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S1. Uncertainty analysis for the PRISMA-based methane retrievals 1 

The PRISMA-based methane retrievals can present systematic and random errors. At first glance via the top-of-atmosphere 2 

radiance at 2300 nm (Fig. S5), the cases in the Rumaila (Iraq) and Hassi Messaoud (Algeria) fields represent a preferable 3 

condition with a bright and homogeneous surface feature, while the cases in the Burgan (Kuwait) and Wattenberg (the United 4 

States) fields represent a challenging condition because of a relatively dark and heterogeneous surface. By comparison, the 5 

case in Yangquan (China) is even more challenging, in which mountainous areas exist. In the most cases (except for the case 6 

in Fig. 1d4), the methane plumes are clearly uncorrelated with the surface brightness from space.  7 

We thus evaluate their performance using end-to-end simulations, as shown in previous studies. First, the ideal plumes are 8 

prescribed via the large-eddy-driven Weather and Research Forecasting Model (the WRF-Chem-LES model) (Varon et al., 9 

2018). The key configuration includes common wind fields (i.e., 3.5 m/s), high resolution (i.e., 30 ×30 m2), and constant 10 

emission rates (e.g., 500, 1000, and 1500 kg/h). On this basis, uncorrelated noises with random increments are then added. 11 

They represent the expected instrument precision presenting normal distributions with zero mean biases and standard 12 

deviations of 1 ~ 5 %. Second, the enhancements of volume mixing ratios are converted into two-way spectral atmospheric 13 

transmittance. The calculation basis includes air mass factors based on the real observation zenith angles, vertical profiles of 14 

dry air column densities, and methane absorption cross-section data. These three data come from the satellite instrument 15 

records, ERA5 reanalysis dataset, and the HIgh-resolution TRANSmission molecular absorption (HITRAN2016) database. 16 

Third, the subsequent transmittance spectra are convolved with the PRISMA-based spectral responses and then multiplied by 17 

the original PRISMA top-of-atmosphere radiance spectrums. To prevent across-track variations in spectral calibration, we 18 

perform such processes on a per-column basis. Finally, the resulting PRISMA-based top-of-atmosphere radiance images are 19 

processed with the same matched-filter algorithm over the cases explored in this work.  20 

Figure S9 shows the resulting retrieval errors. Such errors denote not only those caused by surface structures via absorption 21 

features of SWIR bands but also those due to random measurement noise. They are indicated by probability distribution 22 

functions generated by running the retrieval over a simulated image devoid of methane plumes (i.e., emission rate equal to 0 23 

kg/h). As a result, we find that these errors roughly flow Gaussian distributions, likely due to the fact that random noise, rather 24 

than systematic noise driven by surface structures, and thus dominate the whole errors. This again indicates a strong 25 

dependence of the retrieval error and subsequent plume detection limit on the surface feature. 26 

Figure S10 represents more quantitative uncertain analysis for the retrieval performance. For each case, the input ∆𝐗𝐂𝐇𝟒 maps 27 

are compared with the output ∆𝐗𝐂𝐇𝟒 retrievals. Methane retrieval results via the WRF-Chem-LES simulations and associated 28 

biases are presented in Table S3. Overall, they are sketchily consistent in terms of the slopes. The retrieval method performs 29 

the best for most of the cases, with a substantial number of pixels above the noise level, while more dispersed scatters are 30 

found in the Yangquan case (Fig. 1g2). The root mean squared errors (RMSE) could be controlled within the range of 37 ~ 31 
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127 ppb. Collectively, we do not observe systematic errors in this instrument and our algorithm (Fig. S6 and Figs. S10 and 32 

