate the mechanisms and origins of the distributions of
INs (Fig. 1). We here call the cumulative spectrum Nm (T )
obtained through Eq. (1a) in this complete sampling limit the
intrinsic cumulative spectrum of the system, Iu (T ) (Fig. 1).
While there is consensus that the quality of the freezing spec-

trum increases with the number of droplets, a rigorous anal-
ysis of how many droplets and IN dilutions should be mea-
sured to provide accurate freezing spectra is still lacking. The
first goal of the present study is to provide a strategy to opti-
mize the sampling of drop-freezing experiments to derive in-
terpretable differential spectra that are a good approximant of
the underlying distribution of heterogeneous ice nucleation
temperatures of the sample.

The existence of subpopulations or classes in the popula-
tion of INs (e.g., different classes of bacterial INs, different
ice-nucleating sites on complex materials like dust) (Turner
et al., 1990) is common in atmospheric aerosols. While sev-
eral studies have broadly defined populations from the cu-
mulative spectra by the range of nucleation temperatures they
encompass (Turner et al., 1990; Creamean et al., 2019) or the
origin of the sample (Steinke et al., 2020), there is currently
no simple procedure to identify and quantify subpopulations
or classes from cumulative freezing spectra Nm (T ). The sec-
ond aim of our study is to map the cumulative freezing spec-
trum Nm(T ) into the differential spectrum nm(T ) in terms
of subpopulations that may correspond to different physical
nucleation sites in the sample.

To reach the aims above, we develop a method we name
HUB (for heterogeneous underlying-based) to model and in-
terpret the results of drop-freezing experiments and provide
its associated Python code and user manual (https://github.
com/Molinero-Group/underlying-distribution, last access:
5 May 2023). Our method relies on the singular interpreta-
tion of freezing experiments: we assume that each individual
IN has a characteristic nucleation temperature independent
of its cooling history and that the freezing of a droplet con-
taining multiple INs is promoted by the IN with the highest
nucleation temperature. This second assumption allows the
use of extreme value statistics (Castillo et al., 2005; David
and Nagaraja, 2004; Gumbel, 2012; De Haan and Ferreira,
2006) to model and interpret the data.

We present two implementations of the HUB analysis
code. The HUB-forward code allows the user to postulate
an underlying distribution of heterogeneous nucleation tem-
peratures Pu(T ) in the system of interest. The HUB-forward
code uses the singular approximation and extreme value
statistics to generate an artificial IN dilution series similar
to those obtained in experiments, from which it computes
the fraction of frozen droplets fice(T ) and from these derive
Nm(T ) using Vali’s equation (Fig. 1). The HUB-backward
code works in reverse, extracting the differential spectrum
nm(T ) from a given cumulative Nm(T ) using a stochastic
optimization procedure (Fig. 1). HUB-backward allows the
decomposition of the total population from nm(T ) into sub-
populations. The combination of HUB-forward and HUB-
backward allows for an analysis of the sensitivity of Nm(T )
to the number of droplets and dilutions, as well as the impact
of the sampling on the closeness of the differential spectrum
nm(T ) to the underlying distribution Pu(T ). The determina-
tion of distributions obtained from the HUB-backward code
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Figure 1. Diagram illustrating the usage of the HUB code: nm(T ) is obtained from the sparsely sampled fice(T ) or Nm(T ) through HUB-
backward, and the effect on fice(T ) or Nm(T ) is obtained from the complete sampling of the underlying distribution Pu(T ) through HUB-
forward. The intrinsic cumulative spectrum Iu (T ) is proportional to

∫ T
Tm
Pu
(
T ′
)

dT ′ (Sect. 2.2).

could further enable the interpretation of the experimental
ice nucleation spectra with the size and structure of INs us-
ing nucleation theory, kinetic models, and molecular simu-
lations. For example, Schwidetzky et al. (2023) illustrate the
use of the distribution of freezing temperatures obtained with
HUB-backward, together with classical nucleation theory for
finite surfaces, to interpret the size of the INs of Fusarium
acuminatum.

This paper is organized as follows: Sect. 2 presents the
methodology, and Sect. 2.1 discusses the details on the im-
plementation of HUB-forward, while Sect. 2.2 describes the
HUB-backward procedure to find the differential spectrum
nm(T ) and discusses how to determine whether or not nm(T )
has converged to the underlying distribution Pu(T ). Section 3
presents examples of applications of both HUB-forward and
HUB-backward codes and their capabilities. Section 3.1
analyses the effect of the number of droplets sampled on
the cumulative freezing spectrum Nm (T ). Section 3.2 uses
HUB-backward to compute the differential spectra nm(T ) of
various biological INs with increasing grades of complex-
ity in their cumulative freezing spectra. Section 3.3 demon-
strates how to extract nm(T ) from the experimental fraction
of ice fice(T ) and the impact of the cooling rate on nm(T ).
We end in Sect. 4 with a discussion of the main conclusions
and outlook.

2 Numerical modeling of drop-freezing experiments

2.1 HUB-forward method to compute the fraction of
frozen droplets fice(T ) and cumulative freezing
spectrum Nm(T ) from a known underlying
distribution Pu(T )

In the HUB-forward analysis we know or assume an underly-
ing distribution Pu(T ) of ice nucleation temperatures for the
IN in the sample and generate from it an artificial IN dilution
series similar to those obtained in experiments, from which
we compute the cumulative freezing spectrum Nm(T ) using

Vali’s equation (Eq. 1a). Using this approach, we investigate
the relationship between Nm(T ) and Pu(T ) (Fig. 1) and the
sensitivity of Nm(T ) with respect to the number of droplets
and dilutions. For generality, we represent Pu(T ) as a linear
combination of normalized continuous distributions Pi (T )
that represent subpopulations of freezing temperatures:

Pu(T )= c1P1 (T )+ c2P2 (T )+ . . .+ cpPp (T ) , (2)

where p is the total number of subpopulations,
P1 (T ) , P2 (T ) , . . ., Pp (T ) are normalized distribution
functions, and c1, c2, . . . , cp are their weights such that
p∑
i=1
ci = 1. These subpopulations could correspond to dif-

ferent chemical, topographical, or structural motifs in the
IN samples, although chemically distinct species could
also produce overlapped freezing signatures, and a single
species could display a broad freezing range. Our formalism
does not require a mapping of subpopulations of freezing
temperatures to physical IN sites. The units of Pu(T ) are the
same as for nm(T ), i.e., those of the cumulative spectrum
divided by a unit of temperature, but are generally omitted in
what follows. Throughout this work we assume that Pi (T )
can be represented by Gaussian (i.e., normal) distributions:

