Atmos. Chem. Phys., 23, 551–563, 2023 https://doi.org/10.5194/acp-23-551-2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.





# Quantifying daily NO<sub>x</sub> and CO<sub>2</sub> emissions from Wuhan using satellite observations from TROPOMI and OCO-2

Qianqian Zhang<sup>1,2</sup>, K. Folkert Boersma<sup>1,3</sup>, Bin Zhao<sup>4</sup>, Henk Eskes<sup>3</sup>, Cuihong Chen<sup>5</sup>, Haotian Zheng<sup>4</sup>, and Xingying Zhang<sup>2,a</sup>

 <sup>1</sup>Environmental Science Group, Wageningen University, Wageningen, the Netherlands
 <sup>2</sup>Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites,
 Innovation Center for Fengyun Meteorological Satellite (FYSIC), National Satellite Meteorological Center, China Meteorology Administration, Beijing, 100081, China
 <sup>3</sup>Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
 <sup>4</sup>State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of environment, Tsinghua University, Beijing, 100084, China
 <sup>5</sup>Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100094, China
 <sup>a</sup>now at: the Department of Science & Technology and Climate Change, China Meteorology Administration, Beijing, 10081, China

**Correspondence:** K. Folkert Boersma (folkert.boersma@wur.nl) and Qianqian Zhang (zhangqq@cma.gov.cn)

Received: 14 August 2022 – Discussion started: 6 September 2022 Revised: 3 November 2022 – Accepted: 22 December 2022 – Published: 13 January 2023

Abstract. Quantification and control of  $NO_x$  and  $CO_2$  emissions are essential across the world to limit adverse climate change and improve air quality. We present a new top-down method, an improved superposition column model to estimate day-to-day  $NO_x$  and  $CO_2$  emissions from the large city of Wuhan, China, located in a polluted background. The latest released version 2.3.1 TROPOMI (TROPOspheric Monitoring Instrument) NO<sub>2</sub> columns and version 10r of the Orbiting Carbon Observatory-2 (OCO-2)-observed CO<sub>2</sub> mixing ratio are employed. We quantified daily  $NO_x$  and  $CO_2$  emissions from Wuhan between September 2019 and October 2020 with an uncertainty of 31 % and 43 %, compared to 39 % and 49 % with the earlier v1.3 TROPOMI data, respectively. Our estimated NO<sub>x</sub> and CO<sub>2</sub> emissions are verified against bottom-up inventories with minor deviations (< 3%for the 2019 mean, ranging from -20% to 48% on a daily basis). Based on the estimated CO<sub>2</sub> emissions, we also predicted daily CO<sub>2</sub> column mixing ratio enhancements, which match well with OCO-2 observations (< 5% bias, within  $\pm 0.3$  ppm). We capture the day-to-day variation of NO<sub>x</sub> and CO<sub>2</sub> emissions from Wuhan in 2019–2020, which does not reveal a substantial "weekend reduction" but does show a clear "holiday reduction" in the NO<sub>x</sub> and CO<sub>2</sub> emissions. Our method also quantifies the abrupt decrease and slow NO<sub>x</sub> and CO<sub>2</sub> emissions rebound due to the Wuhan lockdown in early 2020. This work demonstrates the improved superposition model to be a promising new tool for the quantification of city  $NO_x$  and  $CO_2$  emissions, allowing policymakers to gain real-time information on spatial-temporal emission patterns and the effectiveness of carbon and nitrogen regulation in urban environments.

### 1 Introduction

Fossil fuel combustion by power plants, industrial activities, transportation and residential energy use sectors leads to the emission of nitrogen oxides ( $NO_x = NO + NO_2$ ) as well as carbon dioxide ( $CO_2$ ). Traditional bottom-up  $NO_x$  and  $CO_2$  emission estimates have a time lag of several years because it takes time to access and compile accurate information on energy consumption and emission factors (Lamsal et al., 2011; F. Liu et al., 2020).

For decades, satellites have been continuously providing information on NO<sub>2</sub> distributions and trends with good quality, and satellite data are widely used to quantify  $NO_x$  emissions and changes (Lamsal et al., 2010; Visser et al., 2019; Zhang et al., 2020, 2021). Based on satellite-retrieved NO<sub>2</sub> data, previous studies quantified long-term mean (monthly, yearly or multi-yearly)  $NO_x$  emissions on global and regional scales (Lamsal et al., 2011; Visser et al., 2019). Beirle et al. (2011) analyzed plumes of satellite  $NO_2$  columns downwind of strong sources averaged for each wind direction and then inferred  $NO_x$  emissions from isolated significant point sources and megacities. Inspired by this idea, Lorente et al. (2019) analyzed the increase of NO2 along with the wind over the extensive pollution source of Paris. The buildup of NO<sub>2</sub> over the city observed from space, in combination with wind speed and direction information, allows us to obtain day-by-day (sub)urban  $NO_x$  emission estimates and lifetimes as long as the city is under a clear sky and winds are relatively constant in time. This approach does not need burdensome inverse modeling computations and opens possibilities for rapid and direct monitoring of  $NO_x$  emissions from space.

In contrast to  $NO_x$ , it is challenging to infer accurate localized anthropogenic CO<sub>2</sub> emissions from satellite CO<sub>2</sub> retrievals. One reason is that the background CO<sub>2</sub> concentration is orders of magnitude higher than the enhancement caused by anthropogenic emissions, reflecting the long atmospheric lifetime of CO<sub>2</sub> (Reuter et al., 2014, 2019). Another reason is that the spatial and temporal coverage of current  $CO_2$  sensors is too sparse to allow for substantial averaging of noisy signals by revisiting of scenes, precluding detailed CO<sub>2</sub> emission estimation (Zheng et al., 2020a; F. Liu et al., 2020). Using satellite NO<sub>2</sub> measurements to estimate anthropogenic  $NO_x$  emissions as the basis to infer anthropogenic CO<sub>2</sub> emission has been proposed in several studies (Reuter et al., 2019; F. Liu et al., 2020; Berezin et al., 2013; Zheng et al., 2020a). However, to our knowledge, there is no method that estimates day-to-day top-down CO2 emission estimation on a (sub-)city scale.

Here we revisit the method of Lorente et al. (2019) to improve our understanding of its potential and limitations and extend it to estimate city-scale daily  $NO_x$  and  $CO_2$ emissions. We present an improved superposition model that considers the buildup of pollution over a source area as in Lorente et al. (2019), as well as the decay of  $NO_2$  downwind of the source, but now also accounts for changes in the background NO<sub>2</sub> pollution along the wind direction. The background NO<sub>2</sub> pollution was considered to remain constant by Lorente et al. (2019) for Paris, which is not surrounded by significant surface sources of  $NO_x$  pollution. Here we apply our improved method to a highly polluted urban area, the megacity of Wuhan in the Hubei Province of China, which, other than the relatively isolated city of Paris, is located in a polluted background with many surrounding surface pollution sources that potentially interfere with the buildup and decay of the NO<sub>2</sub> plume from Wuhan. Using this improved superposition model, together with bottom-up information on the  $CO_2/NO_x$  emission ratio, we infer  $NO_x$  and CO<sub>2</sub> emissions on a day-by-day basis over a full year from September 2019 to August 2020 and analyze the variation in emissions and  $NO_x$  chemical lifetime from day to day. Of particular interest are the reductions and subsequent rebound of  $NO_x$  and  $CO_2$  emissions associated with the COVID-19 lockdown measures in Wuhan, which have been reported in other studies and serve here as a useful check of the robustness of our method.