S11).  33 

S2. Uncertainty analysis for the TROPOMI-based methane emission estimates 34 

We provide independent emission estimates for the TROPOMI-based methane hotspots using the WRF-Chem model. On this 35 

basis, the differences between the WRF-Chem-based and IME-based results reflect the intrinsic uncertainties in the IME 36 

method. The WRF simulation is nudged to National Centers for Environmental Prediction final analysis data at 0.25° × 0.25° 37 

spatial resolution and six-hour temporal resolution. For each hotspot, the model is performed at 5 × 5 km2 horizontal resolution 38 

over a 50 × 50 km2 domain. The boundary condition is obtained from the CAMS reanalysis dataset. Note that the inner domain 39 

does not feedback with the outer domain (i.e., so-called one-way nested simulations). The grid-specific methane emissions are 40 

originally taken from the bottom-up emission inventories (EDGARv6.0). Other general configurations could be found in our 41 

previous studies(Wang et al., 2020, 2021). 42 

Methane emissions are estimated via the Bayesian inverse solution which optimizes a single state vector 𝐱 as: 43 

�̂� = 𝐱𝐀 + 𝐒𝐀𝐊𝑻(𝐊𝐒𝐀𝐊𝑻 + 𝐒𝐂)−𝟏(𝐲 − 𝐊𝐱𝐀), (Eq. 6) 44 

where �̂�  is the optimized state vector containing individual elements for daily emissions as well as daily background 45 

concentrations; 𝐱𝐀 is the prior taken as the mean reported emission rate from the bottom-up emission inventories; 𝐊 is the 46 

Jacobian constructed by running perturbation simulations for the state vector element; 𝐒𝐀 is the prior error covariance matrix 47 

using 100% error for the emissions and 10% for the boundary conditions; 𝐲 contains the TROPOMI observations; and 𝐒𝐂 is 48 

the observational error covariance matrix using as error the standard deviation of the difference between the prior model and 49 

the observations (20 ppb).  50 

Because of uncertainties in meteorology, the WRF output sometime before or after the observation time can give a better 51 

simulation of the scene. Hence, we sample model simulations one hour before and after the optimal time at 15-min time 52 

intervals. To ensure that small mismatches between the locations in the simulated and TROPOMI-based hotspots do not lead 53 

to underestimated emissions, we then average TROPOMI pixels together on a 3 × 3 grid before the inversion and estimate the 54 

observational error following the central limit theorem (i.e. dividing by √𝐧 where n is the number of observations).  55 

The IME method can also be constrained by the WRF-Chem-based wind fields. On this basis, the subsequent TROPOMI-56 

based methane emission estimates could be compared with the original IME-based results (i.e., driven by the ERA5 reanalysis 57 

data). The resulting differences would reflect the impacts of the wind data on the IME-based methane emission estimates.  58 

Table S2 summarizes the differences in the methane emission estimates from these two different methods. The results from 59 

the WRF-Chem model are consistently lower than those from the IME method in an acceptable range (23 ~ 39%). Such 60 

divergencies could be narrowed to a large extent (17 ~ 34%) once the wind data in these two methods are unified to the WRF-61 

Chem-based wind fields. This indicates the noticeable impacts of wind information on the IME method. Besides, we also find 62 

the inevitable uncertainties in the complex physical functions in the WRF-Chem model. A representative is that the WRF-63 
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Chem-based results account for the wind direction that, in contrast, is not considered in the IME method. From this analysis, 64 

we conclude that the TROPOMI-based methane emission estimates based on the IME method are reliable, the errors of which 65 

could be controlled within -40% (Table S2). 66 

S3. Uncertainty analysis for the PRISMA-based methane emission estimates 67 

We provide independent emission estimates for the PRISMA-based methane plumes using the WRF-Chem-LES model 68 

(Irakulis-Loitxate et al., 2021). The differences between the WRF-CHEM-LES-based and IME-based results reflect the 69 

intrinsic uncertainties in the IME method. For each plume, this model is conducted at 30 × 30 m2 horizontal resolution over a 70 

