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Abstract. Uncertainty in cloud feedbacks in climate models is a major limitation in projections of future cli-
mate. Therefore, evaluation and improvement of cloud simulation are essential to ensure the accuracy of climate
models. We analyse cloud biases and cloud change with respect to global mean near-surface temperature (GMST)
in climate models relative to satellite observations and relate them to equilibrium climate sensitivity, transient
climate response and cloud feedback. For this purpose, we develop a supervised deep convolutional artificial
neural network for determination of cloud types from low-resolution (2.5◦×2.5◦) daily mean top-of-atmosphere
shortwave and longwave radiation fields, corresponding to the World Meteorological Organization (WMO) cloud
genera recorded by human observers in the Global Telecommunication System (GTS). We train this network on
top-of-atmosphere radiation retrieved by the Clouds and the Earth’s Radiant Energy System (CERES) and GTS
and apply it to the Coupled Model Intercomparison Project Phase 5 and 6 (CMIP5 and CMIP6) model output
and the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) and
the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalyses. We
compare the cloud types between models and satellite observations. We link biases to climate sensitivity and
identify a negative linear relationship between the root mean square error of cloud type occurrence derived from
the neural network and model equilibrium climate sensitivity (ECS), transient climate response (TCR) and cloud
feedback. This statistical relationship in the model ensemble favours models with higher ECS, TCR and cloud
feedback. However, this relationship could be due to the relatively small size of the ensemble used or decoupling
between present-day biases and future projected cloud change. Using the abrupt-4×CO2 CMIP5 and CMIP6
experiments, we show that models simulating decreasing stratiform and increasing cumuliform clouds tend to
have higher ECS than models simulating increasing stratiform and decreasing cumuliform clouds, and this could
also partially explain the association between the model cloud type occurrence error and model ECS.

1 Introduction

Clouds are a major factor influencing the Earth’s climate.
They are highly spatially and temporally variable, with the
top-of-atmosphere (TOA) radiation being particularly sensi-
tive to cloud changes due to their high albedo and impact
on longwave radiation. Of all climate feedbacks, cloud feed-
back is the most uncertain feedback in Earth system models
(ESMs) (Zelinka et al., 2020; Sherwood et al., 2020). There-
fore, it is essential that climate models converge more on a

correct representation of future clouds but also on their rep-
resentation of present-day clouds, which is a necessary (but
not sufficient) condition for the fidelity of projected cloud
change. The estimate of the “likely” range (66 %) of equi-
librium climate sensitivity (ECS) has recently been refined
in the 6th Assessment Report (AR6) of the Intergovernmen-
tal Panel on Climate Change (IPCC) to 2.5–4 K from 1.5–
4.5 K in AR5. Evidence for this estimate is only indirectly in-
formed by the Coupled Model Intercomparison Project Phase
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6 (CMIP6) models (Eyring et al., 2016, 2019), which have a
multi-model mean of 3.7 K (Meehl et al., 2020). The com-
bined assessment is based on paleoclimate and historical
evidence, emergent constraints and process understanding.
Notably, CMIP6 models predict a 16 % higher multi-model
mean than CMIP5 (3.2 K) (Meehl et al., 2020; Forster et al.,
2020), and this fact has already been examined in a number
of studies (Zelinka et al., 2020; Wyser et al., 2020; Schlund
et al., 2020; Dong et al., 2020; Nijsse et al., 2020; Flynn
and Mauritsen, 2020). It is also higher than the combined
assessment central value of ECS of 3 K in AR6. The multi-
model spread in CMIP6 is also larger than in CMIP5, with
a standard deviation of 1.1 K in CMIP6 vs. 0.7 K in CMIP5.
Modelling groups have prevailingly reported that the higher
multi-model mean is due to changes in cloud representation
in the recent generation of models (Meehl et al., 2020, Ta-
ble 3), supported by the findings of Zelinka et al. (2020).

Recent understanding of climate sensitivity is represented
by diverging results relative to the CMIP6 multi-model mean.
Some authors have concluded that the high-ECS CMIP6
models are on average overestimating the ECS (Nijsse et al.,
2020) and are not compatible with paleoclimatic records
(Zhu et al., 2020, 2021). The high-ECS models are also not
supported by the review studies of Sherwood et al. (2020)
and AR6. In contrast, Bjordal et al. (2020) argue that high-
ECS models might be plausible because of state-dependent
cloud phase feedback in the Southern Ocean. Models which
simulate too much ice in the Southern Ocean clouds, a com-
mon bias among CMIP models, are expected to have lower
cloud feedbacks globally because of a spuriously enhanced
negative feedback associated with cloud phase changes in
that region. Recently, Volodin (2021) reported that chang-
ing cloud parametrisation in the Institute of Numerical Math-
ematics Coupled Model version 4.8 (INM-CM4-8) from a
Smagorinsky type to a prognostic type of Tiedtke (1993)
resulted in more than doubling of ECS from 1.8 to 3.8 K.
This underscores the importance of cloud parametrisation in
determining model climate sensitivity. Jiménez-de-la-Cuesta
and Mauritsen (2019) and Tokarska et al. (2020) estimate low
ECS based on the historical record, and Renoult et al. (2020)
estimate low ECS based on paleoclimatic evidence from the
last glacial maximum and mid-Pliocene warm period. Zhao
et al. (2016) showed that it is possible to modify parametrisa-
tion of precipitation in convective plumes in the GFDL model
and get different Cess climate sensitivities without increas-
ing cloud radiative effect (CRE) error relative to the Clouds
and the Earth’s Radiant Energy System (CERES). Zhu et al.
(2022) showed that, in CESM2, a CMIP6 model with a very
high ECS of 6.1 K, a physically more consistent cloud micro-
physics parameterisation, reduced the ECS to about 4 K and
produced results more consistent with the last glacial maxi-
mum.

The effect of clouds on the climate comes primarily from
cloud fraction and cloud optical depth, which are determined
by factors and properties such as convection, mass flux, tur-

bulence, atmospheric dynamics, cloud microphysics (cloud
phase, cloud droplet and ice crystal size distribution, num-
ber concentration, ice crystal habit), vertical cloud overlap,
cloud altitude, cloud cell structure and cloud lifetime. Ac-
curate simulation of clouds within climate models is dif-
ficult not only because of the large number of properties,
many of which are subgrid scale in today’s general circu-
lation models, but also because compensating model biases
may produce a correct CRE, while simulation of the individ-
ual properties is incorrect. This may be especially true for the
global radiation budget, as model processes are often tuned
to achieve a desired radiation balance at the TOA (Hourdin
et al., 2017; Schmidt et al., 2017).

Cloud genera (WMO, 2021a) have been an established
way of describing clouds for over a century. They broadly
correspond to or correlate with the individual cloud prop-
erties such as cloud altitude, optical depth, phase, overlap
and cell structure. Therefore, they can be used as a metric
for model evaluation which, unlike metrics based on more
synthetically derived cloud classes, is easy to understand
and has a very long observational record. So far, however,
it has not been possible to identify cloud genera in low-
resolution model output, because their identification depends
on a high-resolution visual observation, generally from the
ground. Here, we show that it is possible to use a supervised
deep convolutional artificial neural network (ANN) to iden-
tify cloud genera in low-resolution model output and satel-
lite observations. Past classifications of cloud types or cloud
regimes derived from satellite datasets have been based on
cloud optical depth and cloud top pressure or height by sim-
ple partitioning (Rossow and Schiffer, 1991) or by statistical
clustering algorithms (Jakob and Tselioudis, 2003; McDon-
ald et al., 2016; Oreopoulos et al., 2016; Cho et al., 2021) and
on active radar and lidar sensors (Cesana et al., 2019), which
likely only broadly correspond to human-observed cloud
genera. More recently, deep ANNs have begun to be used to
identify and classify clouds (Zantedeschi et al., 2020). Ols-
son et al. (2004) developed an ANN for classifying clouds in
a numerical weather forecasting model output based on refer-
ence satellite data from the Advanced Very High Resolution
Radiometer (AVHRR).

We introduce a new method of quantifying cloud types
corresponding to the World Meteorological Organization
(WMO) cloud genera in model and satellite data based on an
ANN approach. Furthermore, we quantify their global distri-
bution and change with respect to global mean near-surface
temperature (GMST) in the CMIP5 and CMIP6 models, the
CERES satellite data and two reanalyses, the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) Reanal-
ysis, ERA5 (Hersbach et al., 2020), and the Modern-Era Ret-
rospective Analysis for Research and Applications Version
2 (MERRA-2) (Gelaro et al., 2017). Convolutional artificial
neural networks have been used before for cloud detection:
Shi et al. (2017), Ye et al. (2017), Wohlfarth et al. (2018),
Zhang et al. (2018), Liu and Li (2018) and Zantedeschi et al.
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(2020) used a convolutional ANN for identification of cloud
genera in ground-based cloud images, and Drönner et al.
(2018), Shendryk et al. (2019), Guo et al. (2020), Segal-
Rozenhaimer et al. (2020) and Liu et al. (2021) developed
a convolutional ANN for detecting cloudy pixels in high-
resolution satellite imagery. While the determination of cloud
types in model and satellite data and application of ANNs
to identify cloud types are not new, in contrast to previous
methods, we utilise cloud types with a direct correspondence
to the established human-observed WMO cloud genera to
train our ANN. This dataset contains many decades of global
cloud observations, recorded several times daily at a large
number of stations. For this purpose, we develop an ANN
which can be applied to input with low spatial and tempo-
ral resolution (2.5◦, daily mean). This is because most cur-
rent climate models provide output with low resolution. This
resolution is not sufficient to represent individual clouds,
but these can still be inferred statistically from large-scale
patterns. Likewise, the resolutions of some satellite datasets
such as CERES are on this spatial scale. We try to answer the
question of whether cloud type biases and change with re-
spect to GMST are related to cloud feedback, ECS and TCR
in the CMIP models. The ANN and the associated code are
made available under an open-source license (Kuma et al.,
2022).

2 Data

2.1 Satellite observations

We used satellite observations from CERES in the years
2003–2020 (Wielicki et al., 1996; Doelling et al., 2013; Loeb
et al., 2018) as a reference training dataset for the ANN, and
in particular the daily mean adjusted all-sky and clear-sky
shortwave and longwave fluxes at TOA and shortwave (solar)
insolation from the SYN1deg 1◦-resolution geostationary-
enhanced product Terra+Aqua Edition 4.1. For evaluation
of cloud top pressure and cloud optical depth, we used
satellite-retrieved cloud visible optical depth (from 3.7 µm
particle size retrieval) and cloud top pressure from the same
product.