Pi(T )=
(

1

si
√

2π

)
e
−

1
2

[
T−Tmode,i

si

]2

, (3)

where each subpopulation Pi (T ) is further characterized by
its most likely temperature of freezing Tmode,i and spread of
distribution of freezing temperatures si . We also provide in
the HUB code the option for the user to use the log-normal
distribution, which has a tail towards higher temperatures, or
the left-tailed Gumbel distribution, which has a tail towards
lower temperatures. In our model, we assume that the under-
lying distribution of ice-nucleating temperatures Pu(T ) does
not change with the concentration of INs. This last condition
is violated when INs are involved in chemical, aggregation,
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or solubility equilibria that alter the proportionality between
their concentration and the dilution factor of the sample, re-
sulting in a lack of overlap of the pieces of the cumulative
spectra Nm(T ) obtained from different dilutions (Bogler and
Borduas-Dedekind, 2020).

The number of INs in each droplet is given by the Poisson
distribution:

p(n,λ)=
λn

n!
e−λ, (4)

where n is the actual number of INs in each droplet and λ
represents the average number of INs among all droplets of
the corresponding dilution. Figure 2a shows the probability
mass function (PMF) for λ= 1, 5, and 10, computed accord-
ing to Eq. (4) and sampling over N0 = 104 droplets using the
“SciPy Stats” Python framework (Virtanen et al., 2020). As
λ increases, the probability that any droplet nucleates homo-
geneously rapidly approaches zero (inset of Fig. 2a). When
there is one IN on average per droplet (λ= 1),∼ 37 % of the
droplets do not have any INs; i.e., they are “empty” droplets
that would nucleate at the homogeneous nucleation temper-
ature. We note that by performing dilutions until a sizeable
fraction of droplets nucleate homogeneously, it is possible to
calibrate the absolute concentration of ice nuclei in the orig-
inal, undiluted sample.

To illustrate how the heterogeneous ice nucleation tem-
peratures recorded in drop-freezing experiments depend on
the number of INs in the droplets, we start from two exam-
ples with Pu(T ) represented by one or two Gaussian sub-
populations, shown with dashed black lines in Fig. 2b and c,
respectively. We assign a temperature to each IN contained
in droplets from a 10-fold dilution series of five solutions
with λ= 1, 10, 102, 103, and 104 average number of INs
per droplet. If the droplet volume is constant, λ is propor-
tional to the concentration of INs in the droplets. We sample
N0 = 104 droplets for each concentration. This N0 is much
higher than the∼ 100 droplets usually sampled in laboratory
experiments; we address the effect of sampling in Sect. 3.1
below.

To sample independent random values for each IN, the
number of random variates, which are drawn from Pu(T ), is
the total number of INs among N0 droplets. Thereby, each
droplet has a set of temperatures T λj = (T λ1 , T

λ
2 , . . ., T

λ
k ),

where j is the droplet index and k is the IN index. Since
we assume that freezing occurs at the characteristic tem-
perature of the IN with the highest freezing temperature,
the nucleation temperature for each droplet is defined as the
maximum, i.e., the extreme upper value, of several indepen-
dent freezing temperatures T λhet,j =max(T λ1 , T

λ
2 , . . ., T

λ
k ).

Figure 2b and c show the normalized distribution of T λhet,j
for different values of λ, namely P λmax(T ). Therefore, Pu(T )
represents the underlying probability of heterogeneous ice
nucleation temperatures independent of the concentration of
INs, while P λmax(T ) represents the concentration-dependent
distribution and has the same units as Pu(T ) and the differ-

ential spectrum. According to the Fisher–Tippett–Gnedenko
theorem, the distribution of extreme upper values of the
Gaussian distribution is the right-skewed Gumbel distribu-
tion (Castillo et al., 2005; David and Nagaraja, 2004; Gum-
bel, 2012; De Haan and Ferreira, 2006), which has a fatter
tail on the high-temperature side of its maximum. Indeed,
the shift in P λmax(T ) curves in Fig. 1b and c evinces that as
the number of INs in the droplet increases, the probability of
sampling the higher temperature tail of Pu(T ) increases sig-
nificantly. This skew is the reason why several dilutions are
needed to sample the full population of ice nucleants.

HUB-forward computes the fraction of frozen droplets and
cumulative spectra from a proposed underlying distribution
of freezing temperatures, using extreme value statistics. The
fraction of frozen droplets f λice (T ) can be calculated as a
function of the concentration-dependent distribution:

f λice (T )=

T∫
Tm

P λmax
(
T ′
)

dT ′×
Nλ

F
N0
, (5)

where the integration is from the ice melting temperature
Tm to the temperature T ,Nλ

F is the total number of droplets
that freeze heterogeneously, and N0 is the total number of
droplets. We note that the approach taken in this work differs
from that of previous studies that start from a microscopic
model for the nucleation sites and nucleation theory to pre-
dict the fraction of frozen droplets using Monte Carlo simu-
lations, as well as from previous modeling using the singular
approximation, which do not account for the statistics of ex-
treme sampling.

To use the HUB-forward code, the user must define the
total number of droplets “ndroplets” that serves as the to-
tal number of each concentration and the number of sub-
populations “nsubpop”. If “nsubpop”= 1, the user must pro-
vide the temperature of maximum likelihood Tmode,1 and the
spread s1. If “nsubpop”= 2, the user must provide Tmode,1,
s1, Tmode,2, s2 and c2. If “nsubpop”= 3, the user has to pro-
vide Tmode,1, s1, Tmode,2, s2, c2, and Tmode,3, s3, c3. To gener-
ate the cumulative freezing spectrum Nm (T ), the user needs
to define the total number of concentrations “nconc”; the
concentration of the parent suspension is defined in “density”
and the droplet volume in “volumedrop”. The output is com-
posed of different data plots and files: the normalized Pu(T )
and P λmax (T ), the artificially generated f λice(T ), and Nm (T )
built from the 10-fold dilution series.