3 × 3 km2 domain. This resolution and domain size allow the placement and resolving of the individual plume and keep the 71 

computational and storage costs at a reasonable level. Each simulation has 121 vertical levels, with ∼ 3 m for the first three 72 

layers and ∼10 m for the upper layers up to the model top at 2 km height. The terrain information in the inner domain is 73 

obtained from the United States Geological Survey (http://ned.usgs.gov/) at 1/3 arc-second (∼10 m) resolution representative 74 

of the areas where the methane plumes are active. The boundary condition is obtained from a regional CTM (the two-way 75 

coupled WRF-CMAQ model) simulation with 3 × 3 km2 horizontal resolution over a 12 × 12 km2 domain. Other configurations 76 

are shown in our previous results (Mehmood et al., 2020; Wang et al., 2020, 2021). Note that the inner domain does not 77 

feedback with the outer domain (i.e., so-called one-way nested simulations). This configuration would not affect our results as 78 

the simulated plumes would not touch the boundaries of the inner domain. Each simulation is performed for five hours. The 79 

first three hours serve as a spin-up period, while the rest two hours are used for analysis. The time step for the inner domain is 80 

0.1 s, and instantaneous values are saved every second (i.e., every ten time-steps). Confidence intervals are obtained from the 81 

t-statistic calculated every 5 minutes during the simulation, starting from 15 minutes before and ending 15 minutes after the 82 

satellite overpass. 83 

For each plume, its nominal emission magnitude is assumed to be 1000 kg/h. On this basis, the emission magnitude is scaled 84 

by matching the total mass of excess methane in the simulated plume. The specific grids that the plume covered are defined 85 

using the “contourLines” function of R with a custom threshold (i.e., 2.5% of the total mass of excess methane, corresponding 86 

to the variance of the scene-based methane retrieval). The identified grids would not be sensitive to the configuration of the 87 

threshold due to the sharp plume edge. Meanwhile, the local background is defined within 1 km of the emission source. Finally, 88 

we adjust the scale factor to best match the area-integrated total mass of excess methane of the observed plume. On this basis, 89 

the WRF-Chem-LES-based emission estimates are achieved. Collectively, the differences between the WRF-Chem-LES-based 90 

and IME-based results reflect the intrinsic uncertainties in the IME method.  91 

Table S3 presents the summary of the results. Overall, such differences could be controlled within -70%. Such divergencies 92 

are also mainly contributed by the differences in the wind fields between the WRF-LES-based results and the ERA5 reanalysis 93 

dataset. Yet, since all of the wind information is model product, we cannot know if the WRF-LES-based results are more 94 
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reliable than the ERA5 reanalysis data. In theory, we could project that the WRF-LES-based results at a higher resolution 95 

might have a better performance.  96 

The IME method can also be constrained by the WRF-Chem-LES-based wind fields. On this basis, the subsequent PRISMA-97 

based methane emission estimates could be compared with the original IME-based results (i.e., driven by the ERA5 reanalysis 98 

data). The resulting differences would reflect the impacts of the wind data on the IME-based methane emission estimates.  99 

As shown in Table S3, such differences reach up to -49%, which is within the precision errors of the IME method, as illustrated 100 

above. Besides, the comparison of the IME-based and WRF-Chem-LES results driven by the same simulated wind fields 101 

demonstrated that there are also strong uncertainties in the particular methane emission estimating method. Such uncertainties 102 

have an impact as high as that from the wind fields and, still, are not beyond uncertainties in the IME method.  103 

Collectively, the results verify large methane emissions as reported in this work. The associated uncertainties are mainly due 104 

to wind fields and intrinsic model errors and can be controlled within -70%. It should be noted that our uncertain analysis 105 

might be only suitable for the cases in this work and more quantitative assessments based on the WRF-LES model are necessary 106 

to be promoted widely.  107 

S4. Uncertainty analysis for other sources 108 

Note that such quantitative estimates of the errors are close to previous findings but might be unsuitable worldwide, especially 109 

for those occurring in more complex conditions. We thus expect that, as our framework is promoted, there is a profound need 110 

to conduct more WRF-Chem-LES simulations to investigate the performance of our framework in as many and as complex 111 

environments as possible. 112 

Besides, the second tier of our framework observes strong methane vestiges (i.e., likely plume tails) above the storage tanks 113 

in the Burgan field. We require to confirm that such vestiges are caused by the real plumes or the technical noises due to the 114 

surface albedo perturbations. As abovementioned, the latter has been corrected in the matched-filtered algorithm used in the 115 

second tier of our framework. To make our results more persuasive, we retrieve the PRISMA-based ΔXCH4 together with 116 

surface albedo from just two spectral measurements, one featuring methane absorption (i.e., 2300 nm) and one not (i.e., 1700 117 

nm). These two adjacent spectral bands have similar surface and aerosol reflectance properties but differ in their methane 118 

absorption properties. Specifically, we utilize these two spectral bands to launch the matched-filtered algorithm separately. 119 

