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Abstract. The global atmospheric methane growth rates reported by NOAA for 2020 and 2021 are the largest
since systematic measurements began in 1983. To explore the underlying reasons for these anomalous growth
rates, we use newly available methane data from the Japanese Greenhouse gases Observing SATellite (GOSAT)
to estimate methane surface emissions. Relative to baseline values in 2019, we find that a significant global
increase in methane emissions of 27.0± 11.3 and 20.8± 11.4 Tg is needed to reproduce observed atmospheric
methane in 2020 and 2021, respectively, assuming fixed climatological values for OH. We see the largest annual
increases in methane emissions during 2020 over Eastern Africa (14± 3 Tg), tropical Asia (3± 4 Tg), tropi-
cal South America (5± 4 Tg), and temperate Eurasia (3± 3 Tg), and the largest reductions are observed over
China (−6± 3 Tg) and India (−2± 3 Tg). We find comparable emission changes in 2021, relative to 2019, ex-
cept for tropical and temperate South America where emissions increased by 9± 4 and 4± 3 Tg, respectively,
and for temperate North America where emissions increased by 5± 2 Tg. The elevated contributions we saw
in 2020 over the western half of Africa (−5± 3 Tg) are substantially reduced in 2021, compared to our 2019
baseline. We find statistically significant positive correlations between anomalies of tropical methane emissions
and groundwater, consistent with recent studies that have highlighted a growing role for microbial sources over
the tropics. Emission reductions over India and China are expected in 2020 due to the Covid-19 lockdown but
continued in 2021, which we do not currently understand. To investigate the role of reduced OH concentrations
during the Covid-19 lockdown in 2020 on the elevated atmospheric methane growth in 2020–2021, we extended
our inversion state vector to include monthly scaling factors for OH concentrations over six latitude bands. Dur-
ing 2020, we find that tropospheric OH is reduced by 1.4± 1.7 % relative to the corresponding 2019 baseline
value. The corresponding revised global growth of a posteriori methane emissions in 2020 decreased by 34 % to
17.9± 13.2 Tg, relative to the a posteriori value that we inferred using fixed climatological OH values, consistent
with sensitivity tests using the OH climatology inversion using reduced values for OH. The counter statement
is that 66 % of the global increase in atmospheric methane during 2020 was due to increased emissions, par-
ticularly from tropical regions. Regional flux differences between the joint methane–OH inversion and the OH
climatology inversion in 2020 are typically much smaller than 10 %. We find that OH is reduced by a much
smaller amount during 2021 than in 2020, representing about 10 % of the growth of atmospheric methane in that
year. Therefore, we conclude that most of the observed increase in atmospheric methane during 2020 and 2021
is due to increased emissions, with a significant contribution from reduced levels of OH.

Published by Copernicus Publications on behalf of the European Geosciences Union.



4864 L. Feng et al.: Methane emissions are responsible for atmospheric methane growth rates

1 Introduction

The atmospheric growth rate of methane in the 21st cen-
tury has defied a definitive explanation: following a pe-
riod of near-zero growth during 2000–2007 (Rigby et
al., 2008), growth rates have accelerated, with values re-
ported by NOAA for 2020 (15.19± 0.41 ppb) and 2021
(18.12± 0.47 ppb) exceeding all prior values since their
records began in 1983. The underlying reasons for these
anomalous growth rates in 2020 and 2021 are currently sub-
ject to intense debate with some studies attributing most
of the growth in 2020 to a reduction in the hydroxyl rad-
ical (OH) sink of methane due to global-scale reductions
in nitrogen oxides due to pandemic-related industry shut-
downs (Laughner et al., 2021). On the face of it, this ap-
pears to be a reasonable explanation, but recent studies have
used satellite observations of atmospheric methane to re-
veal regional hotspots over the tropics that are responding to
changes in climate and have global significance (Pandey et
al., 2021; Lunt et al., 2019, 2021a; Pandey et al., 2017; Feng
et al., 2022b; Palmer et al., 2021; Wilson et al., 2021). Here,
we use satellite observations of methane from the Japanese
Greenhouse gases Observing SATellite (GOSAT) to docu-
ment global and regional changes in emissions, extending a
recent study (Feng et al., 2022b). In the next section, we de-
scribe the data and methods used to infer methane emissions.
In Sect. 3, we describe our results and conclude the study in
Sect. 4.