2.2 Climate models

CMIP5 and CMIP6 are the last two iterations of standard-
ised global climate model experiments (Taylor et al., 2012;
Eyring et al., 2016). We applied our ANN to the publicly
available model output of the historical and abrupt-4×CO2
CMIP experiments in the daily mean products. Exceptions
were the EC-Earth and NorESM2-LM models, which did
not provide the necessary variables. For EC-Earth, we used
data from the hist-1950 experiment (model EC-Earth3P) of
the High Resolution Model Intercomparison Project (High-
ResMIP) (Haarsma et al., 2016, 2020) as a substitute for
historical data. The model output resolution of EC-Earth3P

is the same as EC-Earth. For NorESM2-LM, we obtained
the data directly from the model developers. The variables
used in our analysis were (exclusively) rsut (TOA outgo-
ing shortwave radiation), rlut (TOA outgoing longwave ra-
diation), rsutcs (TOA outgoing clear-sky shortwave radia-
tion), rlutcs (TOA outgoing clear-sky longwave radiation),
rsdt (TOA incident shortwave radiation) and tas (near-surface
air temperature). In connection with the CMIP models, we
used estimates of the model ECS, TCR and cloud feedback
from AR6, with missing values supplemented by Meehl et al.
(2020), Zelinka et al. (2020), and ECS and TCR calculated
with the ESMValTool version 2.4.0 (Righi et al., 2020). Here,
we use a definition of cloud feedback adjusted for non-cloud
influences as in Zelinka et al. (2020), Soden et al. (2008)
and Shell et al. (2008). Table 1 lists the CMIP5 and CMIP6
models used in our analysis and their ECS, TCR and cloud
feedback. In total, we analysed 4 CMIP5 and 20 CMIP6
models, of which 18 had the necessary data in the historical
experiment for comparison with CERES (years 2003–2014)
and 22 had the necessary data in the abrupt-4×CO2 exper-
iment. No selection was done on the models; i.e. all CMIP5
and CMIP6 models which provided the required fields in the
CMIP archives were analysed here. For some models, ECS,
TCR or cloud feedback were not available. For these mod-
els, the values were taken from a related available model (as
detailed in Table 1). The model developers of IPSL-CM6A-
LR-INCA advised us that its TCR should be the same as
IPSL-CM6A-LR (Olivier Boucher, personal communication,
26 January 2022).

2.3 Reanalyses

In addition to CMIP, we analysed the output of two reanal-
yses: ERA5 (Hersbach et al., 2020) and MERRA-2 (Gelaro
et al., 2017). From MERRA-2, we used the M2T1NXRAD
product: daily means of the variables LWTUP (upwelling
longwave flux at TOA), LWTUPCLR (upwelling longwave
flux at TOA assuming clear sky), SWTDN (TOA incom-
ing shortwave flux), SWTNT (TOA net downward shortwave
flux) and SWTNTCLR (TOA net downward shortwave flux
assuming clear sky). From ERA5, we used the ERA5 hourly
data on single levels from 1979 to present product variables
tsr (top net solar radiation), tsrc (top net solar radiation, clear
sky), ttr (top net thermal radiation) and ttrc (top net thermal
radiation, clear sky). The variables were used in an equiva-
lent way to the CMIP5 and CMIP6 variables (Sect. 2.2).

2.4 Station observations

In addition to satellite and model data, we used ground-based
land and marine station data from the Historical Unidata In-
ternet Data Distribution (IDD) Global Observational Data
(Unidata, 2003). This dataset is a collection of the Global
Telecommunication System (GTS) (WMO, 2021b) reports,
which come from synoptic messages sent by stations to the
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Table 1. Table of CMIP5 and CMIP6 models and reanalyses used in our analysis and their CMIP phase, equilibrium climate sensitivity
(ECS), transient climate response (TCR) and cloud feedback (CLD), if they provided the necessary variables in the historical (“Hist.”) (in
the case of reanalyses, historical reanalysis) and abrupt-4×CO2 experiments (“•” – yes, “◦” – no, “–” – not applicable), and model output
resolution (“Res.”) as the number of longitude× latitude bins. Models are sorted by their ECS. ECS, TCR and CLD were sourced from AR6,
Zelinka (2021) and Semmler et al. (2021).

No. Model Phase ECS (K) TCR (K) CLD (Wm−2K−1) Hist. abrupt-4×CO2 Res. (long× lat.)

1 INM-CM4-8 6 1.83 1.33 −0.09 • • 180× 120
2 INM-CM5-0 6 1.92 1.3 −0.06 • • 180× 120
3 NorESM2-LM 6 2.54 1.48 0.44 • • 144× 96
4 MRI-CGCM3 5 2.60 1.60 0.28 – • 320×160
5 MPI-ESM-1-2-HAM 6 2.96 1.8 −0.16 • • 192× 96
6 MPI-ESM1-2-HR 6 2.98 1.66 0.27 • • 384× 192
7 MPI-ESM1-2-LR 6 3.00 1.84 0.18 • • 192× 96
8 MRI-ESM2-0 6 3.15 1.64 0.46 • • 320× 160
9 AWI-ESM-1-1-LR 6 3.29 2.11 0.29∗ • ◦ 192× 96
10 MPI-ESM-LR 5 3.63 2.00 0.44 – • 192×96
11 IPSL-CM5A2-INCA 6 3.79 1.9 1.05 • • 96×96
12 GFDL-CM4 6 3.89 2.10 0.64 ◦ • 144× 90
13 IPSL-CM5A-MR 5 4.12 2.00 1.25 – • 144× 143
14 IPSL-CM5A-LR 5 4.13 2.00 1.18 – • 96× 96
15 IPSL-CM6A-LR-INCA 6 4.13 2.32∗ 0.43 • • 144×143
16 CNRM-CM6-1-HR 6 4.28 2.48 0.59 • • 720× 360
17 EC-Earth3P 6 4.31∗ 2.62∗ 0.37a

• ◦ 512× 256
18 IPSL-CM6A-LR 6 4.56 2.32 0.45 • • 144× 143
19 CNRM-ESM2-1 6 4.76 1.86 0.63 ◦ • 256× 128
20 CNRM-CM6-1 6 4.83 2.14 0.61 • • 256× 128
21 UKESM1-0-LL 6 5.34 2.79 0.87 • • 192× 144
22 HadGEM3-GC31-MM 6 5.42 2.58 0.91 • • 432× 324
23 HadGEM3-GC31-LL 6 5.55 2.55 0.84 • • 192× 144
24 CanESM5 6 5.62 2.74 0.88 • • 128× 64
25 ERA5 – – – – • – 1440× 721
26 MERRA-5 – – – – • – 576× 361

∗ For some models, ECS, TCR or CLD were not available. For these models, the values were taken from a related available model (CLD of AWI-ESM-1-1-LR as in
AWI-CM-1-1-MR; ECS, TCR and CLD of EC-Earth3P as in EC-Earth3-Veg; TCR of IPSL-CM6A-LR-INCA as in IPSL-CM6A-LR).

WMO network. They consist of standard synoptic observa-
tions. For stations with an observer, clouds are identified vi-
sually at three different levels (low, middle and high). For
each level, a cloud genus/species category is recorded as a
number between 0 and 9 or as not available. Therefore, for
each station, up to three numbers are available for encod-
ing cloud genera/species, the meaning of which is explained
in the WMO Manual on Codes (WMO, 2011) in code tables
0509, 0513 and 0515. Only one cloud genus/species category
can be recorded for each level. Cloud fraction information in
the station data was not used in our analysis.

The IDD records were available between 19 May 2003 and
31 December 2020 at standard synoptic times (00Z, 03Z, . . . ,
21Z). We excluded years in which more than 3 weeks of data
were missing: 2006, 2007 and 2008. We used the cloud genus
variables of the synoptic (SYNOP) and marine (BUOY) re-
ports: low cloud (IDD variable “cloudLow”) based on the
WMO Code Table 0513, middle cloud based on Code Table
0515 (IDD variable “cloudMiddle”) and high cloud based on
Code Table 0509 (IDD variable “cloudHigh”) (WMO, 2011).

Furthermore, we grouped the cloud genera/species into four
cloud types to simplify our analysis:

1. high: cirrus, cirrostratus, cirrocumulus (CH) codes 1–9;

2. middle: altostratus, altocumulus (CM) codes 1–9;

3. cumuliform: cumulus, cumulonimbus (CL) codes 1–3,
8 and 9;

4. stratiform: stratocumulus, stratus (CL) codes 4–7.

To provide more detail, we also used an extended grouping
of 10 cloud types.

1. Ci: cirrus (CH) codes 1–6

2. Cs: cirrostratus (CH) codes 7–8

3. Cc: cirrocumulus (CM) code 9

4. As: altostratus (CH) codes 1–2

5. Ac: altocumulus (CM) codes 3–9
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6. Cu: cumulus (CL) codes 1–3

7. Sc: stratocumulus (CL) codes 4–5

8. St: stratus (CL) codes 6–7

9. Cu+Sc: cumulus and stratocumulus (CL) code 8

10. Cb: cumulonimbus (CL) code 9

As an example of the geographical distribution of sta-
tions, Fig. 1a shows the location of SYNOP and BUOY sta-
tion reports with cloud data available on 1 January 2010
(Fig. 1b, c are discussed in Sect. 3.2). Because the data
come from operational weather stations, they are geograph-
ically biased to certain locations, especially land, extratrop-
ics and the Northern Hemisphere. Undersampled locations
are ocean, the Southern Hemisphere and the polar regions.
Cloud type information from stations in the USA and Aus-
tralia is also not available in the WMO records. Because of
partially missing data in 2003, 2006 and 2008, we excluded
these years in the ANN training phase. Not all stations in
the IDD database provide cloud type information, and such
stations were excluded from our analysis. High and middle
clouds can be obscured by underlying cloud layers. In such
cases, the observation of high or middle clouds is recorded
as missing in the IDD data, and we exclude such stations
from the calculation of statistics for the middle or high cloud
types, respectively. This limitation of the dataset means that
it is less suitable for identifying middle and high clouds than
low clouds in multi-layer cloud situations, and a similar but
reverse limitation exists in spaceborne cloud observations
(McErlich et al., 2021).

2.5 Historical global mean near-surface temperature

Historical GMST was sourced from the NASA Goddard In-
stitute for Space Studies (GISS) Surface Temperature Anal-
ysis version 4 (GISTEMP v4) (Lenssen et al., 2019; GIS-
TEMP Team, 2021). This dataset was used in combination
with the CERES dataset to determine observed change in
cloud type occurrence with respect to GMST.

3 Methods

3.1 Rationale and method outline

We trained an ANN on satellite observations from the
CERES and ground-based observations from WMO stations
in the IDD dataset (Unidata, 2003). Then, we applied the
ANN to CERES data, CMIP5 and CMIP6 model output,
ERA5 and MERRA-2. A large database of ground-based
cloud observations has been compiled in the IDD dataset.
This database contains human-observed cloud information
at standard synoptic times, encoded as three numbers be-
tween 0 and 9 (or missing) for low-level, mid-level and high-
level clouds specifying the cloud genus and species (WMO,

2011, 2021a). ANNs are typically used for various forms of
image labelling, where the ANN is trained on a set of im-
ages either to label whole images (e.g. to identify whether
a certain object is present in the image) or to perform “seg-
mentation”, where image pixels are classified as belonging
to a certain object. Here, we used an ANN capable of quanti-
fying the probability of the presence of cloud genera in indi-
vidual pixels of an image composed of shortwave and long-
wave channels coming from either satellite or model output.
The spatial pattern and magnitude of shortwave (SW) and
longwave (LW) radiation provide information about clouds,
which can be used to train an ANN to classify clouds. The
purpose was to quantify WMO cloud genera on the whole
globe (rather than at individual stations as already available
in the IDD) and in model output. For practical purposes, in
our analysis we grouped together multiple cloud genera to a
smaller number of 4 and 10 “cloud types”, in addition to us-
ing the full set of 27 WMO cloud genera. The ANN training
phase consisted of supervised training on daily mean CERES
satellite images, where for some pixels we knew the presence
or absence of the cloud types based on one or more ground
stations located within the pixel. The training of the output
is done on these pixels. Because the number of stations and
days of observations is relatively large, it was possible to
train the ANN to quantify the probability of the presence of
cloud genera in any pixel of a satellite image or model output
and by extension on the whole globe.