# 2 Data and material

## 2.1 Satellite data

In this study, we use the newly released level-2, version 2.3.1 of the S-5P TROPOMI (TROPOspheric Monitoring Instrument) data (TROPOMI-v2.3.1) between September 2019 and August 2020. The S-5P (Sentinel-5 Precursor) satellite was launched in October 2017, and the TROPOMI on board provides tropospheric NO2 columns with an unprecedented horizontal resolution of up to 5.5 km × 3.5 km (as of 6 August 2019) and high signal-to-noise ratio (Griffin et al., 2019; van Geffen et al., 2020). The v2.3.1 dataset is provided by S5P-PAL (S5P Science and Technology Product Algorithm Laboratory) (Eskes et al., 2021). It is dedicated to supporting the research on the impact of the COVID lockdown on air quality. Improved (residual) cloud pressures correct the low bias of v1.x data compared to Ozone Monitoring Instrument (OMI) and ground-based measurements over east China (Wang et al., 2020; M. Liu et al., 2020). In addition, improved treatment for the surface albedo increases the columns for cloud-free scenes (van Geffen et al., 2022). Overall, compared to the earlier version, this dataset has 10-40 % higher tropospheric NO<sub>2</sub> columns over polluted scenes due to the improved cloud retrieval and other algorithm updates (van Geffen et al., 2022; Riess et al., 2022). Over Wuhan, we find an average increase (compared to the v1.3 data, from now on referred to as TROPOMIv1.3) in tropospheric NO<sub>2</sub> column density of about 25 %. Still, there are also differences between the two versions in terms of spatial and temporal distribution (Fig. S1 in the Supplement). According to Fig. S1, the increase in v2.3.1 is much stronger over the polluted area (city center) and in

the polluted period (9 September and 3 October 2019). Since the v1.x TROPOMI data are widely used in previous studies (e.g., Bauwens et al., 2020; Ding et al., 2020; Zhang et al., 2021), we also compared the estimated NO<sub>x</sub> lifetime and emissions from the TROPOMI-v2.3.1 data and the TROPOMI-v1.3 data, which will be discussed in Sect. 3.1. For the record, when estimating the NO<sub>x</sub> emissions and lifetime over Wuhan, we scaled up the TROPOMI-v1.3 NO<sub>2</sub> columns by a factor of 1.6 to correct for the known -40%bias in TROPOMI NO<sub>2</sub> data as reported by M. Liu et al. (2020).

We sampled the TROPOMI NO<sub>2</sub> columns into 0.05° latitude  $\times$  0.05° longitude grid cells ( $\sim$  6  $\times$  6 km<sup>2</sup>). To ensure good data quality, we filtered out the data with cloud radiance fractions greater than 0.5 (geometric cloud fraction less than 0.2) and obtained 81 clear-sky days with full TROPOMI NO<sub>2</sub> coverage over the Wuhan region in 1 full year.

The column-averaged dry-air mole fraction of  $CO_2$  (*X*CO<sub>2</sub>) data provided by the Orbiting Carbon Observatory-2 (OCO-2) is also employed to verify Wuhan's derived CO<sub>2</sub> emission inventory. We use version 10r of the bias-corrected *X*CO<sub>2</sub> product (Gunson and Eldering, 2020). The v10r OCO-2 *X*CO<sub>2</sub> product has high accuracy, with a single sounding precision of ~ 0.8 ppm over land and ~ 0.5 ppm over water and root-mean-square biases of 0.5–0.7 ppm over both land and water (O'Dell et al., 2021).

#### 2.2 Bottom-up emission information

Bottom-up  $NO_x$  and  $CO_2$  emission inventories are used to provide the first guess of the  $NO_x$  emission spatial pattern (for  $NO_x$ , in the Supplement, Sect. S1 and Fig. S2) and to verify the top-down emissions. We use the Air Benefit and Attainment and Cost Assessment System Emission Inventory (ABACAS) (Zhao et al., 2013, 2018; Zheng et al., 2019) to provide  $NO_x$  and  $CO_2$  emissions for the year 2019. The Multi-resolution Emission Inventory (MEIC) (Li et al., 2017)  $NO_x$  emissions for 2017 are also employed.

#### 2.3 Other input data

Besides the satellite data and bottom-up emission inventories, a set of other parameters is input into our improved superposition model. They include the hydroxyl radical (OH) concentration, the loss rate (k) of NO<sub>x</sub> in the atmosphere, the NO<sub>x</sub>/NO<sub>2</sub> ratio and the wind field. We use version 12.1 of the GEOS-Chem model with a horizontal resolution of  $0.25^{\circ} \times 0.3125^{\circ}$  ( $\sim 30 \times 37.5 \text{ km}^2$ ) to provide the a priori guesses for chemical parameters relevant to daytime NO<sub>x</sub>. The wind field is from ERA5 (ECMWF Reanalysis v5), the fifth-generation ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric reanalysis of the global climate (Hersbach et al., 2020). Detailed information on these data can be found in Sect. S2. Considering that the wind field strongly influences the distribution of NO<sub>2</sub> column patterns, and thus on the NO<sub>x</sub> emission estimation, we filter the TROPOMI NO<sub>2</sub> data based on the wind fields. After excluding the days with fluctuating wind direction (if the wind direction changes more than  $45^{\circ}$  in the hours before the TROPOMI overpass) within the study domain, we finally obtained 50 d out of the ensemble of 81 valid satellite days between 1 September 2019 and 31 August 2020 to estimate NO<sub>x</sub> and CO<sub>2</sub> emissions from Wuhan. The fraction of useful days is comparable to what Lorente et al. (2019) obtained for Paris, which is 27 d in 5 months.

#### 2.4 NO<sub>2</sub> pattern fits: estimation of lifetime and emission

To ensure that the whole area of Wuhan is included, we determine our study domain as a circular region centered at 114° E, 30.7° N, with a diameter of ~ 186 km. It includes the whole area of Wuhan and the small city of Ezhou to the east of Wuhan, the southwest part of Huanggang and the east part of Xiaogan (Fig. S4, red circle). We also do a sensitivity test to narrow the study area down to within the Third Ring Road of Wuhan to check the robustness of our model to the area size of the study domain (Fig. S4, the blue circle). For each day, we converted the two-dimensional NO<sub>2</sub> column map over the domain to a one-dimensional line density along the wind direction (Sect. S3) (Beirle et al., 2011; Lorente et al., 2019). NO<sub>x</sub> emissions and lifetimes can be estimated by fitting the NO<sub>2</sub> line density over the domain.

Lorente et al. (2019) presented a superposition column model based on a simple column model (Jacob, 1999) to simulate NO<sub>2</sub> line density over Paris. They considered the buildup of NO<sub>2</sub> caused by spatially varying NO<sub>x</sub> emissions from each cell and used the NO<sub>2</sub> line density value at the upwind end of the city to represent the background value, which they assumed to be constant over the city. This appears plausible if the background value were to mostly represent free-tropospheric NO2, which has a longer lifetime than NO<sub>2</sub> in the oxidizing polluted boundary layer and varies smoothly according to models. Our method to simulate the NO<sub>2</sub> line density over the city is also based on the column model (Jacob, 1999) but differs from that of Lorente et al. (2019) in considering the background NO<sub>2</sub> value. Each cell along the wind direction is treated separately as a column model. Since the satellite has an overpass time of around 13:30 LT (local time),  $NO_x$  is removed in the atmosphere dominantly through the first-order reaction with OH.  $NO_x$ emissions from the current cell contribute to the total line density through the buildup of NO2 density within the cell and exponential decay of  $NO_2$  downwind of the cell (Eq. 1). It does not contribute to the upwind cells (Eq. 2).

$$N_{i}(x) = \frac{E_{i}}{k} \left( 1 - e^{-kL/u} \right) \times e^{-k(x - x_{i})/u} \times \frac{[\text{NO}_{2}]}{[\text{NO}_{x}]} \text{ for } x > x_{i}, \quad (1)$$
  

$$N_{i}(x) = 0 \text{ for } x \le x_{i}, \quad (2)$$

where  $N_i$  represents the NO<sub>2</sub> line density (molec. cm<sup>-1</sup>) contributed from  $E_i$  in cell *i*; *L* is the length of each cell,

i.e. 600 000 cm; k is the loss rate (s<sup>-1</sup>) of NO<sub>x</sub> at 13:00 LT  $\left(k = \frac{k'[\text{OH}]}{[\text{NO}_x]/[\text{NO}_2]}\right)$ ; and u denotes the NO<sub>2</sub>-density-weighted mean wind speed in units of centimeters per second (cm s<sup>-1</sup>) within the planetary boundary layer. We add up the contributions from each cell and the background value to model the overall NO<sub>2</sub> line density:

$$N(x) = \sum_{i=1}^{n} N_i(x) + b + \alpha x.$$
 (3)

Here, *b* represents the starting background value, equivalent to the mean NO<sub>2</sub> line density within the 5 (for summer, spring and autumn) or 10 (for winter) cells upwind of x = 0.  $\alpha$  denotes the linear change of background value with distance along the wind and represents the chemical decay of background NO<sub>2</sub> flowing into the polluted boundary layer over the city.