2 Data and methods

We closely follow the methodology from a recent study
(Feng et al., 2022b) in which we simultaneously infer
methane and CO2 fluxes in 2020 and 2021 by directly as-
similating proxy GOSAT XCH4 : XCO2 retrievals (X denotes
atmospheric column-averaged dry-air mole fraction). These
data are anchored by surface methane and CO2 measure-
ments from an in situ observation network. The main ad-
vantage of this approach is that it does not rely on assumed
model CO2 concentrations to extract XCH4 from the proxy
ratio. For the sake of brevity, we only include details relevant
to the calculations shown here.

2.1 GOSAT methane proxy data

We use version 9.0 of the proxy GOSAT XCH4 : XCO2 re-
trievals from the University of Leicester (Parker et al., 2020;
Parker and Boesch, 2020), including both nadir observations
over land and glint observations over the ocean. Analyses
have shown that these retrievals have a bias of 0.2 %, with a
single-sounding precision of ∼ 0.72 %. We globally remove
a slightly larger 0.3 % bias from the GOSAT proxy data to
improve the comparison with independent in situ observa-
tions (Feng et al., 2017, 2022a). We assume that each sin-
gle GOSAT proxy XCH4 : XCO2 ratio retrieval has an uncer-

tainty of 1.2 % to account for possible model errors, includ-
ing the errors in atmospheric chemistry and transport, which
helps to prevent model overfitting to observations.

2.2 In situ data

To anchor the GOSAT proxy ratio observations (Fraser et al.,
2014), we also simultaneously ingest the CO2 and methane
mole fraction data at surface-based sites, chosen from the
NOAA compilation of the multi-laboratory in situ measure-
ments (Schuldt et al., 2021a, b, 2022b, c). We include the
same subset of the surface sites used by a recent study that
documented year to year variations of methane emissions
during 2010–2019 (Feng et al., 2022b). We assume uncer-
tainties of 0.5 ppm and 8 ppb for these in situ observations of
CO2 and methane, respectively (Feng et al., 2022b). We take
advantage of the latest CO2 (GLOBALVIEWplus v8.0 Ob-
sPack) (Schuldt et al., 2022a) and methane (GLOBALVIEW-
plus v5.0 ObsPack) (Schuldt et al., 2022d) data products to
study 2020 and 2021.

2.3 GEOS-Chem atmospheric chemistry transport
model

We use the GEOS-Chem model of atmospheric chemistry
and transport at a horizontal resolution of 2◦ (latitude)× 2.5◦

(longitude), driven by the MERRA2 (Modern-Era Retrospec-
tive Analysis for Research and Applications, version 2) me-
teorological reanalyses from the Global Modeling and As-
similation Office (GMAO) Global Circulation Model based
at NASA Goddard Space Flight Center.

Our CO2 and methane model calculations are described in
a recent study (Feng et al., 2022b). The a priori CO2 flux in-
ventory includes monthly biomass burning emission (Van der
Werf et al., 2017); monthly fossil fuel emissions for 2019 in
the absence of more recent data (Oda and Maksyutov, 2021);
monthly climatological ocean fluxes (Takahashi et al., 2009);
and 3-hourly terrestrial biosphere fluxes (Randerson et al.,
1996).

The a priori methane fluxes from nature include monthly
wetland emissions, including rice paddies (Bloom et al.,
2017); monthly fire methane emissions (Van der Werf et al.,
2017); and termite emissions (Fung et al., 1991). We in-
clude emissions from geological macroseeps (Kvenvolden
and Rogers, 2005; Etiope, 2015). For a priori anthropogenic
emissions, we use the EDGAR v4.32 global emission inven-
tory for 2012 (Janssens-Maenhout et al., 2019) that includes
various sources related to human activities (e.g. oil and gas
industry, coal mining, livestock, and waste).

We use monthly 3-D fields of OH, consistent with ob-
served values for the lifetime of methyl chloroform, from
the GEOS-Chem full chemistry simulation (Mao et al., 2013;
Turner et al., 2015) to describe the main oxidation sink of
methane. Using pre-computed fields of OH greatly simpli-
fies our calculations. We examine the sensitivity of our re-
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sults to different OH distributions, as described below. Ad-
ditionally, in the next section, we describe a joint methane–
OH inversion experiment from which we also report results.
We also include the net microbial consumption of methane
in soil (Fung et al., 1991) and reaction with chlorine atoms
(Thanwerdas et al., 2019).

To explore the sensitivity of our methane emission esti-
mates for 2020 resulting from inferred reductions in OH due
to large-scale industrial shutdown due to Covid-19 (Cooper
et al., 2022), we also report a posteriori methane emission es-
timates that assume two different OH distributions, guided by
observed changes in combustion and in tropospheric ozone.
These sensitivity tests should not be considered as rigorous
as our joint methane–OH inversion described below, since
they represent a useful sanity check for our understanding.