Figure 3a and b show the fraction of ice computed using
P λmax (T ) of Fig. 2b and c, which correspond to Pu(T ) with
two subpopulations and one subpopulation, respectively. The
intermediate plateau in Fig. 3b indicates that no droplets
freeze at those temperatures. As discussed above, only 63 %
of the droplets freeze heterogeneously for λ= 1. We assume
droplets of uniform volume Vdrop = 0.1 µL obtained through
10-fold dilution of a parent suspension with λ= 104 INs per
droplet corresponding to a mass m= 1 mg of IN in a vol-
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Figure 2. (a) Probability mass function (PMF) of the Poisson dis-
tribution representing the number of INs per droplet. Colors rep-
resent different average numbers of INs per droplet: λ= 1 (blue
squares), λ= 5 (purple triangles), and λ= 10 (cyan circles). The in-
set shows the fraction of empty droplets as a function of λ. The con-
necting lines are solely guides for the eye. Panels (b) and (c) show
the normalized underlying distributions Pu (T ) of heterogeneous ice
nucleation temperatures (dashed magenta line), composed of two
subpopulations and one subpopulation, respectively. Colors repre-
sent the concentration-dependent normalized distribution P λmax(T )
of heterogeneous ice nucleation temperatures: λ= 1 (blue squares),
λ= 10 (cyan circles), λ= 102 (green diamonds), λ= 103 (yellow
×), and λ= 104 (red triangles) INs per droplet. A bin width of
0.1 was used for Pu (T ) and P λmax(T ). All distributions were ob-
tained using 104 droplets. While the HUB-forward code explicitly
accounts for NλF and N0, we note that their ratio can be approxi-
mated by NλF /N0 ≈ (1− e−λ) based on properties of the Poisson
distribution.

ume Vwash = 1 mL. We use Eq. (5) and the Pu(T ) of Fig. 2b
and c to generate f λice(T ) (Fig. 3a and b), sampling either
100 or 104 droplets per dilution. We combine the f λice(T ) us-
ing Eq. (1a) to build the cumulative freezing spectra Nm(T )
shown in Fig. 3c and d (sampling 104 droplets per dilution)
and Fig. 3e and f (sampling 102 droplets per dilution).

The ability of HUB-forward to generate the cumulative
freezing spectrum Nm(T ) from the underlying distribution
Pu(T ) allows for an analysis of the sensitivity of Nm(T ) and

Pu(T ) to the number of droplets and dilutions, as seen in the
comparison of Nm (T ) generated from the same underlying
distributions using 100 and 104 droplets in Fig. 3. In Sect. 3.1
we show that the sampling with 100 droplets for only four di-
lutions of a system with two subpopulations of INs results in
distortions of the distribution of freezing temperatures and
the proportions of these populations in the differential spec-
trum.

The knee point in Nm(T ) corresponds to the point of max-
imum curvature (Satopaa et al., 2011) and has been used to
characterize the nucleation temperature of a particular sub-
population (Hartmann et al., 2022). Similar to Hartmann et
al. (2022), we have identified in Fig. 3c and d the knee points
(dotted magenta line) of the artificially generated Nm(T )
by using a Python function named “kneed”. The Python
function “kneed” using S = 1, curve= “concave”, and di-
rection= “decreasing”. The knee points Tknee are very close
to the temperatures of maximum likelihood Tmode (dashed
black lines) of the corresponding underlying distribution
Pu (T ), because under these conditions the differential freez-
ing spectrum nm(T ) is a very good approximant for Pu(T ).
However, we find that the removal of the more dilute solu-
tions eliminates the plateau in Nm(T ) and results in poor es-
timation of the modes of Pu(T ) from the knee of Nm(T ).

2.2 HUB-backward method to recover the differential
freezing spectrum nm(T ) from the cumulative
freezing spectrum Nm (T ) by a stochastic
optimization procedure

The HUB-backward code implements a stochastic optimiza-
tion procedure to extract the differential spectrum nm(T )
from a given cumulative spectrum Nm(T ) or from an experi-
mental fice (T ) curve. The latter is useful when data are avail-
able for a single concentration. One possibility for obtaining
nm(T ) from Nm(T ) would be to follow the following steps:
(i) propose a trial function ntrial

m (T ), (ii) use HUB-forward to
predict the concentration-dependent distributions P λ,trial

max (T )
for various IN concentrations, (iii) use these in Eq. (5) to pre-
dict the freezing fractions f λ,trial

ice (T ), (iv) compute N trial
m (T )

from the freezing fractions using Eq. (1a), (v) evaluate the
difference between that trial and the target (experimental)
value using

δ (T )=
∣∣∣log10

[
N trial

m (T )
]
− log10

[
N

target
m (T )

]∣∣∣ , (6)

and then (vi) evolve the parameters that determine ntrial
m (T )

until the difference δ (T ) is minimized. However, the use of
HUB-forward in steps (ii) and (iii) to generate and evaluate
hundreds of droplets containing up to tens of millions of INs
would require significant computations that render this opti-
mization process inefficient.

The HUB-backward optimization procedure, sketched in
Fig. 4, uses a shortcut for steps (ii) and (iii) above to directly
predict N trial

m (T ) from ntrial
m (T ) with fast convergence. The
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Figure 3. Panels (a) and (b) represent the fraction of ice f λice (T ) computed using Eq. (5) and artificially generated data using 104 droplets.
Panels (c) and (d) are the corresponding cumulative freezing spectra Nm (T ) computed using Vali’s equation. Colors represent the different
number of INs per droplet: λ= 1 (blue squares), λ= 10 (cyan circles), λ= 102 (green diamonds), λ= 103 (yellow ×), and λ= 104 (red
triangles). Panels (e) and (f) represent Nm (T ) obtained using 100 droplets. The dashed black lines in (c) and (d) indicate the temperatures
corresponding to the location of the mode(s) in the underlying distribution. The dotted magenta lines are the knee points computed with the
Python function “kneed”.