We fit the terms that drive N(x) (i.e.,  $E_i$ , k and  $\alpha$ ) with the fixed L, u and  $[NO_x]/[NO_2]$  from external data, via a least-squares minimization to the TROPOMI observed line density  $N_{\text{TROPOMI}}(x)$ . For each day, we run the model 20 times, randomly choosing OH concentration within the  $\pm 20 \%$  interval of the GEOS-Chem-simulated OH concentration. The set of parameters  $E_i$ , k and  $\alpha$  that best explain the observations over the city is the answer we are seeking. The parameter that describes the decay of upwind NO<sub>2</sub> over the city, the  $\alpha$  value, is determined by the difference of NO<sub>2</sub> line density between the end and start point of the study domain,  $\alpha = \frac{(N_{31}-N_1)}{30L}$ , and we allow it to change between  $\pm \alpha$  in the fitting procedure. For the 50 d on average, the  $\alpha$  value is  $(-0.006\pm 0.008) \times 10^{-22}$  molec. cm<sup>-2</sup>. The  $\alpha$  value being negative reflects the decay of upwind NO<sub>2</sub> pollution along the wind.

The assumption of a linearly decreasing NO<sub>2</sub> background is relevant under conditions when the city is in a polluted background. It accounts for decay of upwind NO<sub>2</sub> pollution arriving at the city when transported over and downwind of the city. In reality, upwind NO<sub>2</sub> pollution mixes in with the freshly emitted NO<sub>x</sub> and is then subject to chemical decay (with non-linearities due to turbulent mixing and spatial heterogeneity in emissions). We acknowledge that our linear decrease of background NO<sub>2</sub> pollution is a severe simplification. Still, as shown in Fig. 1, compared to fitting results with a constant background value, we obtain a better correlation (up to 25 %) and lower bias (nearly 50 % lower) between fitted and observed NO<sub>2</sub> line densities when fitting with a linearly changing background value.

#### 2.5 CO<sub>2</sub> emission estimation

City-scale  $CO_2$  emissions are estimated through Eq. (4):

$$E_{\rm CO_2} = E_{\rm NO_x} \times {\rm Ratio}_{\rm CO_2/NO_x}.$$
 (4)

The anthropogenic  $CO_2/NO_x$  emission ratio is provided by the ABACAS inventory and amounts to ~ 591 g CO<sub>2</sub> per  $g NO_x$  emitted from our study domain for the year 2019. In 2020, emissions from the transport sector had substantially decreased due to the lockdown measurements (Huang et al., 2021; Zheng et al., 2020b). The more substantial decrease in transport  $NO_x$  emissions relative to declines from other sectors is predicted to have led to an increase in the  $CO_2/NO_x$ emission ratio, for this ratio is lowest in the transport sector (Zheng et al., 2020b). The monthly  $CO_2/NO_x$  emission ratio for Wuhan was calculated based on recent reports on sectoral  $NO_x$  emissions in 2020 from Hubei Province (Zheng et al., 2021a). We further calculated the daily  $CO_2/NO_x$  emission ratio based on the monthly, daily, and diurnal variations of  $CO_2$  and  $NO_x$  emissions (Fig. S5). The final daily  $CO_2/NO_x$  emission ratio for the study period displayed in Table S1 in the Supplement indeed shows increases in the  $CO_2/NO_x$  emission ratio of up to 20 % during the lockdown period in 2020 due to the reduced contribution from the transport sector.

## 2.6 Uncertainty in NO<sub>X</sub> and CO<sub>2</sub> emission estimation

Uncertainties in quantifying  $NO_x$  and  $CO_2$  emissions contain the systematic error in the TROPOMI NO2 retrieval, bias in the assumed a priori OH concentration,  $NO_x/NO_2$  ratio,  $CO_2/NO_x$  emission ratio, uncertainties in wind fields and the area of the study domain. The v2.3.1 NO<sub>2</sub> column dataset corrected the low bias in TROPOMI (v1.x) tropospheric NO2 column over eastern China by 15%-100% (van Geffen et al., 2022), but there remains an uncertainty of  $\sim \pm 20$  %. The chemical transport models (CTMs) have difficulty simulating accurate OH concentration, but for > 90% of the days, our fitted OH concentrations fall in the  $\pm 20$  % range around GEOS-Chem simulation, so the uncertainty in OH concentration is likely on the order of  $\pm 20\%$ . The difference between the model-simulated and observed  $NO_x/NO_2$  ratio is less than 10%, so we give an uncertainty in  $NO_x/NO_2$ ratio of  $\pm 10$  %. Uncertainty in the CO<sub>2</sub>/NO<sub>x</sub> emission ratio comes from the errors in sectoral  $NO_x$  and  $CO_2$  emissions, and we calculated that the corresponding uncertainty is  $\pm 30$  %. We use the NO<sub>2</sub>-column-weighted mean instead of the arithmetic mean value to get the boundary layer mean wind speed to minimize the error in the wind field, but there may remain  $\pm 20$  % uncertainty in the ERA5 reanalysis data. We ran a test by randomly choosing parameter values within their uncertainty ranges 20 times to predict an ensemble of  $NO_x$  and  $CO_2$  emission outcomes. Then the ratio of the standard deviation to the mean value of the 20 emission outcomes is regarded as the uncertainty on  $NO_x$  and  $CO_2$  emission caused by uncertainties in the corresponding parameters, which are displayed in Table S2. The uncertainty caused by the domain size is determined by narrowing down our study domain to the Wuhan city center (see Sect. S4 and Fig. S6). The results demonstrate that when the study domain is narrowed down to 84 km diameter, as expected, it turns out to be structurally different from that with the 186 km diam-



**Figure 1.** Tropospheric NO<sub>2</sub> columns over Wuhan on 29 September 2019, 30 January 2020 and 2 May 2020 (left panels, from top to bottom); the red circle inside each map defines the study domain. The corresponding NO<sub>2</sub> line densities along wind within the study domain are given in the right panel. For each day, the correlation coefficient (*R*) between the observed (black line) and fitted (grey and red lines) NO<sub>2</sub> line density is given. The fitted mean bias (MB), NO<sub>x</sub> emissions (*E*) and NO<sub>x</sub> lifetime ( $\tau$ ) are also displayed.

eter domain. This is because the mean OH concentration is lower in the city center, leading to longer fitted NO<sub>x</sub> lifetime. However, the change in fitted NO<sub>x</sub> lifetime and NO<sub>x</sub> emission is within  $\pm 15$  %. So, we apply a 15 % uncertainty in NO<sub>x</sub> emissions and lifetime estimation caused by the area size of the study domain. Finally, considering that all these parameters are independent of each other, we use the rootmean-square sum of the contributions to represent the overall uncertainty estimation, which we quantify for NO<sub>x</sub> emission on a single day at ~ 31 % and for CO<sub>2</sub> emission at ~ 43 %.

#### 3 Results and discussion

### 3.1 $NO_X$ lifetimes and emissions

We display the estimated NO<sub>x</sub> lifetime and NO<sub>x</sub> emissions for each clear-sky day during the study period in Table S1. The estimated planetary boundary layer mean OH concentration over the region for each day is presented in Fig. 2. For 90 % of the days, our model-fitted OH concentrations fall into the intervals of 0.8–1.2 times the GEOS-Chem model values. There are only 5 d on which we had to impose a change in OH concentrations of more than 30 % relative to the GEOS-Chem simulation to obtain realistic fitting results.