First, we scale down our baseline monthly 3-D OH fields
by 5 %, where combustion emissions of CO2 (Oda and
Maksyutov, 2021) were larger than the mean emissions over
Africa, resulting in reductions mainly between 15 and 65◦ N.
Our choice of 5 % represents a reduction based on a recent
study (Laughner et al., 2021). A recent study that accounted
for reductions in nitrogen oxide emissions estimated a global
OH reduction of ∼ 4 % due to the Covid-19 lockdown in
2020 (Miyazaki et al., 2021), which showed strong spatial
and temporal variations, with localized reductions peaking
at 20 %–30 %. In the absence of direct measurements of OH
and without considering co-reductions in non-methane hy-
drocarbons, these (and similar) results have large uncertain-
ties.

Second, we assume a temporal–spatial distribution to de-
scribe the OH reduction in 2020, following a recent study
on tropospheric ozone changes in 2020 and 2021 (Ziemke
at al., 2022). First, we divide the world into regions: North-
ern Hemisphere (20–90◦ N) and the rest of the world. We
assume that the reduction in OH in the Northern Hemisphere
starts from the boreal spring of 2020 and peaks during the
summer with a magnitude of 9 % (blue line, Fig. A1 in Ap-
pendix A), higher than the ozone reduction found by Ziemke
et al. (2022). For latitudes south of 20◦ N, the time evolution
of the reduction in ozone is less clear (Ziemke et al., 2022).
For simplicity, we assume that the OH reduction at these lat-
itudes (red line, Fig. A1) has a smaller peak value (−2.3 %)
and with a time lag of 1 month compared to the region in the
Northern Hemisphere.

2.4 Ensemble Kalman filter inverse method

We use an ensemble Kalman filter (EnKF) framework to si-
multaneously estimate CO2 and methane fluxes from satellite
measurements of the atmospheric CO2 and methane (Feng et
al., 2022b). Our state vector includes monthly scaling fac-
tors for 487 regional pulse-like basis functions (Fig. A2)
that describe CO2 and methane fluxes, including 476 land
regions and 11 oceanic regions. We define these land sub-
regions by dividing the 11 TransCom–3 land regions into 42

nearly equal sub-regions, with the exception for temperate
Eurasia that has been divided into 56 sub-regions due to its
large landmass. We use the 11 oceanic regions defined by
the TransCom–3 experiment. We use a 4-month moving lag
window to reduce the computational costs for projecting the
flux perturbation ensemble into observation space long after
(> 4 months) their emissions, beyond which time it is dif-
ficult to distinguish between the emitted signal from varia-
tions in the ambient background atmosphere (Fraser et al.,
2014; Feng et al., 2017). Our a priori fluxes are described
above. For simplicity, we assume a fixed uncertainty of 40 %
for coefficients corresponding to the a priori CO2 fluxes over
each sub-region, and a larger uncertainty (60 %) for the cor-
responding methane emissions. We also assume that a priori
errors for the same gas are correlated with a spatial correla-
tion length of 300 km and a temporal correlation of 1 month.

As a sensitivity test, we also report methane fluxes inferred
using the same EnKF approach but using the proxy GOSAT
XCH4 data and in situ methane data. These GOSAT XCH4
retrievals are calculated from the XCH4 : XCO2 ratio by ap-
plying an ensemble mean of model XCO2 and then bias-
corrected according to comparison with Total Carbon Col-
umn Observing Network (TCCON) XCH4 retrievals (Parker
et al., 2020).