The “U-Net” ANN (Ronneberger et al., 2015) is a well-
established type of ANN used for pixel-wise classification of
images. The main feature of this network is its U-shaped se-
quence of steps of downsampling followed by up-sampling,
allowing it to learn patterns on different size scales and pro-
duce output of the same size as the input. This makes it suit-
able for our task of quantifying cloud type occurrence prob-
ability for each pixel in passive satellite images or an equiv-
alent climate model output.

The schematic in Fig. 2 shows an outline of the train-
ing and application (“prediction”) of this ANN in our anal-
ysis. All inputs of spatially distributed satellite and model
data were first resampled to 2.5◦ spatial resolution to ensure
uniformity. In the training phase (Fig. 2a), samples of daily
mean TOA SW and LW radiation from CERES were pro-
duced. A sample is an image of size 4000× 4000 km and
16× 16 pixels produced by projecting the daily mean TOA
SW and LW radiation field in a local geographical projection
at a random location on the globe. This step is necessary in
order to produce input data which are spatially undistorted
(as would be the case with unprojected global fields). Sam-
pling at random locations ensures more robust training of the
ANN, which could otherwise more easily be trained to recog-
nise geographical locations as opposed to recognising cloud
patterns irrespective of their location. Samples were paired
with ground station cloud observations. Supervised training
of the ANN was performed using these samples (20 per day,
4582 d in total). The training of cloud type occurrence prob-
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Figure 1. (a) A map showing the location of Internet Data Distribution (IDD) station reports containing cloud information on a single day.
Shown is a sample of normalised top-of-atmosphere (TOA) shortwave radiation from CERES. (b) The sample as in panel (a) but shown
re-projected in a local azimuthal equidistant projection. Shown is the normalised shortwave (SW) and longwave (LW) cloud radiative effect
(CRE) and the probability of cloud type occurrence calculated by the ANN for the classification into four cloud types. (c) A similar sample as
in panel (b) but from the climate model EC-Earth3P (historical experiment) taken on the same day at a different location. This sample shows
an unrelated cloud scene due to the fact that the model is free running. Note that the cloud types are not mutually exclusive and therefore
do not have to sum to 100 %. Coastline data come from the public domain Global Self-consistent, Hierarchical, High-resolution Geography
Database (Wessel and Smith, 1996, 2017).

ability, which is the output of the ANN, was only done for
pixels where ground station data were available. In the ap-
plication phase (Fig. 2b), samples from CERES or a model
were produced and supplied to the ANN, which produced
samples with quantified cloud type occurrence probability.
These were then merged to reconstruct a geographical dis-
tribution, or global means and trends were calculated from
all the samples. In detail, the ANN inputs were samples con-
sisting of two channels of SW and LW radiation (256 val-
ues for each channel in 16× 16 pixel samples), and the out-

puts were samples consisting of 4, 10 or 27 channels (for
classifications into 4, 10 and 27 cloud types, respectively)
of cloud occurrence probability corresponding to the cloud
types (Fig. 2c). The classifications of 4 and 10 cloud types
were created by grouping of the full set of 27 WMO cloud
genera/species (as discussed earlier in Sect. 2.4). The advan-
tage of using an ANN for cloud classification over more tra-
ditional methods such as partitioning the cloud top pressure–
optical depth space (Rossow and Schiffer, 1991) is a true cor-
respondence to human-identified cloud genera, its potential
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flexibility to identify more specific cloud genera/species and
the ability to extend observations of human-identified cloud
genera/species to regions not covered by ground stations or
in time. The method outlined above allowed us to consis-
tently quantify cloud genera/species occurrence in satellite
observations and climate models and evaluate model biases.

3.2 Artificial neural network

TensorFlow is a machine learning framework for develop-
ment of artificial neural networks (Abadi et al., 2016), sup-
porting deep and convolutional neural networks. We used
the Keras application programming interface (API) of Ten-
sorFlow (version 1.14), which provides a simple abstraction
layer over TensorFlow, to define, train and apply a deep con-
volutional ANN to satellite and model data. The ANN was
based on a network type called U-Net (Ronneberger et al.,
2015), which produces output on the same grid as the input.
The inputs were two-dimensional arrays of size 16×16 pixels
for SW and LW radiation. The outputs were two-dimensional
arrays of the same size for each cloud type.

The ANN training was performed as follows, demon-
strated schematically in Figs. 1 and 2. For each day, we gen-
erated 20 samples of 4000×4000 km and 16×16 pixels from
CERES data, composed of two channels (shortwave and
longwave radiation) projected in a local azimuthal equidis-
tant projection centred at stochastically random locations
uniformly distributed on the globe (Fig. 1b). More precisely,
the channels were calculated from daily mean TOA all-sky
outgoing shortwave and longwave radiation (rsut and rlut, re-
spectively) and clear-sky outgoing shortwave and longwave
radiation (rsutcs and rlutcs, respectively) as (1) a shortwave
CRE normalised to the incoming solar radiation and (2) a
longwave CRE normalised to clear-sky outgoing longwave
radiation:

CRESW,norm. = (rsut− rsutcs)/rsdt, (1)
CRELW,norm. = (rlutcs− rlut)/rlutcs. (2)

The normalisation was done so that the values were mostly
in the [0, 1] interval, which is a more suitable input to the
ANN than non-normalised values. In the shortwave radi-
ation, normalisation by incoming shortwave radiation was
chosen so that the value represents the fraction of reflected
incoming radiation due to clouds. In the longwave radiation,
such normalisation is not possible, and normalisation by out-
going clear-sky longwave radiation was performed instead.

In order to exclude locations with low solar insolation,
where CRESW,norm. might be ill-defined because of low val-
ues of the denominator, we excluded parts of CRESW,norm.
where incoming solar radiation was lower than 50 Wm−2. A
downside of this approach is that it may cause bias due to
exclusion of wintertime polar regions. If a sample was miss-
ing any data points, it was excluded from the analysis. The
shortwave and longwave channels were the input to the ANN

training phase. The loss function of the ANN training was de-
fined as the negative of the log likelihood of observing cloud
types at ground stations. The log likelihood for each pixel
and cloud type was

l = npositive ln(p)+ (n− npositive) ln(1−p), (3)

where npositive is the number of station records in the pixel
which observed a given cloud type, p is the probability of
observing the cloud type predicted by the ANN, and n is
the total number of station records in the pixel with informa-
tion about the cloud type. The total log likelihood to be opti-
mised was the sum of log likelihoods (as defined above) over
all pixels in all samples and all cloud types. Station records
which reported clear sky were also included. In the optimi-
sation process, in which the internal ANN coefficients were
trained to predict the reference observations, the loss func-
tion equal to −l was minimised. The optimisation process
was run in iterations until the validation set loss function was
not improved for three iterations.

In the application phase, 20 random samples per day were
generated from CERES and model data. The ANN estimated
the probability of cloud type occurrence for every pixel of
each sample based on the input consisting of 16× 16 pixel
images of SW and LW radiation calculated in the same way
as in the training phase. From the samples we reconstructed
geographical distributions and calculated global means or the
probability of cloud type occurrence, i.e. the probability that
a cloud type can be observed at a virtual ground station lo-
cated in a given pixel.

3.3 Validation

Validation of the ANN was performed by comparing ANN
predictions with the IDD in validation years 2007, 2012 and
2017, which were not included in the training. In addition to
validation of the ANN trained on all IDD station data avail-
able globally, we trained four ANNs by excluding IDD data
over four geographical regions in the training.

– North Atlantic (15–45◦ N, 30–60◦W)

– East Asia (30–60◦ N, 90–120◦ E)

– Oceania (15–45◦ S, 150–180◦ E)

– South America (0–30◦ S, 45–75◦W)

The validation regions together with the number of avail-
able station reports in each grid cell are shown in Fig. S2.
In addition, we trained four ANNs in which we excluded
IDD data over one-fourth of the globe in the training (north-
west, north-east, south-east and south-west). With the above-
mentioned ANNs, we evaluated how the ANN performed
when predicting over regions and times not included in
the training dataset compared with the reference IDD data
(Sect. 4.1).
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Figure 2. Schematic showing the principle of training and applying the ANN. (a) Sample images from CERES with reference ground
station data (WMO cloud genera) are used in the training phase. (b) In the application (“prediction”) phase, the ANN quantifies cloud type
occurrence in sample images from CERES or a model. The ANN takes a sample image consisting of SW and LW channels and produces
per-pixel quantification of the probability of observing a given cloud type at a virtual ground station located in the pixel. The samples are
16× 16 pixels in size and 4000× 4000 km spatially.

To test whether the validation regions are large enough
to validate spatially uncorrelated locations, we analysed
the temporal and spatial correlations in IDD station data
(Fig. S3). The spatial correlation is approximately of the or-
der of 1000 km, and temporal correlation is of the order of
several days.

For a validation of the ANN, we calculate the receiver op-
erating characteristic (ROC) diagram (Sect. 4.1). An expla-
nation of the diagram is given for example by Wilks (2019)
in Chapter 9.4.6. The diagram shows the sensitivity (the true
positive rate) and specificity (the true negative rate) of the
prediction for a set of choices of thresholds for a positive
prediction, represented in the diagram by points on a curve.
The area under the curve (AUC) is calculated by integrating
the area under a curve and can be interpreted as a goodness
of the prediction.

3.4 Cloud top pressure–cloud optical depth evaluation

We calculated cloud top pressure–cloud optical depth his-
tograms corresponding to the cloud types (Sect. 4.3). The his-
tograms were calculated from cloud top pressure and cloud
visible optical depth variables in the CERES SYN1deg daily
mean product over the time period of years 2003 to 2020 (in-
clusive) weighted by the daily cloud type occurrence calcu-
lated by the ANN. For each cloud type, the histogram density
was calculated by iterating over all samples produced by the
ANN and for every pixel incrementing the histogram bin cor-
responding to the pixel’s cloud top pressure and cloud optical

depth in the CERES product by the probability of the cloud
type occurrence in the pixel calculated by the ANN. The set
of samples did not include random samples taken partially
over polar night locations as explained in Sect. 3.2. The re-
sults shown in the histograms therefore do not include any
information about polar regions during polar night.