We estimate that the seasonal mean noontime NO<sub>x</sub> lifetime over Wuhan and adjacent region is  $4.8\pm0.8$  h for winter,



Figure 2. Daily boundary layer mean OH concentration over our study domain. The OH concentration estimated from our improved superposition column model is given with the red line. The grey shade represents 0.8–1.2 times the GEOS-Chem-simulated OH concentration, and the grey line represents CMAQ model simulation results.

 $2.8 \pm 1.3$  h for spring,  $1.4 \pm 0.3$  h for summer and  $1.9 \pm 0.5$  h for autumn. The results are lower than those calculated from the GEOS-Chem simulation by Shah et al. (2020), with  $\sim 6$  h in summer and > 20 h in winter. This is because they calculated the 24 h mean  $NO_x$  lifetime, while the loss rate of  $NO_x$  is much higher around noon.  $NO_x$  lifetime for Wuhan is also shorter than for Paris (Lorente et al., 2019), especially during winter, reflecting the higher radiation levels and temperature in Wuhan than in Paris. It should be noted that Liu et al. (2016) fitted a  $NO_x$  lifetime of 2.6 h for Wuhan in the warm season (May to September) for the 2005-2013 mean, and our result for 2019–2020 is  $1.7 \pm 0.4$  h. One reason is that they calculated  $NO_x$  lifetime based on a long-term mean NO<sub>2</sub> distribution and the coarser resolution of OMI data, both of which lead to spatial smoothing of NO2 gradients and thus longer apparent  $NO_x$  lifetimes (Qu, 2020). Another explanation is the increasing ozone concentrations in China in recent years (Li et al., 2020) promote OH formation and thereby  $NO_x$  loss reactions, which shorten  $NO_x$ lifetime (Zara et al., 2021).

The estimated NO<sub>x</sub> lifetime and emissions from the two TROPOMI datasets for the whole study period are presented in Fig. S7. On average, the TROPOMI-v1.3 data result in 13 % lower NO<sub>x</sub> emissions from Wuhan than the TROPOMIv2.3.1 data. NO<sub>x</sub> lifetime estimated from TROPOMI-v1.3 data is 5 % shorter than that from TROPOMI-v2.3.1, which may be attributed to the fact that the TROPOMI-v2.3.1 data have a higher gradient between the city center and the background. Uncertainties in NO<sub>x</sub> emissions and lifetime estimation are 33 % higher in the TROPOMI-v1.3 data (39 %) for the higher uncertainty in the NO<sub>2</sub> column data (here we use 30 %).

We further verified the estimated  $NO_x$  emissions from the two TROPOMI datasets in 2019 with the bottom-up emission inventories. We obtained 14 d (including 9 weekdays, 3 weekend days, and 2 holiday days) between September

and November 2019 for the top-down NO<sub>x</sub> emission estimation and compared them with those from the ABA-CAS (2019) and MEIC (2017) inventories. Overall, as presented in Fig. 3a, compared to the bottom-up emission inventories, TROPOMI-v1.3-2019 NO<sub>x</sub> emissions are 21 % and 23 % lower than ABACAS-2019 and MEIC-2017, respectively. On the other hand, TROPOMI-v2.3.1-2019  $NO_x$ emissions are comparable to those from ABACAS-2019 (2% difference) and  $\sim$  5% lower than MEIC-2017. That  $NO_x$  emissions estimated from TROPOMI-v2.3.1 in 2019 are lower than MEIC-2017 likely reflects the fact that  $NO_x$ emissions decreased in 2019 relative to 2017 in response to Chinese emission controls. According to the Wuhan Bureau of Statistics,  $NO_x$  emissions reduced by 6% between 2017 and 2019 (Wuhan Bureau of Statistics, 2019; Bauwens et al., 2020), close to the difference between TROPOMI-v2.3.1-2019 and MEIC-2017. Through the comparison with the bottom-up emissions, we find that the TROPOMI-v2.3.1  $NO_2$  data generate more reliable  $NO_x$  emissions from Wuhan in 2019 than the v1.3 data, even when the low bias in TROPOMI-v1.3 data is corrected by a factor of 1.6.

Unlike the bottom-up inventories, our daily TROPOMI NO<sub>x</sub> emissions do not indicate the existence of a so-called "weekend reduction effect" but do point out a distinct "holiday reduction effect" in Wuhan NO<sub>x</sub> emissions. The bottomup inventories suggest that weekend NO<sub>x</sub> emissions are 30 % reduced relative to weekdays. The TROPOMI-v2.3.1 estimation shows reductions in weekend NO<sub>x</sub> emission of < 3 %, while on the 2 d (1 and 3 October) of the National Holiday, NO<sub>x</sub> emissions are 8 % lower than the workday mean. Surface NO<sub>2</sub> and O<sub>3</sub> observations from Beijing do not show a weekend effect (Zhao et al., 2019; Hua et al., 2021) either. Our TROPOMI top-down NO<sub>x</sub> emissions show a similar spatial pattern as in the ABACAS and MEIC (Fig. S2), with the highest emissions located in the city center of Wuhan. However, the TROPOMI NO<sub>x</sub> emission pattern appears more



**Figure 3.** Daily noontime (a)  $NO_x$  and (b)  $CO_2$  emissions in Wuhan estimated from TROPOMI (red and blue bars; the error bars represent the uncertainty in the emission estimations) and the bottom-up emission inventories ABACAS (black bars) for the year 2019 and MEIC (silver bars) for the year 2017. The dark- and light-grey shades represent weekends and holidays, respectively. The mean levels of each dataset are given as dashed lines with corresponding colors.

smeared out than from ABACAS due to the strong dependence of the bottom-up spatial distribution on population density, the difference in spatial resolution and the decrease in NO<sub>x</sub> emissions in early 2020, mainly occurring in the high-emission region.

## 3.2 CO<sub>2</sub> emissions and XCO<sub>2</sub> enhancements

We estimate noontime top-down (technically representing a merger of top-down and bottom-up information, but we define it as top-down for simplicity) CO<sub>2</sub> emissions from Wuhan between September and November 2019 to be  $6.32 \pm$  $2.74 \text{ s}^{-1}$  (the errors represent the uncertainty of the emission estimation), comparable to ABACAS-2019, of  $6.40 \pm$  $2.78 \text{ t s}^{-1}$  (Fig. 3b). Based on the estimated daily CO<sub>2</sub> emissions, we further use the superposition column model to simulate daily *X*CO<sub>2</sub> enhancements and evaluate them with OCO-2 observations. We successfully obtained 2 d between May 2018 (start time of TROPOMI-v2.3.1 NO<sub>2</sub> product) and December 2021 with simultaneous (both overpass at around 13:00–13:30 LT), co-located TROPOMI NO<sub>2</sub> and OCO-2 CO<sub>2</sub> observations over Wuhan on 15 September 2018 and 13 April 2020. We inferred total top-down CO<sub>2</sub> emissions

from Wuhan based on our TROPOMI-inferred NO<sub>x</sub> emissions and the ABACAS-predicted CO<sub>2</sub>/NO<sub>x</sub> emission ratios on 15 September 2018 and 13 April 2020 to be  $7.92 \pm$ 3.44 and  $4.44 \pm 1.93$  t s<sup>-1</sup>, respectively. Then they are used to predict the XCO<sub>2</sub> enhancements with the superposition column model. To compare with the sparse distributed OCO-2 observations, we apply the superposition model on the CO<sub>2</sub> line density with a width of 1 km, while a width of 186 km is used for NO<sub>2</sub>. The column model does not take the diffusion of NO<sub>2</sub> or CO<sub>2</sub> into account, but it can be assumed that all diffusion is encapsulated within the domain for a line density covering a cross-section as wide as 186 km. However, when the line density is only 1 km wide, the diffusion will move some CO<sub>2</sub> out of this line, and this will influence the  $CO_2$  enhancement prediction. We will discuss this influence further below.