shortcut is based on the understanding that, in the asymptotic
limit in which the sample is extremely dilute (i.e., λ−→ 0),
each droplet that nucleates heterogeneously contains a single
IN. In such a case, sampling an infinitely large number of
droplets with P λ−→0

max (T ) is equivalent to sampling each and
every IN, i.e., P λ−→0

max (T )= Pu (T ). In agreement with this
ansatz, Fig. 2b and c show that the underlying distribution
Pu(T ) (dashed black line) and the concentration-dependent
P λ=1

max (T ) (blue squares) sampled with 104 droplets per dilu-
tion are already very close, i.e., Pu(T )≈ P λ=1

max (T ).
With this insight and considering the intrinsic cumulative

spectrum, Iu (T )=
∫ T
Tm
Pu
(
T ′
)

dT ′× (1−e−1), we define the
cumulative integral of the differential spectrum as

I trial
u (T )=

T∫
Tm

ntrial
m
(
T ′
)

dT ′×β, (7)

where the integration is from the ice melting temperature
Tm to the temperature T and β is an adjustable scaling fac-
tor to be obtained from the optimization. Likewise, a simi-
lar estimate can be made for a single fraction of ice curve
f trial

ice (T )= I trial
u (T ) using Eq. (7) and the mean squared er-

ror can be directly evaluated (Fig. 4). When the target is a
cumulative freezing spectrum, HUB-forward uses ntrial

m (T )
to predict a trial cumulative freezing spectrum (Fig. 4),

N trial
m (T )=− ln[1− Iu (T )]×

1
X
, (8)

where 1/X corresponds to the maximum of the cumulative
spectrum in the target distribution, 1/X =max

[
N

target
m (T )

]
.

With Eq. (8) we obtain an N trial
m (T ) that we compare with

the target using Eq. (6) (Fig. 4). To do the comparison,

HUB-backward uses a spline fit to interpolate the experimen-
tal N target

m (T ), in order to have equally spaced temperature
points to compare with the estimates in N trial

m (T ). We use the
“interp1d” algorithm, which is available in the Python SciPy
library (Virtanen et al., 2020), with a linear interpolation to
construct new equally spaced data points within the range
of the lowest and highest temperature values in the freezing
spectrum. The cost function for the optimization is the mean
squared error (MSE), computed from the difference δ (T ) in
Eq. (6):

MSE=
1
t

∑
δ2, (9)

where t represents the total number of equally spaced points
in δ (T ).

We use a stochastic global optimization technique based
on a simulated annealing algorithm to find the set of pa-
rameters of ntrial

m (Eqs. 2 and 3) and β (Eq. 7) that globally
minimize the MSE. We use the simulated annealing (SA) al-
gorithm “dual annealing” that is part of the SciPy minimize
library (Virtanen et al., 2020) with its default arguments pre-
defined, except for the parameters “maxfun” that sets the
maximum number of evaluations of the objective function
(we select “maxfun”= 1 000 000 in the examples below) and
the seed for the generation of random numbers (a new ran-
dom integer is automatically generated every time the HUB-
backward code is run). We show below that the optimized
differential spectra, noptimized

m (T ), are quite insensitive to the
value of the seed.

The output of HUB-backward is an optimized differen-
tial spectrum n

optimized
m (T ) or an optimized fraction of ice

f
optimized
ice (T ). To quantify how much this optimized predic-

tion deviates from the known underlying distribution in the

https://doi.org/10.5194/acp-23-5623-2023 Atmos. Chem. Phys., 23, 5623–5639, 2023



5630 I. de Almeida Ribeiro et al.: HUB

Figure 4. Flowchart of the optimization procedure to obtain the differential freezing spectrum nm(T ) from the full cumulative freezing
spectrum Nm(T ) or fraction of frozen droplets fice(T ).

examples of Fig. 5, where Pu(T ) is known, we define the
mean relative error (MRE) for the set of parameters:

MRE=
1

3p

p∑
i=1

[∣∣∣∣∣T
optimized

mode,i − T
target

mode,i

T
target

mode,i

∣∣∣∣∣
+

∣∣∣∣∣ s
optimized
i − s

target
i

s
target
i

∣∣∣∣∣+
∣∣∣∣∣c

optimized
i − c

target
i

c
target
i

∣∣∣∣∣
]
, (10)

where p is the number of subpopulations.
We now turn our focus to how to select the input param-

eters required by HUB-backward to start the search for the
underlying distribution, using the experimental N target

m (T ) or
f

target
ice (T ) as a guide. The code requires the user to define the

number of distinct Gaussian subpopulationsPi(T ) that com-
prise the underlying distribution (Eq. 2) and to provide upper
and lower bounds for the weights ci , their modes Tmode,i ,
and spreads si of each of these populations. In general, we
find that defining the minimum and maximum values for the
weights to cmax

i = 1 and cmin
i = 0 (see constraint in Eq. 2),

for the modes T max
mode,i and T min

mode,i to between the homoge-
neous nucleation temperature (about −30 ◦C) and the melt-
ing temperature (0 ◦C), and for the spreads to smax

i = 10 ◦C
and smin

i = 0.1 ◦C works well. However, these bounds can be
tuned in order to better fit the data (as we find for pollen in
Sect. 3.2 below). If the existing experimental N target

m (T ) data
are very noisy, they can be interpolated in HUB-backward
using the method “interp1d” with “npoints”= 100 and then
smoothed with a Savitzky–Golay filter by changing the pa-
rameters “window_length”, which is the length of the filter
window, and “polyorder”, which is the order of the polyno-
mial used to fit the samples (“filter” in Fig. 4). The default

values are 3 and 1, respectively. HUB-backward generates
a plot that compares the original and the interpolated target
data.

To identify the minimum number of subpopulations
needed to represent a given freezing spectrum, we consider
that every time a population is accumulated in Nm(T ) or
fice(T ), these functions display a sharp increase. We note
that assuming a large number of subpopulations may chal-
lenge the interpretability of the optimized differential spec-
trum n

optimized
m (T ).

We apply the HUB-backward procedure to the Nm (T ) ob-
tained in Fig. 3c and d by sampling four 10-fold dilutions
with 100 droplets, i.e., only a total of 500 droplets. Figure 5
shows the comparison between the predicted (solid magenta
lines) and the target (dashed black lines) Nm (T ) (panels a
and b) and nm (T ) (panels c and d). Table 1 shows the pre-
dicted parameters and the precision of the optimization pro-
cedure to recover the known underlying distribution Pu(T ).
The MRE between the underlying distribution Pu(T ) and the
optimized differential spectrum n

optimized
m (T ) is 2 % for the

system with one subpopulation and 13 % for the one with
two despite the low number of droplets used to sample the
cumulative freezing spectra in the computer-generated freez-
ing experiments.