3.5 Cloud properties by cloud type

We evaluated cloud fraction, cloud optical depth and cloud
top pressure biases in models by ANN cloud type (Sect. 4.5).
In CERES, they were taken from the SYN1deg (daily mean)
product variables Adjusted Cloud Amount, Adjusted Cloud
Optical Depth and Observed Cloud Top Pressure, respec-
tively. In CMIP, they were taken from the daily mean product
variables cloud area fraction (clt), atmosphere optical thick-
ness due to cloud (cod) and air pressure at cloud top (pc-
tisccp), respectively. Cloud top pressure was taken from an
International Satellite Cloud Climatology Project (ISCCP)
simulator variable. In ERA5, cloud fraction was taken from
total cloud cover (tcc) (the other cloud properties were not
available). In MERRA-2, the cloud properties were taken
from total cloud area fraction (CLDTOT), cloud optical
thickness of all clouds (TAUTOT) and cloud top pressure
(CLDPRS), respectively. In CMIP, the free-running histori-
cal experiment was used.

We calculated the global mean of the cloud properties by
cloud type as a weighted average of the above variables over
the years 2003–2014 (models) and 2003–2020 (CERES),
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weighted by the product of the grid cell area and the cloud
type occurrence probability determined by the ANN for the
grid cell and day in the given model or CERES. The global
mean did not include regions for which the ANN-determined
cloud type occurrence probability was not available (polar
regions in winter). We compared the global mean of each
cloud property by cloud type in every model with CERES as
an anomaly from CERES, i.e. the model global mean over
the time period 2003–2014 minus the CERES global mean
over the time period 2003–2020.

4 Results

4.1 Training and validation

We trained the ANN on CERES and IDD data in the years
2004, 2005, 2009–2011, 2013–2016 and 2018–2020, with
the years 2007, 2012 and 2017 used as a validation dataset,
representing 20 % of the total number of years. The training
was completed in 32, 40, and 38 iterations (for an ANN of
4, 10 and 27 cloud types, respectively), interrupted automati-
cally once the validation loss function stopped improving for
three iterations. The loss function during the training phase
is in Fig. S1 in the Supplement.

Figure 3 shows ANN validation results (the same but rel-
ative to the reference ANN is shown in Fig. S12). The ge-
ographical distribution of cloud type occurrence probabil-
ity is determined by the ANN from samples of normalised
CREs from CERES in the validation years (2007, 2012 and
2017). A reference ANN trained on all station data in the
training years (Fig. 3a) is compared with four ANNs trained
on station data in the training years, excluding quarters of
the globe at a time (Fig. 3b–e). In this way, we test whether
the ANN performs comparably to the reference ANN over
regions where it had no station data to train on. It can be ex-
pected that excluding one-fourth of the globe can result in
a serious degradation of the prediction due to a lack of ref-
erence data for certain types of clouds common to particu-
lar geographical locations. Despite this limitation, the ANNs
were still able to reproduce large-scale patterns in the cloud
type occurrence field as the ANN trained on all geographi-
cal locations. Some regions which were not reproduced well
include the Himalayas (Fig. 3c) and high clouds over the
tropical western Pacific (Fig. 3d1). The global area-weighted
mean is similar between the reference ANN and the four val-
idation ANNs, different most commonly by 0 %–4 %. When
calculated over the validation sectors only, the difference in
area-weighted means is about 5 % on average (Fig. S12). In
summary, the ANN has some skill in extrapolating to ge-
ographical locations where no input data were supplied in
training, but some notable deviations in the mean exist.

Figure 4 shows the results of validation of the ANN against
the reference IDD data. Here a constant predictor (Fig. 4b)
represents a reference predictor and results in an RMSE of
about 23 % when comparing all-time means (years 2007,

2012 and 2017) between the predictor and the IDD and 28 %
when comparing daily means between the predictor and the
IDD. The ANN trained for all years except the validation
years (Fig. 4c, d) results in RMSEs of about 17 % and 23 %
in the comparison of all-time and daily means, respectively.
This represents about 28 % and 19 % fractional improve-
ments of RMSEs over the constant predictor. A composite of
ANNs trained on all years except the validation years and ex-
cluding IDD data over four geographical regions (Fig. 4e, f)
results in RMSEs of about 18 % and 21 % in the compari-
son of all-time and daily means, respectively. This represents
about 22 % and 25 % fractional improvements of RMSE over
the constant predictor. Note that the composite is created in a
way that the cloud type occurrence probability in each geo-
graphical region is taken from the ANN which excluded IDD
data over the region in the training. In summary, the ANN
shows substantial improvement when compared to a constant
predictor when predicting in a time period not included in the
training as well as when predicting in regions not included in
the training. However, the RMSE remains relatively large.

We note that the comparison above is quite strongly lim-
ited by the data availability. Included were all grid cell daily
data with at least 15 reports on the presence of absence of the
cloud type, which can lead to an error on the scale of about
7 % (100/15) in the IDD reference. Moreover, only relatively
sparse geographical locations had enough IDD data, mostly
concentrated over land. In the Supplement we include equiv-
alent figures to Figs. 3 and 4 but for 10 and 27 cloud types.
We note, however, that the error due to the number of avail-
able IDD station reports per grid cell per day (as mentioned
above) may be a large part of the RMSE in these figures,
especially for the 27 cloud types (a large number of reports
needs to be available in a grid cell to accurately quantify the
occurrence of rare cloud types).

Figure 5 shows the ROC diagram calculated for a compar-
ison between IDD and an ANN trained on all IDD data in the
training years (Fig. 5a) and a composite of four ANNs trained
on all IDD data in the training years excluding the four val-
idation regions (Fig. 5b). Here, the reference IDD data in-
clude all station reports in the validation years 2007, 2012
and 2017. All cloud types were predicted with similar accu-
racy in terms of the ROC and AUC, with an average AUC of
0.74 in the all-data ANN and 0.69 in the regional composite.
As expected, the composite performs more poorly than the
all-data case. The ROC of the ANNs can be interpreted as a
substantial improvement over a random predictor.

In summary, the ANN has a good performance when com-
pared to trivial predictors, but more substantial errors are
present on daily scales. The ANN shows relatively good abil-
ity to extrapolate to regions not included in the training. Re-
gions which do not have an analogue in the rest of globe, such
as the Himalayas and the western tropical Pacific, are crucial
for the training, and without training data over the regions
the ANN does not perform well over the regions. The valida-
tion results show that the ANN has the ability to reproduce
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Figure 3. Geographical distribution of cloud type occurrence probability calculated by the ANN from the CERES-normalised CRE in the
validation years 2007, 2012 and 2017. The plots show validation of the ANN by comparing a reference ANN with ANNs trained on station
data excluding certain geographical regions. The row (a) is predicted by an ANN trained on all station data in the training years. The rows
(b–e) are the same as (a) but predicted by ANNs trained on station data in the training years but excluding one-fourth of the globe marked
by a red rectangle: north-east (NE), north-west (NW), south-east (SE), south-west (SW). The numbers in the lower centre of the plots show
the area-weighted average cloud type occurrence probability over the whole globe.

large-scale patterns successfully and therefore can be used in
large-scale analysis, but it might not be accurate enough to
capture smaller-scale and daily-scale variations. This might
be due to the rather severe limitation imposed by the low spa-
tial resolution of the input data. The presented validation is,
however, itself limited by the sparse spatial availability of the
IDD data.

4.2 Geographical biases

Figure 6 shows the geographical distribution of cloud types
in CERES, the IDD, the CMIP models and the reanalyses
(ERA5 and MERRA-2) for the four cloud types (analogous
plots for 10 and 27 cloud types are available in the Supple-
ment). The IDD row represents an observational reference
calculated independently of the ANN (although the ANN is
originally trained on this dataset), while rows correspond-
ing to CERES and the CMIP models are calculated by the
ANN. The high cloud type is characterised by a peak over the
western tropical Pacific and tropical Africa corresponding to
peaks in the IDD. A peak over northern Asia is, however,
more muted in the ANN. The middle cloud type peaks over
the North Pacific and western tropical Pacific and has a min-

imum over central Africa. The North Pacific is not sampled
well in the IDD, but a peak over the western tropical Pacific
and a minimum over central Africa are also present in the
raw dataset. The cumuliform cloud type is strongly concen-
trated in tropical marine regions over the tropical Pacific and
Atlantic and Madagascar and minima over the polar regions
and tropical Africa. This is also present in the IDD. The strat-
iform cloud type has maxima over polar marine regions and
on the western coast of South America and minima over the
tropical Pacific, Madagascar and tropical Africa. The max-
ima in the IDD are co-located but stronger, while the minima
are co-located and of similar magnitude.

Model biases are most strongly characterised by a nega-
tive bias in the cumuliform cloud type over marine tropical
regions and a positive bias in the stratiform cloud type over
the same regions, especially in models with lower ECS (in-
dicated in Fig. 6 below the model name). Bias in the high
and middle cloud types is more geographically varied. Mod-
els with higher ECS tend to have the opposite bias – positive
bias in the cumuliform cloud type and negative bias in the
stratiform cloud type globally. Notably, models with lower
ECS generally have higher biases than models with higher
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Figure 4. Validation of the ANN for four cloud types by comparison with IDD on validation years 2007, 2012 and 2017. (a) Time mean of
cloud type occurrence derived from IDD on a 5× 5◦ grid. Included are only grid cells where at least 70 % of days with 15 or more station
reports containing the cloud type information are available. (b) A constant predictor relative to IDD (a), which is one which predicts cloud
type occurrence probability equal to the global spatiotemporal mean of the cloud type occurrence probability calculated over the training
time period (2004–2020, excluding the validation years). (c) Time mean of cloud type occurrence probability predicted by the ANN on
the validation years. (d) The same as (c) but relative to IDD (a). (e) As (c) but a composition of four separate ANNs trained on validation
regions (North Atlantic, East Asia, Oceania and South America), where each shown region comes from the ANN trained on station data
over the training period excluding the given region. (f) The same as (e) but relative to IDD (a). Shown in the panels is the root mean
square error (RMSE) relative to IDD calculated by comparing two time means over all of the validation years (“RMSE annual”) and daily
means (“RMSE daily”). On the right, the total RMSE is shown, calculated from the four cloud type root mean square errors (RMSEi ) as
(1/4

∑4
i=1RMSE2

i
)1/2.

ECS. Of models with ECS below 4 K (nine models), all but
two have a total RMSE greater than or equal to 8 %. Of mod-
els with ECS above 4 K (nine models), all have RMSE lower
than 8 %. The two reanalyses (ERA5 and MERRA-2) have
relatively low biases compared to the CMIP models. ERA5
has the lowest total RMSE of all models at 3.6 %.

Models which are closely related in their code (CNRM-∗;
ERA5 and EC-Earth3P; HadGEM3-∗ and UKESM1-0-LL;
INM-∗; IPSL-∗; MPI-∗) performed similarly in terms of ge-
ographical distribution and magnitude of biases. This means
that the ANN method is robust with respect to model reso-
lution and also that the groups of related models represent
clouds very similarly, presumably because this is to a large
extent determined by cloud parameterisations in the atmo-

spheric component of the model, without much sensitivity to
resolution.