Neglecting chemical production and loss of CO<sub>2</sub> in the atmosphere, the superposition column model of CO<sub>2</sub> (Eq. 5) is simpler than that of NO<sub>x</sub>:

$$N_{\rm CO_2} = \frac{E_{\rm CO_2}}{uL},\tag{5}$$



**Figure 4.** Simultaneous, co-located TROPOMI NO<sub>2</sub> and OCO-2 CO<sub>2</sub> observations over Wuhan (the left panel) on 15 September 2018 (top panels) and 13 April 2020 (bottom panels), the wind speed and direction on each day are shown. The dry-air mole fraction of CO<sub>2</sub> ( $XCO_2$ ) enhancements along the OCO-2 orbit are given for the corresponding day (the right panel). The grey crosses and black lines represent the OCO-2 observation. The blue lines denote  $XCO_2$  enhancement predicted with bottom-up emissions, and the red lines (shading represents the uncertainty interval) denote that predicted with top-down CO<sub>2</sub> emission, estimated in this study.

where  $N_{\text{CO}_2}$  is  $\text{CO}_2$  density in units of grams per square meter (g m<sup>-2</sup>),  $E_{\text{CO}_2}$  denotes our estimated CO<sub>2</sub> emission (g s<sup>-1</sup>), and *u* and *L* are the wind speed (m s<sup>-1</sup>) and length of grid cell (6000 m). Then  $N_{\text{CO}_2}$  (g m<sup>-2</sup>) is converted to the dry-air column mixing ratio XCO<sub>2</sub> (ppm) for comparison with the OCO-2 observation (Zheng et al., 2020a):

$$XCO_2 = N_{CO_2} \times \frac{M_{air}}{M_{CO_2}} \times \frac{g}{p - wg} \times 10^3,$$
(6)

in which  $M_{\text{air}}$  and  $M_{\text{CO}_2}$  are air and  $\text{CO}_2$  molar mass of air and  $\text{CO}_2$  (g mol<sup>-1</sup>), g is the gravitational acceleration (9.8 m s<sup>-2</sup>), and p (Pa) and w (kg m<sup>-2</sup>) are surface pressure and total column water vapor, respectively.

We calculate the  $XCO_2$  enhancement due to the top-down  $CO_2$  emissions on 15 September 2018 and 13 April 2020 and compare these with the enhancements observed by OCO-2. As shown in the right panels of Fig. 4, the superposition model captures the spatial pattern of observed  $XCO_2$  along the OCO-2 orbit on both days. The predicted amplitudes of the  $XCO_2$  enhancements are also comparable to those in the

OCO-2 observation with a small bias (less than 5% for both days). For comparison, we also use the 2019 bottom-up CO<sub>2</sub> emissions to predict the *X*CO<sub>2</sub> enhancement on the 2 d (blue lines in Fig. 4, the right panel). *X*CO<sub>2</sub> enhancements predicted by bottom-up CO<sub>2</sub> emissions deviate more from the OCO-2 observed enhancements than those predicted by the top-down CO<sub>2</sub> emissions. On 13 April 2020 in particular, the bottom-up enhancement differs by +41%, while the top-down enhancement differs only within  $\pm 5\%$  compared to the observed *X*CO<sub>2</sub> emission from the city (our top-down estimation) is expected to be far lower than the pre-lockdown level (bottom-up estimation).

We see that the predicted  $XCO_2$  enhancements on 13 April 2020, both from the bottom-up and top-down emissions, are much "narrower" compared to the OCO-2 observation. On this day, the OCO-2 orbit passes over the city center, and the diffusion plays an important role, which is neglected in the column model. In contrast, on 15 September 2018, the OCO-2 orbit passed downwind of the city center, and the widths of the predicted and observed *X*CO<sub>2</sub> enhancements are more comparable. For comparison, we also ran a Gaussian plume model to simulate the *X*CO<sub>2</sub> enhancement (Sect. S5 and Fig. S8). On 13 April 2020, the result from Gaussian model agrees better with the OCO-2 observation, and on 15 September 2018, results from the two models (Gaussian model and the superposition column model) are close to each other and match well with the observation.

We also display  $XCO_2$  enhancement line densities along the wind direction with uncertainty on both days (Fig. 5). The line density shows a substantial increase of XCO<sub>2</sub> along the wind direction over the region with strong  $CO_2$  emissions (Fig. 5a and b, the inset maps). Where lines cross the OCO-2 orbit, the observed XCO<sub>2</sub> enhancement (as box plots in Fig. 5a and b) is shown, and its values agree with the predicted  $XCO_2$  lines within  $\pm 0.3$  ppm. It is remarkable that the XCO<sub>2</sub> enhancement is lower on 15 September 2018 than on 13 April 2020, despite CO<sub>2</sub> emission on 15 September 2018 being nearly 65 % higher than those on 13 April 2020. The main reason for this is the lower wind speed on 13 April 2020, which accumulates pollutants over the city, and the fact that the OCO-2 ground track passed over the city center of Wuhan on this day. On 15 September 2018, higher wind speeds and the OCO-2 track being situated over the outskirts of the city imply that a lower enhancement of  $CO_2$  is observed.

We use an "indirect" method to estimate daily city anthropogenic CO<sub>2</sub> emissions and then predict  $XCO_2$  enhancements, which may induce uncertainties from the NO<sub>x</sub> emission estimation, the assumption of CO<sub>2</sub>/NO<sub>x</sub> emission ratio and the model to predict  $XCO_2$  enhancements. Despite all these uncertainties, we still generate daily Wuhan CO<sub>2</sub> emissions and  $XCO_2$  enhancements that agree well with the bottom-up inventory and OCO-2 observation, respectively.

# 3.3 Variation of NO<sub>x</sub> and CO<sub>2</sub> emissions in Wuhan from September 2019 to August 2020

Figure 6 displays the day-to-day variation of NO<sub>x</sub> and CO<sub>2</sub> emissions in Wuhan between September 2019 and August 2020. Before the pandemic of COVID-19, NO<sub>x</sub> emissions stayed at a stable level of  $11.53 \pm 1.08 \text{ kg s}^{-1}$ , and CO<sub>2</sub> stayed at  $6.32 \pm 0.66 \text{ t s}^{-1}$  (the errors denote the standard deviation), as indicated by the dashed red lines. From January 2020 onwards, strict lockdown measurements were implemented to combat the COVID-19 pandemic, which led to lower industry production and less traffic on the road and a sharp drop in NO<sub>x</sub> and CO<sub>2</sub> emissions (Ding et al., 2020; Zhang et al., 2020, 2021; Zheng et al., 2021b; Feng et al., 2020). Our method closely captures the timing and magnitude of these well-known sharp reductions in emissions.

Wuhan NO<sub>x</sub> emissions on 30 January 2020 were  $3.65 \pm 1.59 \text{ kg s}^{-1}$ , nearly 70% lower than pre-lockdown levels, and decreased further and came to the lowest level in early February 2020, in accordance with Feng et al. (2020), who es-



**Figure 5.** Two presentative predicted  $XCO_2$  enhancement lines (red and blue) with uncertainty (grey shades) on (a) 15 September 2018 and (b) 13 April 2020. When the  $XCO_2$  enhancement lines pass through the OCO-2 orbit, the observed  $XCO_2$  enhancements are shown with box plots. The mean values are shown as green triangles, and the outliers beyond the 5%–95% interval are shown as circles. The predicted  $XCO_2$  enhancement line density maps overlaid with OCO-2 observed  $XCO_2$  enhancement on each day are shown inside, with the position of the presentative lines and the wind direction.

timated similar reductions based on surface NO2 observations. The day with our lowest  $NO_x$  emission from Wuhan of  $2.55 \pm 1.11 \text{ kg s}^{-1}$ , only  $\sim 22 \%$  of the normal level, was 5 February. CO<sub>2</sub> emissions have a similar temporal pattern to  $NO_x$  emissions, but the reduction relative to pre-lockdown level is smaller. The lowest CO<sub>2</sub> emission is at  $\sim 27 \%$  of the pre-lockdown level (also on 5 February 2020), and the mean emission rate during the lockdown period (23 January to 8 April 2020) is 60 % lower than pre-lockdown level, while it is 67 % for  $NO_x$ . That  $CO_2$  emission reductions are more modest than  $NO_x$  reductions reflects the fact that the transportation sector had the strongest reductions during the lockdown, but since this sector also has the lowest  $CO_2/NO_x$  ratios, the relative reduction in CO<sub>2</sub> remains somewhat smaller than in  $NO_x$  emissions. This finding is similar to that of Zheng et al. (2020b), who estimated the  $NO_x$  and  $CO_2$  emission variations for the whole China.