We conclude that the HUB-backward code gives a good
estimate of the mode, spread, and weights of the populations
of INs in a sample and it can be applied in a situation where
Pu(T ) is unknown. In Sect. 3.1 we discuss how the accu-
racy is of the underlying distribution recovered with HUB-
backward impacted by various schemes of the sampling of
the number of droplets and dilutions to construct Nm (T ). In
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Table 1. Mean relative error (MRE), mean squared error (MSE), and parameters of the optimized differential freezing spectra noptimized
m (T )

obtained using the HUB-backward code. The values shown here were calculated based on the average of n= 3 independent runs. The error
bars, shown in parentheses, were calculated by dividing the standard deviation of the values in these runs by 31/2.

MRE MSE Tmode,1 (◦C) s1 (◦C) Tmode,2 (◦C) s2 (◦C) c2 β

One subpopulation 2 % 1.0(2)× 10−3
−7.80(2) 0.49(2) 0.63(1)

Two subpopulations 13 % 3.0(2)× 10−3
−7.90(2) 0.54(2) −3.90(2) 0.49(2) 0.16(2) 0.63(1)

Figure 5. Panels (a) and (b) show the comparison between
N

target
m (T ) (black circles) and the Noptimized

m (T ) computed with the
optimized solution noptimized

m (T ) (solid red line). Panels (c) and
(d) show the known underlying distributions Pu(T ) (dashed black
line) and the optimized underlying distributions noptimized

m (T ) (solid
red line) based on three independent runs. The parameters of the
predicted underlying distribution noptimized

m (T ) are summarized in
Table 1.

Sect. 3.2, we apply the HUB-backward procedure to obtain
n

optimized
m (T ) from actual Nm (T ) of experiments with vari-

ous soluble biological INs. In Sect. 3.3, we apply the HUB-
backward procedure to obtain noptimized

m (T ) from fice (T ) of
experiments of insoluble crystal INs.

3 Using the HUB code to optimize and analyze
drop-freezing experiments

3.1 Effect of the number of droplets and dilutions on the
cumulative freezing spectrum Nm(T )

Figure 3d–f show Nm(T ) generated with HUB-forward us-
ing five dilutions from λ= 104 to 1 of a solution with Pu(T )
containing two populations in a ratio of 9 to 1. The Nm(T )
are different when the number of droplets per dilution is 100
(Fig. 3f) or 104 (Fig. 3d). As shown in the previous section,
the freezing spectrum obtained with 100 droplets and five
dilutions has enough sampling to recover this Pu(T ) with
good accuracy (Fig. 5c and d). We test different number of
droplets and concentrations, defined by the average number
of INs per droplet λ, to test the sensitivity of nm(T ) to the
number of droplets and dilutions when the underlying distri-
bution Pu(T ) is known. We use HUB-forward to buildNm(T )
based on a combination of different numbers of droplets and
concentrations, similar to the case shown in Fig. 3f. Then,
we use HUB-backward to obtain noptimized

m (T ), compare it to
Pu (T ), and test the accuracy of each prediction through its
mean relative error (MRE) defined in Eq. (10).

The left panels of Fig. 6 show Nm(T ) generated with
HUB-forward based on a combination of different concentra-
tions using 100 droplets for each dilution. The magenta lines
are based on the data provided by the HUB-backward code.
The right panels of Fig. 6 compare noptimized

m (T ) in magenta
and the known underlying distribution Pu (T ) in black. In this
example, nm(T ) is very close to Pu (T ) if both subpopula-
tions are sampled enough. However, if the most dilute solu-
tion with λ= 1 is not included in Nm(T ) (second panel), the
estimate of the underlying distribution is very poor. Thus, to
improve the sampling of the lower tail of Pu (T ), we recom-
mend ending the dilution series always in the immediacy of
λ= 1, which can be gleaned from the temperature range for
whichNm (T ) becomes flat and a sizeable fraction of droplets
of the more diluted sample nucleates homogeneously (inset
of Fig. 2a). The one-to-one correspondence between the frac-
tion of droplets nucleated homogeneously and the average
number of particles in the droplet in the highly diluted limit
(inset of Fig. 2a) demonstrates that reaching this limit allows
for an absolute calibration of the number of INs in the ini-
tial sample. Moreover, sampling to concentrations down to
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Figure 6. Panels (a, c, e, g) represent the cumulative freezing spec-
tra Nm (T ) sampled from the same underlying distribution Pu(T ).
Colors represent the different numbers of INs per droplet: λ= 1
(blue squares), λ= 10 (cyan circles), λ= 102 (green diamonds),
λ= 103 (yellow ×), and λ= 104 (red triangles). The sampling was
done using 100 droplets for each concentration. Panels (b, d, f, h)
represent the differential freezing spectra nm (T ) compared to the
known underlying distribution Pu(T ), shown by the magenta and
dashed black lines, respectively. Panels (a–d) were computed with
a different number of dilutions. The mean relative error (MRE) was
computed using Eq. (10). The parameters of nm (T ) and Pu(T ) are
shown in Table S1.

about one nucleant per droplet is essential to recover a proper
weight of the poorly nucleating IN populations.

The relative weights of class A and C populations in Pseu-
domonas syringae is approximately 1 to 1000 (Sect. 3.2),
while the ratio is 9 to 1 in the two-population system exam-
ple of Fig. 6. To understand the impact of highly imbalanced
populations on the sampling of the cumulative spectrum and
recovery of the underlying distribution, we show in Fig. 7 the
analysis of an example where the subpopulation of highly ef-
ficient INs is 3 orders of magnitude less likely to occur than

the subpopulation at lower temperatures, mimicking the one
of P. syringae. Our analysis confirms that it is important to
end the dilution series in the immediacy of λ= 1 to fully
represent the contribution of the poorer INs (Fig. 7b–f). Fur-
thermore, we find that it is important to sample a concentra-
tion high enough to account for the rare INs that nucleate at
the warmest temperatures (Fig. 7d–h).