4.3 Optical properties and vertical distribution

From the ANN-labelled samples we calculated joint his-
tograms of cloud optical depth and cloud top pressure
(Fig. 7). These types of histograms relate to previous work
on cloud classification by Rossow and Schiffer (1991, 1999),
Hahn et al. (2001), Oreopoulos et al. (2016) and Schudde-
boom et al. (2018). The diagrams in Fig. 7 show cloud type
occurrence binned by cloud optical depth and cloud top pres-
sure for the four types as a difference from the mean of the
four types. The high cloud type difference from the mean
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Figure 5. Receiver operating characteristic (ROC) diagram calculated for (a) an ANN for the four cloud types trained on all training years
(2003–2020, except the validation years 2007, 2012 and 2017) on all data available globally, evaluated against station reports from the IDD
in the validation years and (b) a composite of four ANNs trained on all training years on all data available globally except for each of the four
validation regions (North Atlantic, East Asia, Oceania and South America), evaluated against station reports from the IDD in the respective
region in the validation years. Shown is also the ROC of a random predictor. Sensitivity is the true positive rate (probability of a positive
prediction if positive in reality), also called the hit rate. Specificity is the true negative rate (probability of a negative prediction if negative in
reality). “1-specificity” is also called the false alarm rate. The area under the curve (AUC) of the ROCs is in the label.

is characterised by a maximum occurrence at low pressure
(300–700 hPa) and low optical depth (below 5) (Fig. 7b). The
middle cloud type difference from the mean is characterised
by a high optical depth (above 2) between 200 and 800 hPa
(Fig. 7c). The cumuliform and stratiform types have greater
deviation from the mean than the high and middle types. The
cumuliform cloud type difference from the mean has a max-
imum in optically thin clouds (below 4) between 400 and
1000 hPa (Fig. 7d). The stratiform cloud type is almost the
inverse of the cumuliform type (Fig. 7e), characterised by
mid to high optical depth (above 2) and low to mid altitude
(below 400 hPa, peaking at about 700 hPa). Collectively, the
cloud types span discrete regions in four sectors of the di-
agram, which indicates that they partition the cloud optical
depth–cloud top pressure space quite well with little over-
lap. This means that the classification method distinguishes
well between types of clouds in terms of their cloud opti-
cal depth and cloud top pressure. This analysis also shows
that the stratiform and middle cloud types as identified by
the ANN are generally more opaque in terms of cloud opti-
cal depth than the cumuliform and high cloud types.

To compare with a more traditional classification by
Rossow and Schiffer (1991), we present a diagram corre-
sponding to their International Satellite Cloud Climatology
Project (ISCCP) classification (Fig. 7f). Correspondence of
the cumuliform and stratiform types between the ANN and
the ISCCP classification is quite good, except for deep con-
vection (classified as the cumuliform type in the ISCCP dia-

gram) of highly opaque (optical depth above 20) high clouds
(above 400 hPa). The correspondence is less good for the
high cloud type, where the ISCCP class starts at a higher
altitude (400 hPa vs. 700 hPa), and is also more opaque (op-
tical depth up to 20 vs. 5). The correspondence of the middle
cloud type is relatively poor – the ISCCP middle clouds are
located at a lower altitude (500 hPa vs. 400 hPa) and have
a lower optical depth (down to 0 vs. down to 2). Therefore,
the correspondence between our classification and the ISCCP
classification of Rossow and Schiffer (1991) is mixed, with
good correspondence of the low cloud types but disparities
in the middle and high cloud types. This may be due to the
fact that our method is based on ground-based cloud obser-
vations, which are often not capable of identifying high- and
mid-level clouds. It can be expected that discrimination of
high- and mid-level clouds by the ANN is not as good as that
of low-level clouds.

In addition to the comparison with the ISCCP classifica-
tion above, in Appendix B we present a comparison with
cloud clusters derived using self-organising maps of McDon-
ald and Parsons (2018) and Schuddeboom et al. (2018).

4.4 Cloud type global climatology and change with
global mean near-surface temperature

We analysed global mean cloud type occurrence in the CMIP
historical experiment models and reanalyses and change with
respect to GMST in the abrupt-4×CO2 experiment. The
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Figure 6.
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Figure 6. Geographical distribution of cloud type occurrence derived by applying the ANN to retrieved CERES satellite data in the years
2003–2020 (a1–a4), directly from the IDD (year 2010) (b1–b4), and by applying the ANN to model output of the historical experiment of
CMIP6 and reanalyses in the years 2003–2014 relative to CERES (c–w). In the lower centre of the CERES plots is the geographical mean
occurrence of the cloud type. In the lower left is the mean error and in the lower right is the RMSE. Models are sorted by their ECS from
lowest to highest. Coastline data come from the public domain Global Self-consistent, Hierarchical, High-resolution Geography Database
(Wessel and Smith, 1996, 2017). For some models, marked by “*”, ECS was not available and was taken from a related available model (see
Table 1).
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Figure 7. Histogram of cloud optical depth and cloud top pressure of the cloud types derived from CERES (2003–2020) by applying the
ANN. (a) Mean of the four cloud types. (b–e) Difference from the mean for the classification of four cloud types. (f) ISCCP classification
(Rossow and Schiffer, 1991).

abrupt-4×CO2 experiment was chosen because it (1) is com-
monly used for the determination of ECS and cloud feed-
back and (2) provides a strong forcing by greenhouse gases
and therefore a strong signal in cloud change due to increas-
ing GMST, and (3) a large number of models provide the
necessary data in this experiment in the CMIP5 and CMIP6
archives. As shown in Fig. 8a, comparing model global mean
cloud type occurrence relative to CERES, the models exhibit
a broad range of biases but with many similarities. Underes-
timation of the cumuliform cloud by up to 19 % is common,
as is smaller underestimation of the middle cloud type (up to
6 %) and high cloud type (up to 3 %). Overestimation of the
stratiform type of up to 5 % was present in a smaller number
of models. Progression from large biases to low biases in the
cumuliform and middle cloud types with increasing model
ECS is quite notable, with the exception of INM-∗ and to
a lesser extent IPSL-CM6A-LR and CanESM5. In particu-
lar, most models with lower ECS (< 4 K) tend to underesti-
mate the cumuliform type, and some also overestimate the
stratiform type, while models with higher ECS (> 4 K) to
a smaller degree tend to underestimate the stratiform type
and some overestimate the cumuliform type. The reanaly-
ses (ERA5 and MERRA-2) have some of the best agreement
with CERES compared to the CMIP models.

We also analysed cloud type occurrence change with re-
spect to GMST, defined as the slope of linear regression
of cloud type occurrence as a function of GMST (% K−1),
shown in Fig. 8b. It was calculated from years 1 to 100 of
the CMIP abrupt-4×CO2 experiment. Some models do not
provide all years in this time period. These models are MPI-
ESM-LR, for which we used years 1850–1869 and 1970–
1989, as in the time variable of the product files, and MRI-
CGCM3, for which we used years 1851–1870 and 1971–
1990. These years do not correspond to real years but rather
an arbitrary time period starting with 1850 used for the
abrupt-4×CO2 experiment in these models. This comparison
lacks a reliable observational reference because the CERES
record is too short to accurately determine the slope of the re-
gression. The abrupt-4×CO2 experiment is also not directly
comparable to reality due to the different CO2 and aerosol
forcing. The models exhibit a broad range of values with
few common trends. Models with lower ECS (< 4 K) tended

to simulate increasing stratiform and middle cloud type and
decreasing cumuliform type, while models with higher ECS
(> 4 K) tended to simulate decreasing stratiform and middle
cloud type and increasing cumuliform type. This behaviour
is consistent with the warming effect of stratiform and mid-
dle clouds. In our analysis, the cumuliform cloud type has
lower optical depth than the stratiform and middle cloud
types (Sect. 4.3), and in this sense one would expect more
warming if the cumuliform cloud type is replaced with the
stratiform cloud type (and vice versa). The corresponding ge-
ographical distribution plots are provided in Figs. S7 and S8.

Figures S4–S6 show the same as Fig. 8 but for a classi-
fication into 10 and 27 cloud types, respectively. We note,
however, that the classification into 27 cloud types should
be considered with caution due to the fact that the associa-
tion between the low-resolution TOA radiation and the cloud
type occurrence is inferential, and the individual cloud gen-
era/species in general cannot be directly observed in the ra-
diation fields.

4.5 Cloud properties by cloud type

We analysed cloud properties categorised by the ANN cloud
types. Figure 9 shows cloud fraction, cloud top pressure
and cloud optical depth by cloud type in all CMIP mod-
els and reanalyses as an anomaly from CERES, for which
the data were available. The cloud properties display a rel-
atively large degree of similarity irrespective of the ANN
cloud type, especially in cloud top pressure and cloud op-
tical depth. Cloud top pressure of the high cloud type had
a greater negative bias than the other cloud types in the
four CMIP models analysed. This is also notable due to
the fact that this represents a larger relative error in pres-
sure (and a larger difference in height) for high clouds than
for low- and mid-level clouds. Cloud fraction was under-
estimated relative to CERES in most models and reanaly-
ses, with the following exceptions. The INM models over-
estimated cloud fraction, except for the stratiform cloud
type. The HadGEM/UKESM and CNRM-CM6-1-HR mod-
els were relatively close to CERES compared to the rest of
the models and reanalyses. This coincides with the outlying
properties of INM in the rest of our analysis (Sect. 4.6) as
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Figure 8. (a) Global mean cloud type occurrence in CMIP6 models and reanalyses relative to CERES in the historical experiment. Shown
is also the p value of a z test for the difference in the means of two groups of CMIP models with ECS below and above 4 K (the mid-point
ECS in the range of the analysed models). (b) Global mean of cloud type occurrence change with respect to global mean near-surface air
temperature (GMST) in CMIP5 and CMIP6, calculated by linear regression. Models are sorted by their equilibrium climate sensitivity (ECS).
For some models, marked by “*”, ECS was not available and was taken from a related available model (see Table 1).

well as good performance of HadGEM/UKESM in repre-
senting the ANN cloud type occurrence (Sect. 4.2). Cloud
top pressure was underestimated in all models and reanaly-
ses (but only five were available in this comparison). Cloud
optical depth was overestimated in the four analysed models
and reanalyses but in the HadGEM/UKESM models with a
much smaller magnitude than the other two models and re-
analyses.

In summary, the results point to a generally “too few, too
bright” cloud problem identified in previous studies (e.g.