From early February 2020 onwards, emissions increased slowly throughout the lockdown period. Wuhan  $NO_x$  emissions intensity in February 2020 was no more than



**Figure 6.** The 50 d (**a**)  $NO_x$  and (**b**)  $CO_2$  emissions in Wuhan estimated from TROPOMI between 1 September 2019 and 31 August 2020. The error bars denote the uncertainty in emission estimations, and the weekends, holidays and lockdown period are shaded with dark-grey, light-grey and green colors, respectively. The mean pre-lockdown emission levels are given as dashed red lines.

4.20 kg s<sup>-1</sup>, some 60 % below the pre-lockdown level. Feng et al. (2020) estimated 61 % lower NO<sub>x</sub> emission from Wuhan in February 2020 than in January based on surface NO<sub>x</sub> observations. Zheng et al. (2021a) reported a ~ 50 % lower NO<sub>x</sub> emission from Hubei Province in February 2020 than the annual mean level estimated from a bottom-up approach.

Although Wuhan reopened on 9 April, the  $NO_x$  and  $CO_2$ emissions did not see significant increases up until mid-May 2020. A perceptible increase in  $NO_x$  emission is seen during late May, climbing to  $> 7.50 \text{ kg s}^{-1}$  (NO<sub>x</sub>) and > $4.5 \text{ ts}^{-1}$  (CO<sub>2</sub>) and leveling off thereafter. In August 2020, Wuhan NO<sub>x</sub> emissions were still some 25 % lower than the pre-lockdown level. Although the bottom-up estimation by Zheng et al. (2021a) suggested that  $NO_x$  emissions from the Hubei Province were similar in May-August 2020 to those in 2019, surface and satellite observations over Wuhan show 15 %–20 % lower NO<sub>2</sub> concentrations in May–August 2020 compared to 2019 (Figs. S9 and S10), consistent with our estimation of  $NO_x$  emissions. Z. Liu et al. (2020) reported 4.8 % higher CO<sub>2</sub> emissions for the whole of China in August 2020 compared to August 2019. For the city of Wuhan, however, we calculate here some 20 % lower CO<sub>2</sub> emissions

in August 2020 compared to the pre-lockdown level. Wuhan experienced a much more strict and longer period of lockdown than other regions of China, and therefore a slower rebound of  $NO_x$  and  $CO_2$  emissions should be expected.

As we have stated above, to ensure the performance of the model, we must filter out the days when the cloud fraction is greater than 0.2 and the days when the wind direction shows substantial spatial or temporal variation within the study domain. Finally, we obtain 50 out of the 365 d with reliable  $NO_x$  and  $CO_2$  emissions estimation. However, these 50 d cover at least 2 d for each month (except for December 2019). For 2019, it includes 9 workdays, 3 weekend days, and 2 holiday days, which are enough to investigate the weekend reduction effect and holiday reduction effect in  $NO_x$  emissions. It also covers 12 d across the lockdown period and 24 d after that, allowing us to monitor the large reduction and recovery of  $NO_x$  and  $CO_2$  emissions from Wuhan due to the COVID lockdown. Therefore, these 50 d provide useful information to investigate the temporal emission patterns of  $NO_x$  and CO<sub>2</sub> from Wuhan and help to monitor the effectiveness of emission reductions in large urban centers.

#### Q. Zhang et al.: Quantifying daily $NO_x$ and $CO_2$ emissions from Wuhan

### 4 Conclusion

In this study, we introduced an improved superposition column model to estimate daily  $NO_x$  and  $CO_2$  emissions from a Chinese megacity of Wuhan based on the latest released version 2.3.1 of TROPOMI NO2 column data and OCO-2 XCO<sub>2</sub> observation. Our estimated daily NO<sub>x</sub> and CO<sub>2</sub> emissions agree well with bottom-up emissions with a small bias of < 3 %. Predicted XCO<sub>2</sub> enhancements based on our CO<sub>2</sub> emissions estimates are proved to be in good agreement (within  $\pm 5\%$ ) with OCO-2 observations over Wuhan. Compared to previous studies, our work shows that satellite measurements can provide detailed information on sub-city-scale  $NO_x$  and  $CO_2$  emissions on a daily basis. We achieved the day-to-day variation of  $NO_x$  and  $CO_2$  emissions from Wuhan between September 2019 and August 2020. We pointed out that the weekend reduction effect is small, but a holiday reduction effect in Wuhan  $NO_x$  and  $CO_2$  emissions can be clearly detected. We also captured the abrupt decrease in NO<sub>x</sub> and CO<sub>2</sub> emissions as the lockdown for COVID began on 23 January 2020 and the slow rebound as Wuhan reopened on 9 April 2020. Daily updates of city-scale  $NO_x$  and CO<sub>2</sub> emissions provide policymakers with emission and policy control data on  $NO_x$  and  $CO_2$  emission control in urban environments.

In the future, following the launch of the Carbon Dioxide Monitoring mission (CO2M) (Sierk et al., 2021), our improved superposition column method may be explored further to constrain city-scale CO<sub>2</sub> and NO<sub>x</sub> emissions to assess the effectiveness of emission control measures. CO2M provides simultaneous and co-located CO<sub>2</sub> and NO<sub>2</sub> observations with a wider swath than OCO-2, providing better opportunities to verify and improve CO<sub>2</sub> and NO<sub>x</sub> emissions from space.

**Data availability.** The S-5P TROPOMI v2.3.1 NO<sub>2</sub> column data are available from https://data-portal.s5p-pal.com/cat-doc (ESA, 2023). The ERA5 data can be found at https://cds.climate. copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels? tab=overview (CDS, 2023). The OCO-2 v10r XCO<sub>2</sub> data can be downloaded from https://doi.org/10.5067/E4E140XDMPO2 (Gunson and Eldering, 2020). The GEOS-Chem model-simulated data are available on request (zhangqq@cma.gov.cn).

**Supplement.** The supplement related to this article is available online at: https://doi.org/10.5194/acp-23-551-2023-supplement.

Author contributions. QZ and KFB designed the research. QZ performed the data analysis, model development and result validation. BZ and HZ provided the ABACAS-EI NO<sub>x</sub> and CO<sub>2</sub> emission inventories. HE provided the 2.3.1 version of the TROPOMI tropospheric NO<sub>2</sub> product. CC provided MEIC NO<sub>x</sub> emissions and

performed the CMAQ simulations. XZ provided helpful discussions. QZ and KFB wrote the paper.

**Competing interests.** The contact author has declared that none of the authors has any competing interests.

**Disclaimer.** Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgements. This work is funded by the National Key Research and Development Program Earth Observation and Navigation Key Project (grant no. 2017YFB0504001), the National Natural Science Foundation of China (grant no. 41805098) and the China Scholarship Council (grant no. 202005330023). Improvements in TROPOMI NO<sub>2</sub> data (v2.3.1) have received support from the KNMI MSO NO<sub>2</sub>NEXT project.

**Financial support.** This research has been supported by the National Key Research and Development Program Earth Observation and Navigation Key Project (grant no. 2017YFB0504001), the National Natural Science Foundation of China (grant no. 41805098) and the China Scholarship Council (grant no. 202005330023).