The differences in the results would, in principle, eliminate surface albedo effects and thus isolate the signals of the methane 120 

plumes. Figure S5 shows that the 2300 nm-driven matched-filtered algorithm results in noticeable methane vestiges above the 121 

storage tanks, while the 1700 nm-driven algorithm does not. Therefore, we could infer that such signals may very well led by 122 

real methane plumes rather than technical noises, although on-site measurements are absent. Similar multi-spectral techniques 123 

have been widely used to retrieve signals of methane plumes from ground-based (Innocenti et al., 2017), airborne (Leifer et 124 

al., 2006; Roberts et al., 2010), and satellite-based (Ehret et al., 2021; Varon et al., 2021) remote sensing instruments.  125 
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 126 

Fig. S1. A state-of-the-art global methane emission map for 2018(Janssens-Maenhout et al., 2019). The map was obtained 127 

from the EDGARv6.0 dataset (https://edgar.jrc.ec.europa.eu/gallery?release=v60ghg&substance=CH4&sector=TOTALS) 128 

(Last access: February 1, 2022). 129 

  130 
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 131 

Fig. S2. Attributions of the PRISMA-based methane plumes to specific plants or infrastructures. The subpanels 132 

successively correspond to the plumes in Figs. 1b1 ~ 1g2. For each plume, the map is zoomed to the maximum for visual 133 

inspections. The overpass times of the satellites are also presented. The base maps are obtained from © Google Map.  134 
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 135 

Fig. S3. The same as Figs. 1b1, c3, c4, e2, and e4 but the sampling window of the second-tiered monitoring is extended. 136 

On this basis, more representatives are presented. The base maps are obtained from © Google Map. Plume sources in the 137 

PRISMA-based results are marked by red circles.  138 
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 139 

Fig. S4. Maps of top-of-atmospheric radiance at 2300 nm for the methane plumes as shown in Figs. 1b ~ 1f. The small 140 

panels confirm that spatial distributions of methane plumes were clearly uncorrelated with those of surface brightness. 141 
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 142 

 143 

Fig. S5. Methane vestiges above the storage tanks in the Burgan field retrieved by (a) 1700 nm- and (b) 2300 nm - 144 

driven matched-filtered algorithms. Their differences highlight the suspect methane leakage from the storage tanks (c). 145 
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 146 
Fig. S6. Historical maps of methane plumes in the Hassi Messaoud field (Fig. 1e4). The satellite images for October 18th, 147 

October 28th, and November 12th are obtained from the Sentinel-2 images, while others © Google Map. The red rectangle 148 

marks the new methane super-emitter.  149 
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 150 

Fig. S7. Spatial distributions of methane emissions in bottom-up emission inventories. The panels successively correspond 151 

to the regions in Figs. 1b ~ 1g. The five-pointed stars correspond to the black dots in Fig. 1a.  152 
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 154 

Fig. S8. Relationship between the effective (𝑼𝐞𝐟𝐟) and 10-m (𝑼𝟏𝟎) wind speeds in the second-tiered monitoring. The LES 155 

plumes assuming 5% instrument precision.  156 

 157 

 158 

  159 



 

13 

 

 160 

Fig. S9. Histograms of the retrieved ∆𝐗𝐂𝐇𝟒 inside the selected 100 × 100 subset areas over the detected methane super-161 

emitters for the no-plume cases. The μ and σ values represent the mean and standard deviation of the distributions, 162 

respectively. A Gaussian curve has been fitted to each distribution.  163 
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 168 

Fig. S10. Scatter plots of the input and retrieved ∆𝐗𝐂𝐇𝟒 for the simulations over the methane super-emitters. The dash 169 

and red lines represent the 1:1 line and fitted linear model, respectively. 170 

  171 
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Table S1. Summary of methane hotspots and associated super-emitters via our multi-tiered, space-based framework. 172 