Nam et al., 2012; Klein et al., 2013; Engström et al., 2015;
Wall et al., 2017; Bender et al., 2017; Kuma et al., 2020; Kon-
sta et al., 2022) and higher altitudes of clouds in the models
and reanalyses than in the satellite observations. There was
no clear dependence of cloud fraction on the model ECS, un-
like the dependence of cloud type occurrence probability on
model ECS (Sect. 4.4). The analysis of the cloud properties
is limited by several caveats, such as the cloud properties not
necessarily being reliably comparable between models and
observations without the use of an appropriate instrument
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simulator. We used a non-simulator cloud fraction from the
CMIP models because of the wider availability of data than a
corresponding simulator variable. Cloud top pressure was de-
rived from a simulator but for a different satellite dataset (IS-
CCP). Cloud optical depth in CMIP was only available as a
non-simulator-based variable. We also note that this analysis
of cloud properties only applies spatiotemporally to a domain
covered by the cloud type occurrence evaluation, which ex-
cludes polar regions in winter. Therefore, they are spatiotem-
porally biased to non-polar regions and non-winter seasons.

4.6 Climate sensitivity

We analysed how cloud type occurrence change with respect
to GMST relates to climate sensitivity. ERA5 and MERRA-
2 are excluded from the analysis in this section because cli-
mate sensitivity and feedbacks are not estimated for reanaly-
ses. Figure 10 shows a linear regression of ECS as a function
of a model’s cloud type occurrence change with respect to
GMST. The relationship of ECS with the stratiform cloud
type is the strongest (probability of the null model represent-
ing no linear relationship in the data P(M0)= 3× 10−4; see
Appendix A), with the cumuliform type slightly less strong
(P(M0)= 2× 10−3) and with the middle cloud type rela-
tively strong (P(M0)≈ 0.04). The relationship with the high
cloud type was not statistically identifiable (probability be-
low 5 %). This is also confirmed by a z test for the difference
in the means of two groups of models with ECS below and
above 4 K (the mid-point in the ECS range of the analysed
models), with p values of 3× 10−5, 4× 10−3 and 9× 10−3

for the stratiform, cumuliform and middle cloud types, re-
spectively. Higher ECS is associated with decreasing strati-
form and middle cloud types and an increasing cumuliform
cloud type with increasing GMST. This may be physically
explained by the fact that the cumuliform cloud type has low
optical depth compared to the stratiform type (Fig. 7), and
therefore if a model simulates a transition from stratiform to
cumuliform clouds with increasing GMST, radiative forcing
due to cloud is increased. We note that, for the Bayesian sta-
tistical analysis results (probability of the null model), we
used priors for the null and alternative models, both equal to
0.5 (Appendix A).

Cloud type change with respect to GMST is too uncer-
tain in the observational reference (CERES) to be useful for
quantifying the accuracy of models in the representation of
this value. The abrupt-4×CO2 experiment assessed here is
also not directly comparable to reality. However, we can link
present-day cloud biases to climate sensitivity. In Fig. 11 we
show that the total RMSE of cloud type occurrence (calcu-
lated for the 27 cloud types) is linearly related to the model
ECS (P(M0)= 2×10−3), TCR (P(M0)= 9×10−3) and cloud
feedback (P(M0)= 1×10−2). Models with the lowest RMSE
tend to have the largest ECS, TCR and cloud feedback, while
models with the highest RMSE tend to have the lowest ECS,
TCR and cloud feedback. There are, however, several out-

liers, such as INM-*, with mid-range RMSE and the lowest
ECS and TCR of all models in the ensemble, and CanESM5,
with mid-range RMSE and the highest ECS. The relationship
could also be artificially strong due to cross-correlation be-
tween related models. If only 1 model of each model family
is retained (10 out of 18), the P(M0)= 0.29,0.29,0.62 for
ECS, TCR and cloud feedback, respectively (Fig. S9), i.e.
the presence of a negative linear relationship, is still more
likely than not for ECS and TCR but not cloud feedback, al-
though such a test is relatively weak due to the small number
of remaining models.

The above was calculated with the ANN for the full set
of 27 cloud types due to its higher statistical strength (as
can be expected with a more detailed classification). If done
with 4 and 10 cloud types, P(M0)= 4× 10−3, 0.01 and 0.07
(ECS, TCR and cloud feedback, respectively) for 4 cloud
types (Fig. S10) and P(M0)= 3×10−3, 0.01 and 0.06 for 10
cloud types (Fig. S11). This means that the relationship holds
well even for the classifications with fewer cloud types, but
with lower statistical strength.

5 Discussion and conclusions

We developed a deep convolutional ANN for the purpose
of determining cloud types in retrieved and simulated TOA
shortwave and longwave radiation images, trained on global
historical records of human observations of WMO cloud gen-
era (IDD). We trained this ANN to identify the probabil-
ity of occurrence of each cloud type in every pixel of the
image for a set of 4, 10 and 27 cloud types. We applied
the ANN to satellite observations from CERES, the CMIP
climate model and reanalysis output to derive geographical
distribution, global means of cloud type occurrence and its
change with respect to GMST. This provided a unique quan-
tification of the distribution of WMO cloud genera globally
and enabled us to compare models and observations with
this metric. Relative to IDD, the ANN could reproduce the
geographical distribution of cloud type occurrence relatively
well over regions where reference data were available. CMIP
models and reanalyses displayed a variety of biases relative
to satellite observations, most notably negative bias in the cu-
muliform cloud type and smaller negative bias in the middle
and high cloud types. Models related in their code base often
showed the same pattern and magnitude of biases. Models
with lower ECS (< 4 K) had larger biases than models with
higher ECS (> 4 K) and reanalyses. Analysis of the abrupt-
4×CO2 experiment suggests that low-ECS (< 4 K) mod-
els tend to simulate decreasing cumuliform and increasing
stratiform clouds, while the opposite is true for high-ECS
(> 4 K) models. By linking the cloud type change with re-
spect to GMST to ECS, we showed that models with decreas-
ing stratiform and middle cloud type and increasing cumuli-
form cloud type tended to have higher ECS, a physically ex-
pected result. We investigated the link between present-day
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Figure 9. Cloud properties in CMIP models and reanalyses by cloud type relative to CERES. The bar charts show area-weighted global
means of cloud properties calculated over the domain where cloud types are determined by the ANN (all locations except polar regions in
winter). Cloud properties shown are (a) cloud fraction, (b) cloud top pressure and (c) cloud optical depth. In the CMIP models, cloud top
pressure is from the ISCCP simulator. All other cloud properties are from non-simulator variables. For each cloud type, the mean is calculated
from daily data by weighting values by the cloud type occurrence determined by the ANN for the particular model or CERES in every grid
cell and time step. The model and reanalysis data are for the years 2003–2014, and the CERES data are for the years 2003–2020. The models
are sorted by their ECS from lowest to highest.

cloud biases and ECS, TCR and cloud feedback. We found
that the model cloud biases are correlated with all three quan-
tities. Models with smaller biases had higher ECS, TCR and
cloud feedback than models with larger biases.

The method introduced in this study has a number of lim-
itations. The CERES dataset is too short (2003 to present)
to reliably detect change with respect to GMST. This means
that we could not perform this kind of evaluation. It would
be theoretically possible to perform such an evaluation with
the CMIP historical experiment, which also includes the ef-
fect of aerosol, if a suitable satellite dataset were available.

Because the ANN was not trained to be applied to pixels
without SW radiation, polar regions during polar winter were
not analysed. The analysed model ensemble was relatively
small, with several models of the same origin. Therefore,
even though relatively strong statistical correlations could be
identified, they rest on the assumption of statistical indepen-
dence. In Fig. S9 we confirm that some of the identified as-
sociations hold on a smaller set of unrelated models. Similar
limitations to past emergent constraint analyses apply, in that
a physical explanation would need to accompany a statistical
relationship for it to be confirmed.
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Figure 10. Dependence of model ECS on the cloud type occurrence change with respect to GMST. Confidence bands represent the 68 %
range. Linear regression is calculated using Bayesian simulation assuming a Cauchy error distribution (Appendix A). Shown is also the
probability of the null hypothesis model P (M0) (explained in Sect. 4.6), the coefficient of determination (R2), the correlation coefficient (ρ),
the 95 % confidence interval of the slope (α95) of the linear regression, the probability that the slope is smaller or greater than zero, P (α < 0)
and P (α > 0), and the p value of a z test (pz) for the difference in the means of two groups of models in the bottom 50 % and top 50 % of
ECS. For some models, marked with “*”, ECS was not available and was taken from a related available model (see Table 1).

The NOAA and ESA satellite series provide much longer
time series than CERES. Alternatively, the ANN could be
trained on radiation measurements from passive or active in-
struments other than the normalised CRE from CERES as
long as they provide information about clouds which can be
paired with ground-based station observations of cloud gen-
era. Currently, the datasets derived from these satellite se-
ries, the Climate Change Initiative Cloud project (Cloud_cci)
(Stengel et al., 2020), the Pathfinder Atmospheres Extended
(PATMOS-x) (Foster and Heidinger, 2013) and the Climate
Monitoring Satellite Application Facility (CM SAF) Cloud,
Albedo And Surface Radiation dataset from the AVHRR
data (CLARA-A2) (Karlsson et al., 2017), appear to be un-
reliable for determining change in clouds with respect to
GMST due to changing orbit and instrument sensors. It is
possible that future improvements will overcome these is-
sues. Other satellite products which could provide suitable
radiation information include ISCCP, the Multi-angle Imag-
ing SpectroRadiometer (MISR), MODIS, CloudSat or the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-
servation (CALIPSO). The benefit of using other satellite
datasets could be the confirmation of the results with an in-
dependent dataset, longer available time series, or the fact
that the active instruments provide information about the
vertical structure of clouds. This is a qualitatively different
view of clouds than from passive instruments, which have
only limited ability to detect overlapping clouds and deter-
mine the structure of thick clouds. For a direct comparison
with models, an equivalent physical quantity is needed. A
satellite simulator such as the Cloud Feedback Model Inter-
comparison Project (CFMIP) Observation Simulator Pack-
age (COSP) could be used to calculate such an equivalent
quantity. In the case of a normalised CRE, a simulator is not
needed because it is a standard model output quantity.

When compared to the results produced by past cluster-
ing approaches based on self-organising maps applied on
ISCCP and MODIS (Appendix B), the ANN shows good
agreement on the physical properties of clouds, but differ-
ences exist, potentially due to multi-level cloud situations
and the low effective spatial resolution of the CERES/ANN
dataset (about 5×5◦). The definition of the ANN cloud types
is also fundamentally different from previous methods be-
cause it is based on visual observations by humans, whereas
other methods use a more synthetic approach of partition-
ing the cloud top pressure–optical depth space either directly
(Rossow and Schiffer, 1991) or by machine learning methods
such as self-organising maps (McDonald and Parsons, 2018;
Schuddeboom et al., 2018). The viewpoint also likely mat-
ters. Our method uses a hybrid top–bottom approach, where
radiation fields measured from the top by satellites (or simu-
lated by models) are used to derive cloud types correspond-
ing to observations from the ground. Cloud top pressure–
optical depth partitioning methods usually rely on radiation
fields measured from the top only. Due to obscuration in
multi-layer and thick cloud situations, top and bottom ap-
proaches can have very different views of reality (McErlich
et al., 2021).