**Review statement.** This paper was edited by Michel Van Roozendael and reviewed by two anonymous referees.

#### References

- Bauwens, M., Compernolle, S., Stavrakou, T., Muller, J. F., van Gent, J., Eskes, H., Levelt, P. F., van der, A. R., Veefkind, J. P., Vlietinck, J., Yu, H., and Zehner, C.: Impact of coronavirus outbreak on NO<sub>2</sub> pollution assessed using TROPOMI and OMI observations, Geophys. Res. Lett., 47, e2020GL087978, https://doi.org/10.1029/2020GL087978, 2020.
- Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and Wagner, T.: Megacity emissions and lifetimes of nitrogen oxides probed from space, Science, 333, 1737–1739, https://doi.org/10.1126/science.1207824, 2011.
- Berezin, E. V., Konovalov, I. B., Ciais, P., Richter, A., Tao, S., Janssens-Maenhout, G., Beekmann, M., and Schulze, E. D.: Multiannual changes of CO<sub>2</sub> emissions in China: indirect estimates derived from satellite measurements of tropospheric NO<sub>2</sub> columns, Atmos. Chem. Phys., 13, 9415–9438, https://doi.org/10.5194/acp-13-9415-2013, 2013.
- CDS: ERA5 hourly data on pressure levels from 1959 to present, CDS [data set], https://cds.climate.copernicus.eu/cdsapp#!/ dataset/reanalysis-era5-pressure-levels?tab=overview, last access: 11 January 2023.
- Ding, J., van der A, R. J., Eskes, H. J., Mijling, B., Stavrakou, T., Geffen, J. H. G. M., and Veefkind, J. P.:  $NO_x$  Emissions Reduction and Rebound in China Due to the

COVID-19 Crisis, Geophys. Res. Lett., 47, e2020GL089912, https://doi.org/10.1029/2020gl089912, 2020.

- ESA: S5P-PAL Product Search, https://data-portal.s5p-pal.com/ cat-doc, last access: 11 January 2023.
- Eskes, H., Van Geffen, J., Sneep, M., Veefkind, J. P., Niemeijer, S., and Zehner, C.: S5P Nitrogen Dioxide v02.03.01 intermediate reprocessing on the S5P-PAL system: Readme file, http://data-portal.s5p-pal.com/product-docs/no2/PAL\_ reprocessing\_NO2\_NO2\_v02.03.01\_20211215.pdf (last access: 11 January 2023), 2021.
- Feng, S., Jiang, F., Wang, H., Wang, H., Ju, W., Shen, Y., Zheng, Y., Wu, Z., and Ding, A.: NO<sub>x</sub> Emission Changes Over China During the COVID-19 Epidemic Inferred From Surface NO<sub>2</sub> Observations, Geophys. Res. Lett., 47, e2020GL090080, https://doi.org/10.1029/2020GL090080, 2020.
- Griffin, D., McLinden, C. A., Boersma, F., Bourassa, A., Dammers, E., Degenstein, D., Eskes, H., Fehr, L., Fioletov, V., Hayden, K., Kharol, S. K., Li, S. M., Makar, P., Martin, R. V., Mihele, C., Mittermeier, R. L., Krotkov, N., Sneep, M., Lamsal, L. N., Ter Linden, M., van Geffen, J., Veefkind, P., Wolde, M., and Zhao, X.: High resolution mapping of nitrogen dioxide with TROPOMI: First results and validation over the Canadian oil sands, Geophys. Res. Lett., 46, 1049–1060, https://doi.org/10.1029/2018GL081095, 2019.
- Gunson, M. and Eldering, A.: OCO-2 Level 2 bias-corrected *X*CO<sub>2</sub> and other select fields from the full-physics retrieval aggregated as daily files, Retrospective processing V10r, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/E4E140XDMPO2, 2020.
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
- Hua, J., Zhang, Y., de Foy, B., Mei, X., Shang, J., and Feng, C.: Competing PM<sub>2.5</sub> and NO<sub>2</sub> holiday effects in the Beijing area vary locally due to differences in residential coal burning and traffic patterns, Sci. Total. Environ., 750, 141575, https://doi.org/10.1016/j.scitotenv.2020.141575, 2021.
- Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R., Wang, J., Ren, C., Nie, W., Chi, X., Xu, Z., Chen, L., Li, Y., Che, F., Pang, N., Wang, H., Tong, D., Qin, W., Cheng, W., Liu, W., Fu, Q., Liu, B., Chai, F., Davis, S. J., Zhang, Q., and He, K.: Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China, Natl. Sci. Rev., 8, nwaa137, https://doi.org/10.1093/nsr/nwaa137, 2021.
- Jacob, D.: Introduction to Atmospheric Chemistry, Princeton Univ. Press, ISBN 9780691001852, 1999.
- Lamsal, L. N., Martin, R. V., van Donkelaar, A., Celarier, E. A., Bucsela, E. J., Boersma, K. F., Dirksen, R., Luo, C., and Wang, Y.: Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal vari-

ation of nitrogen oxides at northern midlatitudes, J. Geophys. Res., 115, D05302, https://doi.org/10.1029/2009jd013351, 2010.

- Lamsal, L. N., Martin, R. V., Padmanabhan, A., van Donkelaar, A., Zhang, Q., Sioris, C. E., Chance, K., Kurosu, T. P., and Newchurch, M. J.: Application of satellite observations for timely updates to global anthropogenic  $NO_x$ emission inventories, Geophys. Res. Lett., 38, L05810, https://doi.org/10.1029/2010gl046476, 2011.
- Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences, Atmos. Chem. Phys., 20, 11423–11433, https://doi.org/10.5194/acp-20-11423-2020, 2020.
- Li, M., Zhang, Q., Kurokawa, J.-i., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017.
- Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., and Wagner, T.:  $NO_x$  lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations, Atmos. Chem. Phys., 16, 5283–5298, https://doi.org/10.5194/acp-16-5283-2016, 2016.
- Liu, F., Duncan, B. N., Krotkov, N. A., Lamsal, L. N., Beirle, S., Griffin, D., McLinden, C. A., Goldberg, D. L., and Lu, Z.: A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of coemitted nitrogen dioxide, Atmos. Chem. Phys., 20, 99–116, https://doi.org/10.5194/acp-20-99-2020, 2020.
- Liu, M., Lin, J., Kong, H., Boersma, K. F., Eskes, H., Kanaya, Y., He, Q., Tian, X., Qin, K., Xie, P., Spurr, R., Ni, R., Yan, Y., Weng, H., and Wang, J.: A new TROPOMI product for tropospheric NO<sub>x</sub> columns over East Asia with explicit aerosol corrections, Atmos. Meas. Tech., 13, 4247–4259, https://doi.org/10.5194/amt-13-4247-2020, 2020.
- Liu, Z., Ciais, P., Deng, Z., Davis, S. J., Zheng, B., Wang, Y., Cui, D., Zhu, B., Dou, X., Ke, P., Sun, T., Guo, R., Zhong, H., Boucher, O., Breon, F. M., Lu, C., Guo, R., Xue, J., Boucher, E., Tanaka, K., and Chevallier, F.: Carbon Monitor, a near-real-time daily dataset of global CO<sub>2</sub> emission from fossil fuel and cement production, Sci. Data, 7, 392, https://doi.org/10.1038/s41597-020-00708-7, 2020.
- Lorente, A., Boersma, K. F., Eskes, H. J., Veefkind, J. P., van Geffen, J., de Zeeuw, M. B., Denier van der Gon, H. A. C., Beirle, S., and Krol, M. C.: Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI, Sci. Rep., 9, 20033, https://doi.org/10.1038/s41598-019-56428-5, 2019.
- O'Dell, C., Eldering, A., Gunson, M., Crisp, D., Fisher, B., Kiel, M., Kuai, L., Laughner, J., Merrelli, A., Nelson, R., Osterman, G., Payne, V., Rosenberg, R., Taylor, T., Wennberg, P., Kulawik, S., Lindqvist, H., Miller, S., and Nassar, R.: Improvements in *XCO*<sub>2</sub> accuracy from OCO-2 with the latest ACOS v10 product, in: EGU General Assembly 2021, online, 19–30 April 2021, EGU21-10484, 2021.
- Qu, H.: Summertime ozone pollution over China: observations and simulations, Dissertation for the degree of Doctor of Philosophy, School of Earth and Atmospheric Science, Georfia Institute of

Technology, https://smartech.gatech.edu/bitstream/handle/1853/ 64572/QU-DISSERTATION-2020.pdf?sequence=1 (last access: 11 January 2023), 2020.