If only 25 droplets per dilution, instead of 100, are used to
construct the cumulative spectrum, the impact of insufficient
sampling at the higher concentrations is more pronounced:
compare Fig. 8c and Fig. 7d obtained with the same under-
lying distribution Pu (T ) with 1000 to 1 subpopulation ratios
and number of dilutions.

We conclude that an increase in the accuracy in the ac-
count of the subpopulations requires a higher number of di-
lutions and the checking of the predictions with the addition
of each successive concentration to ensure convergence of
n

optimized
m (T ). Measuring fewer droplets or fewer dilutions

leads to poor statistics and results in incompleteness or the
misrepresentation of the underlying distribution in samples
with multiple subpopulations. In principle, increasing the
number of droplets of the most concentrated solutions or
adding more 10-fold concentrated ones until there are no
changes in the cumulative spectrum is recommended to en-
sure complete sampling. When that limiting scenario is not
attainable, the use of HUB-forward to produce synthetic data
from a proposed underlying distribution, followed by the re-
covery of the differential spectrum from these data sets, al-
lows for an estimation of the errors that may be incurred
for putative, proposed underlying distributions with the sam-
pling scheme available in the laboratory.

3.2 Obtaining the differential freezing spectrum nm(T )
from the experimental cumulative freezing spectrum
Nm(T ) of biological INs using the HUB-backward
code

In this section we use the HUB-backward code to obtain the
differential freezing spectrum nm(T ) from the cumulative
freezing spectra Nm(T ) of the fungi Fusarium acuminatum
strain 3–68 (Kunert et al., 2019), the bacterium P. syringae
(Schwidetzky et al., 2021), and birch pollen (Dreischmeier,
2019). We select these systems because they are important
biological INs and show increasing complexity in terms of
the apparent number of underlying distributions that define
their freezing spectra.

The experimental Nm(T ) obtained for F. acuminatum
(black squares in Fig. 9a) was obtained by sampling six 10-
fold dilutions, each with 96 droplets (Kunert et al., 2019).
Figure 9a shows the cumulative spectra optimized assum-
ing one (green curve) and two (cyan curve) subpopulations;
Fig. 9b shows the corresponding optimized differential freez-
ing spectra. The noptimized

m (T ) with a single subpopulation
that peaks at −5.9 ◦C is unable to represent the cumulative
density of the most potent nuclei and misses the inflection
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Figure 7. Panels (a–d) represent the cumulative freezing spectra
Nm (T ) sampled from the same underlying distribution Pu(T ). Col-
ors represent the different number of INs per droplet: λ= 1 (blue
squares), λ= 10 (cyan circles), λ= 102 (green diamonds), λ= 103

(yellow×), and λ= 104 (red triangles). The sampling was done us-
ing 100 droplets for each concentration. Panels (e–h) represent the
differential freezing spectra nm (T ) compared to the known under-
lying distribution Pu(T ), shown by the magenta and dashed black
lines, respectively. The mean relative error (MRE) was computed
using Eq. (10) and the parameters of nm (T ) and Pu(T ) are shown
in Table S2.

at around −5.9 ◦C in the experimental data, resulting in a
mean squared error MSE= 0.05. The noptimized

m (T ) with two
subpopulations has a lower MSE= 0.003 and a better fit that
suggests a population that peaks at −7.3 ◦C and another at
−5.5 ◦C, in comparable amounts (Table 2). Most notably, the
two subpopulations do not overlap in the differential freezing
spectrum, supporting that they may indeed correspond to dif-
ferent physical entities. The improvement in the fit becomes
apparent in the inset of Fig. 9a, which showsNm(T ) on a lin-
ear scale. The significant slope of Nm(T ) even at the lowest
temperatures indicates that the sampling of more diluted so-

Figure 8. Panels (a–c) represent the cumulative freezing spectra
Nm (T ) sampled from the same underlying distribution Pu(T ). Col-
ors represent the different number of INs per droplet: λ= 1 (blue
squares), λ= 10 (cyan circles), λ= 102 (green diamonds), λ= 103

(yellow×), and λ= 104 (red triangles). The sampling was done us-
ing 25 droplets for each concentration. Panels (d–f) represent the
differential freezing spectra nm (T ) compared to the known under-
lying distribution Pu(T ), shown by the magenta and dashed black
lines, respectively. The mean relative error (MRE) was computed
using Eq. (10). The parameters of nm (T ) and Pu(T ) are shown in
Table S3.

lutions is needed to capture the contribution of the less active
INs. An attempt to represent F. acuminatum nucleation data
with three different subpopulations resulted in two of them
being almost identical. We conclude that adding a third sub-
population is unnecessary to reproduce the experimental cu-
mulative freezing spectrum of F. acuminatum. We refer the
reader to Schwidetzky et al. (2023) for an interpretation of
the size of the ice-nucleating surface of F. acuminatum based
on its differential spectrum and nucleation theory.

Next, we apply the HUB-backward code to analyze the ex-
perimental freezing spectrum of Snomax®, i.e., inactivated
P. syringae. The cumulative spectrum suggests the presence
of two distinct subpopulations, usually called class A (at
warmer temperatures) and class C (at colder ones). We first
assume the differential freezing spectrum nm(T ) of P. sy-
ringae is a combination of two Gaussian populations. The
parameters of the optimized differential spectrum with two
subpopulations are listed in Table 2, and the curve is shown
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Figure 9. Cumulative freezing spectra Nm(T ) obtained from drop-freezing experiments for (a) F. acuminatum strain 3–68 (Kunert et al.,
2019), (b) P. Syringae (Schwidetzky et al., 2021), and (c) birch pollen (Dreischmeier, 2019) (black circles). The solid green, long dashed
cyan, and short dashed red lines represent Noptimized

m (T ) computed with the optimized differential freezing spectra noptimized
m (T ) obtained

with the HUB-backward code considering one, two, and three subpopulations, respectively. Panels (b), (d), and (e) show n
optimized
m (T ). The

gray circles are experimental data points in the measurement of the birch pollen ice nucleation spectrum that were not considered in the
optimization procedure. Insets in (a) and (c) show Nm(T ) in normal scale.