An important finding of our analysis is that cloud type oc-
currence biases in CMIP6 models show that more climate-
sensitive models are more consistent with observations in
this metric. Zelinka et al. (2022) also recently found that
the mean-state radiatively relevant cloud properties in the
CMIP5 and CMIP6 models are correlated with total cloud
feedback and in particular that better simulating present-day
cloud properties is associated with larger cloud feedbacks.
They concluded that the explanation for this association is
an open question for future research. In contrast to Zelinka
et al. (2022) and our results, Schuddeboom and McDonald
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Figure 11. (a) Dependence of ECS, (b) transient climate response (TCR) and (c) climate feedback of CMIP6 models on the model total
cloud type root mean square error (RMSE) relative to CERES, calculated from the geographical distribution (as in Fig. 6). The points are
calculated from the ANN for 27 cloud types. Confidence bands represent the 68 % range. Linear regression is calculated using Bayesian
simulation assuming a Cauchy error distribution (Appendix A). Shown is also the probability of the null hypothesis model P (M0) (explained
in Sect. 4.6), the coefficient of determination (R2), the correlation coefficient (ρ), the 95 % confidence interval of the slope (α95) of the linear
regression, the probability that the slope is greater than zero P (α > 0) and the p value of a z test (pz) for the difference in the means of two
groups of models in the bottom 50 % and top 50 % of ECS (a), TCR (b) and cloud feedback (c). For some models, marked with “*”, ECS
was not available and was taken from a related available model (see Table 1).

(2021) did not find any relation between mean or compensat-
ing cloud errors and ECS in a cloud clustering analysis, al-
though their model ensemble was small (eight models). The
reason why their result is different from ours might be due to
a number of factors, such as a small number of models anal-
ysed by Schuddeboom and McDonald (2021), a different set
of models, their focus on SW CRE errors vs. our focus on
the RMSE of cloud type occurrence probability, and a very
different cloud classification method.

We suggest that our results showing that models with a
relatively high ECS perform better in the cloud type repre-
sentation should be considered with caution. Limiting fac-
tors of our analysis were the novelty of the method, limited
validation options (Sect. 4.1) and the small size of the model
ensemble. In addition, a credible physical mechanism needs
to be established in order to confirm a statistical association.

However, the result could be considered in the context of
other factors influencing ECS in a multiple-factor analysis
(Bretherton and Caldwell, 2020; Sherwood et al., 2020), es-
pecially if it should be used as an emergent constraint. Even
though our results favour models on the high end of ECS
in the investigated model ensemble, they do not necessarily
contradict Sherwood et al. (2020) or AR6. Some of the mod-
els which performed well in our analysis lie on the upper
end of the very likely range estimated in these reviews. The
scope of our study is much smaller than either of the reviews
and utilises only one cloud metric on a limited number of
related models. Nevertheless, we think that the strength of
the identified relationship and the opposing trends in cumuli-
form and stratiform clouds in high (> 4 K) and low (> 4 K)
ECS models with increasing GMST warrants further investi-
gation of links between present-day cloud simulation biases
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and projected future cloud change and demonstrates that the
ANN method of cloud identification can be a useful tool for
climate model evaluation.

Appendix A: Linear regression Bayesian model
comparison

The linear regression model M1 representing the alternative
hypothesis and the null hypothesis model M0 are defined as

M1 : y = αx+β + ε, (A1)
M0 : y = β + ε, (A2)

α = tan(ϕ), (A3)
ϕ ∼ Uniform(−π/2,π/2), (A4)
β ∼ Uniform(−100,100), (A5)
ε ∼ Cauchy(0,γ ), (A6)

where x is a vector of the independent variables, y is a vector
of the dependent variables, α and β are the slope and inter-
cept, respectively, ε is a Cauchy-distributed random error, γ
is the scale parameter of the Cauchy distribution and ϕ is the
angle of the slope. ϕ and β come from a continuous uniform
prior distribution. The statistical distributions of the free pa-
rameters ϕ, β and the Bayes factor (P (M1|x,y)/P (M0|x,y))
were determined using the Metropolis algorithm (Metropolis
et al., 1953) and simulated with Python library PyMC3 ver-
sion 3.11.2 (Salvatier et al., 2016). The prior probability of
M0 and M1 was assumed to be equal: P (M0)= P (M1)=
0.5. Before running the simulation, variables x and y were
normalised by their mean and standard deviation. For statis-
tical significance, we assumed P (M0) to be below 0.05.

Appendix B: Comparison with cloud clusters derived
using self-organising maps

To understand how the cloud types determined by the ANN
relate to cloud clusters constructed by previous studies, we
perform a comparison with cloud clusters of Schuddeboom
et al. (2018) and McDonald and Parsons (2018) generated by
a machine learning method known as self-organising maps
(SOMs). They use SOMs to identify representative cloud
clusters using cloud top pressure–cloud optical depth joint
histograms from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) (Schuddeboom et al., 2018) and IS-
CCP (McDonald and Parsons, 2018). They establish charac-
teristics of these clusters by investigating how they relate to
cloud properties. Schuddeboom et al. (2018) use the clusters
to examine model representations of different cloud types,
while McDonald and Parsons (2018) focus specifically on
how their clusters relate to atmospheric dynamics.

Here we calculate the average CERES/ANN values for
each of our four types for every ISCCP/SOM and MODIS-
/SOM cluster. The CERES/ANN geographical distribution
is available on a 5◦× 5◦ global grid (the original grid is

2.5◦× 2.5◦, but the effective resolution is lower), while the
ISCCP/SOM data are on a 2.5◦× 2.5◦ grid and the MODIS-
/SOM data are on a 1◦×1◦ grid. To account for this differ-
ence in spatial resolution, all of the ISCCP/SOM and MOD-
IS/SOM grid cells that fall within a corresponding ANN ge-
ographical distribution grid cell are considered to have the
same occurrence values. This will overestimate the similar-
ity between the clusters, as the small cloud structures that can
be identified in the higher-resolution dataset will be merged.

In Table B1 we present calculated co-occurrence of the
CERES/ANN cloud types with the 15 ISCCP/SOM clusters
of McDonald and Parsons (2018) and 12 MODIS/SOM clus-
ters of Schuddeboom et al. (2018). The left–right and top–
bottom ordering of the ISCCP/SOM and MODIS/SOM grids
is the result of the SOM algorithm, from which these clusters
were derived. This algorithm results in neighbouring clusters
which are closely related, with the most distinct clusters be-
ing the most distant. For example, in the ISCCP/SOM grid
the top row relates to clouds with low cloud top pressure,
while the bottom row relates to high cloud top pressure. From
understanding this relationship, we can see that ordering of
the CERES/ANN values suggests good separation into phys-
ically distinct cloud types. The values shown suggest that
small to moderate amounts of every cloud type are present
regardless of the ISCCP/MODIS cluster present. This could
be at least partially explained by the spatial smoothing ef-
fect described above as well as the co-occurrence of different
cloud types in a single geographical grid cell.

By considering individual clusters in Table B1 and exam-
ining their cloud top pressure–cloud optical depth diagrams
in McDonald and Parsons (2018, Fig. 1) and Schuddeboom
et al. (2018, Fig. 2), we can see that they show the expected
physical relationship. The CERES/ANN high cloud type is
identified as co-occurring most strongly with ISCCP/SOM
clusters 1, 6, 7, and 11, which are also the SOM clusters
corresponding to high clouds (McDonald and Parsons, 2018,
Fig. 1). The CERES/ANN middle cloud type is most strongly
associated with ISCCP/SOM clusters 2, 1 and 4 (numbers or-
dered by the strength of association), which all contain a sub-
stantial number of semi-opaque clouds at 180–680 hPa. The
CERES/ANN cumuliform cloud type is most strongly asso-
ciated with ISCCP/SOM clusters 13, 6, 11 and 12. While
cluster ISCCP/SOM 13 has a local maximum at low cloud
of low to mid optical depth, clusters 6, 11 and 12 are less
clearly associated with low clouds (they have a maximum
for high low optical depth clouds), although they still contain
substantial numbers of low-altitude low optical depth clouds.
The CERES/ANN stratiform cloud type is most strongly as-
sociated with ISCCP/SOM clusters 4, 5, 2, 10 and 15. IS-
CCP/SOM clusters 10 and 15 are strongly associated with
low-altitude mid to high optical depth clouds, as expected for
stratiform clouds. ISCCP/SOM clusters 4 and 5 are mostly
composed of mid-altitude mid optical depth clouds. ISCCP/-
SOM cluster 2, however, is mostly associated with relatively
high clouds above 680 hPa.
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Table B1. Comparison of the co-occurrence of our ANN-derived cloud types (CERES/ANN) with SOM-derived cloud clusters (ISCCP/-
SOM and MODIS/SOM) of McDonald and Parsons (2018) and Schuddeboom et al. (2018), respectively. The grids in panels (a–d) and
(e–h) represent our four ANN-derived cloud types (high, middle, cumuliform and stratiform). The grid boxes in each subplot correspond to
the SOM-derived cloud clusters of the past studies. Numbers in square brackets in the boxes are the ISCCP/SOM and MODIS/SOM cluster
numbers as in the original studies. Numbers in the centres of the boxes and box shading are the co-occurrence (scale 0–1) of the ANN-
derived cloud type and the SOM-derived cloud cluster. The co-occurrence is calculated from 1 year (2007) of daily mean values on a global
spatial grid. Note that the definition of the ISCCP/SOM and MODIS/SOM clusters is different, and therefore panels (a–d) and (e–h) are not
expected to be similar.

The CERES/ANN high cloud type co-occurs most
strongly with MODIS/SOM cluster 1. This cluster has a max-
imum for high-altitude low optical depth clouds (Schudde-
boom et al., 2018, Fig. 2) and is identified as tropical. The
CERES/ANN middle cloud type is most strongly associated
with MODIS/SOM clusters 9 and 10, identified as mixed-
level clouds. MODIS/SOM cluster 9 has the greatest con-
tribution from relatively high clouds above 310 hPa but a
substantial number of clouds at altitudes of 180–800 hPa.
MODIS/SOM cluster 10 has the greatest contribution from
clouds at a relatively low altitude of 680–800 hPa but also
high clouds above 440 hPa. The CERES/ANN cumuliform
cloud type is associated with MODIS/SOM clusters 3, 1, 2,
4, 7 and 8. These are identified as marine or tropical and have
a strong contribution from low-altitude low to mid optical
depth clouds. The CERES/ANN stratiform cloud type is as-
sociated with MODIS/SOM clusters 10, 12, 9 and 11. These
are identified as mixed-level and stratocumulus clouds and
have a strong contribution from low-altitude mid to high op-
tical depth clouds (clusters 11 and 12) and clouds at various
altitudes (clusters 9 and 10).

To summarise, the correspondence between the
CERES/ANN cloud types and ISCCP/SOM and MOD-
IS/SOM clusters is relatively good when compared using the
cloud top pressure–cloud optical depth diagrams. However,
differences exist, particularly in cloud types related to
mixed-level cloud situations.