Their emission rates, precision errors, locations (latitude and longitude), and corresponding figure panels are shown. 173 

Regions Figure panels Latitude (°) Longitude (°) 
Emission rates Uncertainties 

kg/h kg/h 

Rumaila b 30.300  47.580  46138 17580 

Rumaila b1 30.291  47.725  11698 7416 

Rumaila b2 30.416  47.604  5053 3961 

Rumaila b3 30.406  47.336  6569 4009 

Rumaila b4 30.382  47.345  1510 722 

Burgan c 29.000  48.000  7873 3509 

Burgan c1 28.980  47.989  1378 992 

Burgan c2 29.013  48.027  1543 831 

Burgan c3 29.145  47.943  1858 1408 

Burgan c4 28.988  48.072  1748 804 

Burgan d 29.000  48.000  6332 3954 

Burgan d1 28.947  47.978  1375 1067 

Burgan d2 28.855  47.946  3576 1495 

Burgan d3 28.940  47.921  4425 2653 

Burgan d4 29.058  48.057  3593 2541 

Hassi Messaoud e 31.780  6.000  127676 59470 

Hassi Messaoud e1 31.798  6.012  2757 1297 

Hassi Messaoud e2 31.779  5.998  2160 1108 

Hassi Messaoud e3 31.769  6.003  4326 2453 

Hassi Messaoud e4 31.628  6.151  1229 862 

Wattenberg f 40.430  -104.380  4805 2201 

Wattenberg f1 40.443  -104.341  2023 867 

Wattenberg f2 40.430  -104.412  1142 486 

Yangquan g 37.800  113.520  33594 16918 

Yangquan g1 37.746  113.551  7616 4413 

Yangquan g2 37.866  113.489  4382 2034 

  174 
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Table S2. Comparison of the TROPOMI-based methane emission estimates between the IME and WRF-Chem method.   175 

Figure IME (kg/h) WRF-Chem (kg/h) IME-Wind* (kg/h) （WRF-Chem - IME)/IME (%) （IME-Wind - IME)/IME (%) 

b 46138 32758 36449 -29 -21 

c 7873 5117 5589 -35 -29 

d 6332 3863 4179 -39 -34 

e 127676 77882 105971 -39 -17 

f 4805 3700 4036 -23 -16 

g 33594 23516 24859 -30 -26 
*IME-Wind: the wind data in the IME method is constrained by the WRF-Chem model.   176 
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Table S3. Comparison of the PRISMA-based methane emission estimates between the IME and WRF-Chem-LES 177 

method.   178 

Figure IME (kg/h) WRF-Chem-LES (kg/h) IME-Wind* (kg/h) （WRF-Chem-LES - IME)/IME (%) （IME-Wind - IME)/IME (%) 

b1 11698 5381.08 6784.84 -54 -42 

b2 5053 1869.61 3840.28 -63 -24 

b3 6569 3021.74 4926.75 -54 -25 

b4 1510 815.4 906 -46 -40 

c1 1378 454.74 1005.94 -67 -27 

c2 1543 972.09 972.09 -37 -37 

c3 1858 743.2 873.26 -60 -53 

c4 1748 1136.2 1293.52 -35 -26 

d1 1375 467.5 756.25 -66 -45 

d2 3576 2467.44 2717.76 -31 -24 

d3 4425 2566.5 3363 -42 -24 

d4 3593 1113.83 1832.43 -69 -49 

e1 2757 1792.05 1847.19 -35 -33 

e2 2160 1188 1576.8 -45 -27 

e3 4326 2509.08 2811.9 -42 -35 

e4 1229 516.18 749.69 -58 -39 

f1 2023 1456.56 1537.48 -28 -24 

f2 1142 787.98 833.66 -31 -27 

g1 7616 4569.6 5483.52 -40 -28 

g2 4382 2935.94 3067.4 -33 -30 

*IME-Wind: the wind data in the IME method is constrained by the WRF-Chem model. 179 
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