Table 2. Mean squared error (MSE) and parameters of the differential freezing spectra nm (T ) obtained using the HUB-backward code and
experimental data as input. The values shown here were calculated based on the average of n= 3 independent runs. The error bars, shown in
parentheses, were calculated by dividing the standard deviation of the values in these runs by 31/2.

Number of MSE Tmode,1 s1 Tmode,2 s2 c2 Tmode,3 s3 c3 β

populations (◦C) (◦C) (◦C) (◦C) (◦C) (◦C)

F. acuminatum 1 2.0 % −5.90(1) 0.36(1) 0.54(1)
F. acuminatum 2 0.5 % −7.30(2) 0.62(3) −5.50(1) 0.31(1) 0.35(1) 0.58(2)
P. syringae 2 2.0 % −9.40(2) 0.77(2) −4.20(2) 0.41(3) 7.0(2)× 10−4 0.87(1)
P. syringae 3 1.1 % −9.10(2) 0.70(2) −5.20(1) 0.53(2) 1.0(1)× 10−3

−3.70(1) 0.27(2) 3.0(1)× 10−4 0.57(1)
Birch pollen 3 5.0 % −20.00(2) 0.79(3) −15.60(2) 0.58(1) 9.0(1) ×10−6

−8.40(1) 0.69(2) 6.0(2)× 10−8 0.39(3)

in Fig. 9d with a cyan line. We use a logarithmic scale to rep-
resent this noptimized

m (T ) because the population correspond-
ing to class A accounts for less than 0.1 % of the total (Ta-
ble 2). While the fit with two subpopulations results in a good
overall account of the target data, we note that there is some
difference in the region between classes A and C (Fig. 9c).
The fitting for P. syringae achieves an excellent agreement
between optimized and target cumulative spectra (Fig. 9c),
through the prediction of an additional peak located between
classes A and C (the elusive class B), with a population com-
parable to class A (Table 2 and red curve in Fig. 9d). How-
ever, more measurements and analyses are needed to estab-
lish whether this “class B” peak at −5.2 ◦C is reproducible

and truly distinct from the one of class A at −3.7 ◦C to
warrant a physical interpretation. Overall, both the analyses
with two and three subpopulations agree with previous ones
(Govindarajan and Lindow, 1988; Warren, 1987) that con-
cluded that over 99 % of the INs active in P. syringae bacteria
in Snomax® belongs to class C. The analysis presented here
for fungal and bacterial INs illustrates how HUB-backward
can be used to reveal and characterize the underlying number
of IN subpopulations of complex biological samples.

To further test the methodology, we model the cumula-
tive freezing spectrum of birch pollen. Given that the origi-
nal Nm(T ) data for pollen in Fig. 3.1 of Dreischmeier (2019)
consist of multiple independent curves, we took one of the
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many presented in this graph as the target N target
m (T ) (black

curve in Fig. 9e) and present some of the additional data – not
used in the optimization – with gray circles in Fig. 9e. Sec-
tion S4 in the Supplement shows that the differential spec-
trum optimized from the whole data set and its sparse sam-
pling are almost identical because HUB-forward interpolates
and smooths the input data to produce an equispaced data
set. The N target

m (T ) seems to contain three quite separated
subpopulations, which is confirmed by the accuracy of the
optimized cumulative spectrum in Fig. 9e. The parameters
of the optimized differential freezing spectrum n

optimized
m (T )

and the MSE are shown in Table 2. Our analysis indicates that
the two subpopulations that nucleate ice above −16 ◦C con-
stitute less than 0.01 % of the active nucleating sites in pollen
(Fig. 9e), consistent with drop-freezing assays that only mea-
sured solutions with low concentrations of birch pollen and
did not observe freezing at higher temperatures (Augustin et
al., 2013; Pummer et al., 2012; Felgitsch et al., 2018), while
the more extensive data of Dreischmeier (2019) reveal two
more active subpopulations of INs.

To further illustrate the use of HUB-backward, Fig. 10
shows the effect of pH in the modes, spread, and weights
of the subpopulations that contribute to the nucleation spec-
trum of P. syringae (Snomax®), using data from Lukas et
al. (2020). Freezing in the temperature range of class A drops
about 3 orders of magnitude when the pH is lowered from
6.2 to 4.4 (Fig. 10b). However, we note that the cumulative
number of INs is preserved in the experimental cumulative
freezing spectrum (Lukas et al., 2020), indicating that the
change in pH did not impact the number of nucleants. Fig-
ure 10c and d demonstrate that the distributions associated
with both subpopulations shift to lower temperatures when
the pH decreases, and the range of freezing temperatures in
class A becomes broader. An attempt to fit the cumulative
spectra of Snomax at different pH values with the same sub-
populations, allowing only for adjustment of their weights,
resulted in a poor fit to the experimental Nm(T ), support-
ing the conclusions of Lukas et al. (2020) of a central role
of electrostatic interactions in the assembly of the bacterial
ice-nucleating proteins and their ability to bind to ice. This
analysis exemplifies how HUB-backward can be applied to
quantify the dependence of IN on environmental variables.

3.3 Obtaining the differential freezing spectrum nm(T )
from the experimental fraction of ice fice(T ) of
insoluble ice nucleators using the HUB-backward
code

Section 3.1 and 3.2 discuss how to obtain the differential
spectrum from a target cumulative one. However, there are
many cases where the results are presented as a fraction
of frozen droplets as a function of temperature, fice(T ). In
these cases, the HUB-backward code can be used to obtain
the optimized differential freezing spectrum n

optimized
m (T ) di-

rectly from f
target
ice (T ). Section S5 illustrates this approach for

Figure 10. Effect of changing the pH on the subpopulations of
P. Syringae (Lukas et al., 2020). (a) Differential freezing spectra
nm (T ) obtained using the HUB-backward code. Colors represent
the different pH values: 6.5 (long dashed black line), 5.6 (short dot-
ted blue line), and 4.4 (solid magenta line). (b) Ratio between the
weights, (c) the modes, and (d) the spreads of each subpopulation
as a function of pH. The fitting of Nm (T ) and the parameters of
nm (T ) are shown in Fig. S1 and Table S4.

the analysis of droplet freezing data for a sample of lignin
(Bogler and Borduas-Dedekind, 2020) in which the INs par-
ticipate in aggregation equilibria. Here, we exemplify the op-
timization of the differential spectrum of cholesterol from ex-
perimental freezing data obtained at two cooling rates with
droplets sampled from a single dilution.