Code and data availability. The datasets used in our analysis are
publicly available: CERES (2022), GISTEMPv4 (GISTEMP Team,
2021), CMIP5 (2022), CMIP6 (2022), MERRA-2 (2022), ERA5
(2022) and IDD (Unidata, 2003). The code used in our analysis is
open source and available on GitHub (Kuma, 2022) and Zenodo
(https://doi.org/10.5281/zenodo.7400793, Kuma et al., 2022).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-23-523-2023-supplement.

Author contributions. PK participated in conceptualisation and
methodology development, developed the artificial neural network
model, performed the data analysis and wrote the manuscript.
FAMB participated in conceptualisation and methodology devel-
opment, review and editing of the manuscript, funding acquisi-
tion and project administration. AS and AJM performed the com-
parison with MODIS and ISCCP cloud regimes and reviewed
the manuscript. ØS participated in NorESM2-LM data prepara-
tion and acquisition, consultation of the analysis and review of the
manuscript.

Competing interests. The contact author has declared that nei-
ther of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Atmos. Chem. Phys., 23, 523–549, 2023 https://doi.org/10.5194/acp-23-523-2023

https://doi.org/10.5281/zenodo.7400793
https://doi.org/10.5194/acp-23-523-2023-supplement


P. Kuma et al.: Machine learning of cloud types in satellite observations and climate models 545

Acknowledgements. This work was conducted as part of the
FORCeS project “Constrained aerosol forcing for improved cli-
mate projections” (FORCeS, 2022). AS and AM were funded by
New Zealand’s Deep South National Science Challenge “Cloud
and Aerosol Measurements for Improved Climate Projections”. We
thank Hossein Azizpour for his consultation and advice on the arti-
ficial neural network development. We are grateful for the CERES
dataset provided by the NASA Langley Research Center, the IDD
dataset provided by Unidata and the University Corporation for
Atmospheric Research through the Research Data Archive at the
National Center for Atmospheric Research, the GISTEMP dataset
provided by the NASA Goddard Institute for Space Studies, the
ERA5 dataset provided by the ECMWF through the Copernicus Cli-
mate Change Service, and the MERRA-2 dataset provided by the
Global Modeling and Assimilation Office, NASA Goddard Space
Flight Center Greenbelt. We thank the World Climate Research Pro-
gramme, which, through its Working Group on Coupled Modelling,
coordinated and promoted CMIP5 and CMIP6. We thank the cli-
mate modelling groups for producing and making available their
model output, the Earth System Grid Federation (ESGF) for archiv-
ing the data and providing access, and the multiple funding agen-
cies who support CMIP5, CMIP6 and ESGF. We are grateful for
the open-source software used in our analysis: TensorFlow (Abadi
et al., 2016), Python, NumPy (Harris et al., 2020), SciPy (Virtanen
et al., 2020), Matplotlib, cartopy (Met Office, 2010), PyMC3 (Sal-
vatier et al., 2016), parallel (Tange et al., 2011), Pandas (The pan-
das development team, 2020), pyproj, Cython (Behnel et al., 2011),
aria2 and Devuan GNU+Linux.

Financial support. This research has been supported by the
European Commission’s Horizon 2020 Framework Programme
(grant no. FORCeS – 821205) and the Swedish e-Science Research
Centre (grant no. N/A), funded by the European Union’s Horizon
2020 research and innovation programme under grant agreement
number 821205. We were also funded by the Swedish e-Science
Research Centre (SeRC).

The article processing charges for this open-access
publication were covered by Stockholm University.

Review statement. This paper was edited by Thijs Heus and re-
viewed by Steven Sherwood and one anonymous referee.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M.,
Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner,
B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y.,
and Zheng, X.: TensorFlow: A System for Large-Scale Ma-
chine Learning, in: Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI’16,
[code], USENIX Association, USA, 265–283, 2016.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and
Smith, K.: Cython: The Best of Both Worlds, Comput. Sci. Eng.,
13, 31–39, https://doi.org/10.1109/MCSE.2010.118, 2011.

Bender, F. A.-M., Engström, A., Wood, R., and Charlson,
R. J.: Evaluation of Hemispheric Asymmetries in Ma-
rine Cloud Radiative Properties, J. Climate, 30, 4131–4147,
https://doi.org/10.1175/JCLI-D-16-0263.1, 2017.

Bjordal, J., Storelvmo, T., Alterskjær, K., and Carlsen, T.:
Equilibrium climate sensitivity above 5 ◦C plausible due to
state-dependent cloud feedback, Nat. Geosci., 13, 718–721,
https://doi.org/10.1038/s41561-020-00649-1, 2020.

Bretherton, C. S. and Caldwell, P. M.: Combining Emergent Con-
straints for Climate Sensitivity, J. Climate, 33, 7413–7430,
https://doi.org/10.1175/JCLI-D-19-0911.1, 2020.

CERES: CERES Data Products, [data set], https://ceres.larc.nasa.
gov/data/, last access: 5 December 2022.

Cesana, G., Del Genio, A. D., and Chepfer, H.: The Cumulus And
Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD), Earth
Syst. Sci. Data, 11, 1745–1764, https://doi.org/10.5194/essd-11-
1745-2019, 2019.

Cho, N., Tan, J., and Oreopoulos, L.: Classifying Planetary Cloudi-
ness with an Updated Set of MODIS Cloud Regimes, J. Appl.
Meteorol. Clim., 60, 981–997, https://doi.org/10.1175/JAMC-D-
20-0247.1, 2021.

CMIP5: CMIP5 Data Search, [data set], https://esgf-node.llnl.gov/
search/cmip5/, last access: 5 December 2022.

CMIP6: CMIP6 Data Search, [data set], https://esgf-node.llnl.gov/
search/cmip6/, last access: 5 December 2022.

Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L.,
Morstad, D., Nguyen, C., Wielicki, B. A., Young, D. F., and
Sun, M.: Geostationary Enhanced Temporal Interpolation for
CERES Flux Products, J. Atmos. Ocean. Tech., 30, 1072–1090,
https://doi.org/10.1175/JTECH-D-12-00136.1, 2013.

Dong, Y., Armour, K. C., Zelinka, M. D., Proistosescu, C., Bat-
tisti, D. S., Zhou, C., and Andrews, T.: Intermodel Spread in
the Pattern Effect and Its Contribution to Climate Sensitiv-
ity in CMIP5 and CMIP6 Models, J. Climate, 33, 7755–7775,
https://doi.org/10.1175/JCLI-D-19-1011.1, 2020.

Drönner, J., Korfhage, N., Egli, S., Mühling, M., Thies, B., Bendix,
J., Freisleben, B., and Seeger, B.: Fast Cloud Segmentation Us-
ing Convolutional Neural Networks, Remote Sens., 10, 1782,
https://doi.org/10.3390/rs10111782, 2018.

Engström, A., Bender, F. A.-M., Charlson, R. J., and Wood, R.:
The nonlinear relationship between albedo and cloud fraction
on near-global, monthly mean scale in observations and in the
CMIP5 model ensemble, Geophys. Res. Lett., 42, 9571–9578,
https://doi.org/10.1002/2015GL066275, 2015.

ERA5: ERA5, [data set], https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era5, last access: 5 December 2022.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz,
G., Caldwell, P., Collins, W. D., Gier, B. K., Hall, A. D., Hoff-
man, F. M., Hurtt, G. C., Jahn, A., Jones, C. D., Klein, S. A.,
Krasting, J. P., Kwiatkowski, L., Lorenz, R., Maloney, E., Meehl,
G. A., Pendergrass, A. G., Pincus, R., Ruane, A. C., Russell,
J. L., Sanderson, B. M., Santer, B. D., Sherwood, S. C., Simp-
son, I. R., Stouffer, R. J., and Williamson, M. S.: Taking climate

https://doi.org/10.5194/acp-23-523-2023 Atmos. Chem. Phys., 23, 523–549, 2023

https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1175/JCLI-D-16-0263.1
https://doi.org/10.1038/s41561-020-00649-1
https://doi.org/10.1175/JCLI-D-19-0911.1
https://ceres.larc.nasa.gov/data/
https://ceres.larc.nasa.gov/data/
https://doi.org/10.5194/essd-11-1745-2019
https://doi.org/10.5194/essd-11-1745-2019
https://doi.org/10.1175/JAMC-D-20-0247.1
https://doi.org/10.1175/JAMC-D-20-0247.1
https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
https://doi.org/10.1175/JTECH-D-12-00136.1
https://doi.org/10.1175/JCLI-D-19-1011.1
https://doi.org/10.3390/rs10111782
https://doi.org/10.1002/2015GL066275
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://doi.org/10.5194/gmd-9-1937-2016


546 P. Kuma et al.: Machine learning of cloud types in satellite observations and climate models

model evaluation to the next level, Nat. Clim. Change, 9, 102–
110, https://doi.org/10.1038/s41558-018-0355-y, 2019.

Flynn, C. M. and Mauritsen, T.: On the climate sensitiv-
ity and historical warming evolution in recent coupled
model ensembles, Atmos. Chem. Phys., 20, 7829–7842,
https://doi.org/10.5194/acp-20-7829-2020, 2020.

FORCeS: The FORCeS Project: Constrained aerosol forcing for im-
proved climate projections, https://forces-project.eu, last access:
5 December 2022.

Forster, P. M., Maycock, A. C., McKenna, C. M., and Smith,
C. J.: Latest climate models confirm need for urgent mitigation,
Nat. Clim. Change, 10, 7–10, https://doi.org/10.1038/s41558-
019-0660-0, 2020.

Foster, M. J. and Heidinger, A.: PATMOS-x: Results from a Diur-
nally Corrected 30-yr Satellite Cloud Climatology, J. Climate,
26, 414–425, https://doi.org/10.1175/JCLI-D-11-00666.1, 2013.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A.,
Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Re-
ichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella,
S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-
K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Par-
tyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D.,
Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-
0758.1, 2017.

GISTEMP Team: GISS Surface Temperature Analysis (GISTEMP),
version 4, [data set], https://data.giss.nasa.gov/gistemp/, last ac-
cess: 7 December 2021.

Guo, Y., Cao, X., Liu, B., and Gao, M.: Cloud Detection for Satel-
lite Imagery Using Attention-Based U-Net Convolutional Neural
Network, Symmetry, 12, https://doi.org/10.3390/sym12061056,
2020.

Haarsma, R., Acosta, M., Bakhshi, R., Bretonnière, P.-A., Caron,
L.-P., Castrillo, M., Corti, S., Davini, P., Exarchou, E., Fabi-
ano, F., Fladrich, U., Fuentes Franco, R., García-Serrano, J., von
Hardenberg, J., Koenigk, T., Levine, X., Meccia, V. L., van Noije,
T., van den Oord, G., Palmeiro, F. M., Rodrigo, M., Ruprich-
Robert, Y., Le Sager, P., Tourigny, E., Wang, S., van Weele, M.,
and Wyser, K.: HighResMIP versions of EC-Earth: EC-Earth3P
and EC-Earth3P-HR – description, model computational perfor-
mance and basic validation, Geosci. Model Dev., 13, 3507–3527,
https://doi.org/10.5194/gmd-13-3507-2020, 2020.

Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci,
A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von
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