- Reuter, M., Buchwitz, M., Hilboll, A., Richter, A., Schneising, O., Hilker, M., Heymann, J., Bovensmann, H., and Burrows, J. P.: Decreasing emissions of NO<sub>x</sub> relative to CO<sub>2</sub> in East Asia inferred from satellite observations, Nat. Geosci., 7, 792–795, https://doi.org/10.1038/ngeo2257, 2014.
- Reuter, M., Buchwitz, M., Schneising, O., Krautwurst, S., O'Dell, C. W., Richter, A., Bovensmann, H., and Burrows, J. P.: Towards monitoring localized CO<sub>2</sub> emissions from space: colocated regional CO<sub>2</sub> and NO<sub>2</sub> enhancements observed by the OCO-2 and S5P satellites, Atmos. Chem. Phys., 19, 9371–9383, https://doi.org/10.5194/acp-19-9371-2019, 2019.
- Riess, T. C. V. W., Boersma, K. F., van Vliet, J., Peters, W., Sneep, M., Eskes, H., and van Geffen, J.: Improved monitoring of shipping NO<sub>2</sub> with TROPOMI: decreasing NO<sub>x</sub> emissions in European seas during the COVID-19 pandemic, Atmos. Meas. Tech., 15, 1415–1438, https://doi.org/10.5194/amt-15-1415-2022, 2022.
- Shah, V., Jacob, D. J., Li, K., Silvern, R. F., Zhai, S., Liu, M., Lin, J., and Zhang, Q.: Effect of changing NO<sub>x</sub> lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO<sub>2</sub> columns over China, Atmos. Chem. and Phys., 20, 1483–1495, https://doi.org/10.5194/acp-20-1483-2020, 2020.
- Sierk, B., Fernandez, V., Bézy, J. L., Meijer, Y., Durand, Y., Bazalgette Courrèges-Lacoste, G., Pachot, C., Löscher, A., Nett, H., Minoglou, K., Boucher, L., Windpassinger, R., Pasquet, A., Serre, D., te Hennepe, F., Sodnik, Z., Cugny, B., and Karafolas, N.: The Copernicus CO2M mission for monitoring anthropogenic carbon dioxide emissions from space, in: International Conference on Space Optics – ICSO 2021, 11 June 2021, Online, https://doi.org/10.1117/12.2599613, 2021.
- Wuhan Bureau of Statistics.: Statistical Bulletin on domestic economic and social development of Wuhan (2018), http://tjj.wuhan. gov.cn/tjfw/tjgb/202001/t20200115\_841065.shtml (last access: 19 May 2022), 2019.
- van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., and Veefkind, J. P.: S5P TROPOMI NO<sub>2</sub> slant column retrieval: method, stability, uncertainties and comparisons with OMI, Atmos. Meas. Tech., 13, 1315–1335, https://doi.org/10.5194/amt-13-1315-2020, 2020.
- van Geffen, J., Eskes, H., Compernolle, S., Pinardi, G., Verhoelst, T., Lambert, J.-C., Sneep, M., ter Linden, M., Ludewig, A., Boersma, K. F., and Veefkind, J. P.: Sentinel-5P TROPOMI NO<sub>2</sub> retrieval: impact of version v2.2 improvements and comparisons with OMI and ground-based data, Atmos. Meas. Tech., 15, 2037– 2060, https://doi.org/10.5194/amt-15-2037-2022, 2022.
- Visser, A. J., Boersma, K. F., Ganzeveld, L. N., and Krol, M. C.: European  $NO_x$  emissions in WRF-Chem derived from OMI: impacts on summertime surface ozone, Atmos. Chem. Phys., 19, 11821–11841, https://doi.org/10.5194/acp-19-11821-2019, 2019.
- Wang, C., Wang, T., Wang, P., and Rakitin, V.: Comparison and Validation of TROPOMI and OMI NO2 Observations over China, Atmosphere, 11, 636, https://doi.org/10.3390/atmos11060636, 2020.

- Zara, M., Boersma, K. F., Eskes, H., Denier van der Gon, H., Vilà-Guerau de Arellano, J., Krol, M., van der Swaluw, E., Schuch, W., and Velders, G. J. M.: Reductions in nitrogen oxides over the Netherlands between 2005 and 2018 observed from space and on the ground: Decreasing emissions and increasing O<sub>3</sub> indicate changing NO<sub>x</sub> chemistry, Atmos. Environ. X, 9, 100104, https://doi.org/10.1016/j.aeaoa.2021.100104, 2021.
- Zhang, Q., Pan, Y., He, Y., Walters, W. W., Ni, Q., Liu, X., Xu, G., Shao, J., and Jiang, C.: Substantial nitrogen oxides emission reduction from China due to COVID-19 and its impact on surface ozone and aerosol pollution, Sci. Total. Environ., 753, 142238, https://doi.org/10.1016/j.scitotenv.2020.142238, 2021.
- Zhang, R., Zhang, Y., Lin, H., Feng, X., Fu, T.-M., and Wang, Y.: NO<sub>x</sub> Emission Reduction and Recovery during COVID-19 in East China, Atmosphere, 11, 433, https://doi.org/10.3390/atmos11040433, 2020.
- Zhao, B., Wang, S. X., Liu, H., Xu, J. Y., Fu, K., Klimont, Z., Hao, J. M., He, K. B., Cofala, J., and Amann, M.: NO<sub>x</sub> emissions in China: historical trends and future perspectives, Atmos. Chem. Phys., 13, 9869–9897, https://doi.org/10.5194/acp-13-9869-2013, 2013.
- Zhao, B., Zheng, H., Wang, S., Smith, K. R., Lu, X., Aunan, K., Gu, Y., Wang, Y., Ding, D., Xing, J., Fu, X., Yang, X., Liou, K. N., and Hao, J.: Change in household fuels dominates the decrease in PM<sub>2.5</sub> exposure and premature mortality in China in 2005–2015, P. Natl. Acad. Sci. USA, 115, 12401–12406, https://doi.org/10.1073/pnas.1812955115, 2018.
- Zhao, X., Zhou, W., and Han, L.: Human activities and urban air pollution in Chinese mega city: An insight of ozone weekend effect in Beijing, Phys. Chem. Earth, 110, 109–116, https://doi.org/10.1016/j.pce.2018.11.005, 2019.
- Zheng, B., Chevallier, F., Ciais, P., Broquet, G., Wang, Y., Lian, J., and Zhao, Y.: Observing carbon dioxide emissions over China's cities and industrial areas with the Orbiting Carbon Observatory-2, Atmos. Chem. Phys., 20, 8501–8510, https://doi.org/10.5194/acp-20-8501-2020, 2020a.
- Zheng, B., Geng, G., Ciais, P., Davis, S. J., Martin, R. V., Meng, J., Wu, N., Chevallier, F., Broquet, G., Boersma, F., van der A, R. J., Lin, J., Guan, D., Lei, Y., He, K., and Zhang, Q.: Satelitebased estimats of decline and rebound in China's CO<sub>2</sub> emissions during COVID-19 pandemic, Sci. Adv., 6, eabd4998, https://doi.org/10.1126/sciadv.abd4998, 2020b.
- Zheng, B., Zhang, Q., Geng, G., Shi, Q., Lei, Y., and He, K.: Changes in China's anthropogenic emissions during the COVID-19 pandemic, figshare [data set], https://doi.org/10.6084/m9.figshare.c.5214920.v2, 2021a.
- Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei, Y., and He, K.: Changes in China's anthropogenic emissions and air quality during the COVID-19 pandemic in 2020, Earth Syst. Sci. Data, 13, 2895–2907, https://doi.org/10.5194/essd-13-2895-2021, 2021b.
- Zheng, H., Zhao, B., Wang, S., Wang, T., Ding, D., Chang, X., Liu, K., Xing, J., Dong, Z., Aunan, K., Liu, T., Wu, X., Zhang, S., and Wu, Y.: Transition in source contributions of PM<sub>2.5</sub> exposure and associated premature mortality in China during 2005–2015, Environ. Int., 132, 105111, https://doi.org/10.1016/j.envint.2019.105111, 2019.