In the analysis of drop-freezing experiments, it is assumed
that each IN has a singular freezing temperature, independent
of the cooling rate. However, ice nucleation is a stochastic
process, and the underlying distribution of freezing tempera-
tures Pu (T ) strictly depends on both temperature and cooling
rate, as slower rates give more time for the system to cross
the nucleation barrier at warmer temperatures.

The triangles and squares in Fig. 11a display the ex-
perimental fice(T ) obtained by sampling the freezing of
hundreds of 120 µL droplets pipetted from a suspen-
sion of cholesterol monohydrate crystals in contact with
Teflon cooled at 0.18 K min−1 (triangles) and 0.06 K min−1

(squares) (Zhang and Maeda, 2022). Our analysis of the
freezing data of cholesterol monohydrate shows that even a
3-fold change in the cooling rate can have a significant effect
on the differential spectrum (Fig. 11b).

As expected, the modes of the three populations move to-
wards warmer temperatures upon decreasing the cooling rate.
We note, however, that the shift in the peaks is not uniform;
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Figure 11. Use of the HUB-backward code to estimate the opti-
mized differential freezing spectra noptimized

m (T ) based on the frac-
tion of frozen droplets f target

ice (T ) of cholesterol (Zhang and Maeda,
2022) at different cooling rates. Black circles and squares are exper-
imental data, and dashed cyan and solid red lines are the optimized
differential spectra given by the HUB-backward code. The parame-
ters of nm (T ) are shown in Table S5.

the middle one seems to be more sensitive to the cooling rate.
Different sensitivity of the freezing rate of subpopulations
has also been reported in simulations of nucleation data of
minerals using the stochastic and modified singular frame-
works (Herbert et al., 2014; Murray et al., 2011). The mod-
ified singular model proposes an empirical correction to the
relation between fice(T ) and Nm(T ) to account for the ef-
fect of the cooling rate on the shift in these quantities (Vali,
1994). That analysis could be extended to the analysis of the
subpopulations of INs obtained with HUB-backward. More-
over, it would be interesting in future studies to use the rate
dependence of the mode of the subpopulations to extract the
steepness of the nucleation barrier with temperature using
nucleation theory (Budke and Koop, 2015) and to investi-
gate the relationship between the cooling rate dependence of
the differential spectrum obtained in the singular approxima-
tion with the interpretation of the same data modeled with
the stochastic framework, such as in Wright et al. (2013) and
Herbert et al. (2014).

4 Conclusions

In this study, we present the HUB method and associated
Python codes that model (HUB-forward code) and interpret
(HUB-backward code) the results of droplet freezing experi-
ments under the assumptions that each ice-nucleating site in
the sample has a characteristic nucleation temperature that
is time-independent. The use of the singular approximation

is the same as that used by Vali (1971, 2014, 2019) in his
derivation of the ice nucleation spectra from data of fraction
of frozen droplets. Different to previous implementations of
the singular model, HUB accounts for the distribution of the
number of INs in droplets at a given concentration and uses
extreme value statistics to represent the effect of dilutions
in the frozen fraction and freezing spectra. Our method and
codes allow users to obtain an analytical differential freezing
spectrum nm(T ) from the experimental distribution of freez-
ing temperatures, and vice versa. The differential freezing
spectrum nm(T ) is an approximant to the underlying distri-
bution of ice-nucleating temperatures Pu (T ), which provides
a hub to connect the experimental freezing temperatures with
interpretative physical analyses using kinetic models or nu-
cleation theory that can be used to elucidate the mechanisms
of nucleation and origins of these distributions.

HUB-forward predicts the cumulative ice nucleation spec-
trum Nm(T ) and fractions of frozen droplets fice(T ) from
a known (or assumed) underlying distribution Pu(T ) of nu-
cleation temperatures for the INs in the sample. The HUB-
forward code can be used to investigate the effect of the num-
ber of droplets and dilutions on the temperature range of the
cumulative freezing spectrum Nm(T ). Our analysis shows
that the differential freezing spectrum nm(T ) is identical to
the underlying distribution of heterogeneous ice nucleation
temperatures Pu(T ) only when sampling is complete. Mea-
suring fewer droplets or fewer dilutions can result in a bi-
ased representation of the differential and cumulative spectra.
HUB-forward predicts fice(T ) and Nm(T ) from a proposed
distribution of IN temperatures, allowing its users to test hy-
potheses regarding the role of subpopulations of nuclei in the
freezing spectra and providing a guide for a more efficient
collection of freezing data.

HUB-backward uses a non-linear optimization method to
find the differential freezing spectrum nm(T ) that best rep-
resents the experimental target cumulative freezing spectrum
Nm(T ) or fraction of frozen droplets fice(T ) in the experi-
ments. The analytical form of the differential freezing spec-
trum nm(T ) obtained from HUB-backward offers an inter-
pretable physical basis. The interpretability of the results in
terms of subpopulations provides an advantage over polyno-
mial fitting and differentiation of Nm(T ). Indeed, we show
that the HUB-backward code can be used to reveal and char-
acterize the underlying number of IN subpopulations of com-
plex biological samples (Snomax®, fungi Fusarium acumi-
natum, and birch pollen) and quantify the dependence of their
subpopulations on environmental variables. Interestingly, our
analysis evinces subpopulations that are not obvious to the
eye and have not previously been identified in these samples.
The robustness of the signals that correspond to these popu-
lations and their physical nature require further investigation.

We illustrate the use of HUB-backward to obtain the dif-
ferential freezing spectrum nm(T ) from the fraction of frozen
droplets fice(T ) collected at a single concentration. We apply
that analysis to demonstrate that nm(T ) depends on the cool-
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ing rate. The shift in the peaks of the subpopulations to higher
temperatures upon decreasing the cooling rate is not unex-
pected, as longer waiting times allow for the surmounting of
the same nucleation barrier at warmer temperatures. By pro-
viding the temperature dependence of the mode, spread, and
weight of the subpopulation peaks, HUB-backward can be
combined with nucleation theory and other theoretical analy-
ses to extract the steepness, and maybe even the distribution,
of nucleation barriers that control the freezing process.
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