Currently, there is no direct observation of the global dis-
tribution of atmospheric OH. Indirect constraints on atmo-
spheric OH from the changing lifetimes of trace gases such
as CO and methane are insufficient to determine 3-D distri-
butions of OH. Here, we extend the inversion state vector to
simultaneously infer methane emissions (as described above)
and six OH scaling factors for a priori monthly 3-D OH fields
from the atmospheric methane observations (Sect. 2). These
scaling factors correspond to six latitude bands: 75–50◦ S,
50–25◦ S, 25–0◦ S, 0–25◦ N, 25–50◦ N, 50–75◦ N. We do not
consider scaling polar OH values. This calculation comple-
ments the OH sensitivity experiments described in the previ-
ous section. The Jacobian matrix, which describes the sensi-
tivity of model methane concentrations to regional OH fields,
is calculated with GEOS-Chem forced by a priori methane
fluxes from the control run (Table 1) but with the OH clima-
tology reduced by 5 % for each of the six regions. To reduce
the computational cost of this calculation, we use the same 4-
month lag window for the OH scaling factor estimates as for
the methane emission estimates. This is so that each monthly
OH scaling factor will be constrained only by observations in
the subsequent 4 months, but its impact will remain for the
entire experimental period. We used the OH climatology as
our a priori and assume a uniform 3 % uncertainty for each of
the six regions so that the 2-sigma range covers possible OH
changes that span ±6 %. We use such a simple linearization
scheme to adjust surface methane emissions and the monthly
tropospheric OH by optimally fitting model calculations to
atmospheric methane observations. We conduct the joint in-
version for 2018 to 2021, including the six monthly OH scal-
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ing factors and methane emissions, and use the same atmo-
spheric methane data used by the control calculation.

2.5 Correlative data

To help interpret the changes in methane emission estimates
we use additional datasets that are relevant to microbial or
pyrogenic production of methane. We use monthly surface
temperature fields at a spatial resolution of 2◦× 2.5◦ from the
Modern-Era Retrospective Analysis for Research and Appli-
cations, version 2 (MERRA2) developed by the Global Mod-
eling and Assimilation Office at the NASA Goddard Space
Flight Center (Bosilovich et al., 2015). Precipitation data
are taken from the NOAA CMAP (CPC Merged Analysis
of Precipitation) long-term global rainfall dataset (Xie and
Arkin, 1997) that provides near-global monthly coverage at
a spatial resolution of 2.5◦× 2.5◦, from 1979 to near present.
In addition, we use monthly total water storage (liquid wa-
ter equivalent depth, LWE) on a 1◦× 1◦ global grid from
the NASA–DLR Gravity Recovery and Climate Experiment
Follow-on (GRACE-FO) (Landerer et al., 2020). Finally, we
explore monthly biomass burning emissions from the Global
Fire Emissions Database (GFED v4) (Van der Werf et al.,
2017).

3 Results

Table 1 summarizes our global emission estimates inferred
from GOSAT for 2020, 2021, and 2019, which we use as our
baseline year throughout this study (Fig. A3). The largest
change in our global a posteriori emissions, corresponding
to the OH climatology, occurs during 2019–2020 (27.0 Tg)
from 583.7 to 610.7 Tg yr−1. Our a posteriori emission es-
timates for 2019 and 2020 are within 2 % of values re-
ported by an independent study (Qu et al., 2022), consis-
tent with our reported uncertainties. These elevated emis-
sions are sustained, but not further increased, during 2021
(604.5 Tg yr−1).

The 27.0 Tg emission increase in 2020 and the lack of fur-
ther emissions growth in 2021 may appear inconsistent with
the NOAA global annual mean growth rates of 15.19± 0.41
and 18.12± 0.47 ppb in 2020 and 2021, respectively (Ta-
ble 1). Based on these reported atmospheric growth rates,
and after considering the effects of methane sinks, we find
that a one-box model calculation predicts an increase in
emissions of 12.6 Tg between 2019 and 2020 and a further
15.1 Tg increase in 2021 (see Appendix B). These calcula-
tions use annual mean values that effectively represent the
emissions increase between the middle of each successive
year rather than the beginning and end. After considering the
increases in monthly mean NOAA data, we find that the sim-
ple box model predicts a similar increase in emissions be-
tween December 2019 (583.7 Tg yr−1) and December 2020
(610.1 Tg yr−1) of 26.4 Tg yr−1, with emissions stabilizing
thereafter, with mean emissions of 610.1 Tg yr−1 in 2021.

The resulting a posteriori model atmospheric methane con-
centrations agree well with the assimilated in situ data, as ex-
pected, but also reproduce the spatial and temporal variations
of methane reported by the independent TCCON measure-
ment network. As such, we conclude that the global mean
emission results inferred from GOSAT are consistent with
those inferred from NOAA surface data over multi-year pe-
riods, assuming a fixed methane atmospheric lifetime.

Figure 1b shows the broad geographical breakdown for
our reported global changes in methane emissions. Rela-
tive to 2019, we find widespread increased emissions during
2020, except for China and India. Relative to baseline val-
ues in 2019, we see the largest annual increases in methane
emissions during 2020 over Eastern Africa (14± 3 Tg), trop-
ical South America (5± 3 Tg), tropical Asia (3± 3 Tg), and
temperate Eurasia (3± 3 Tg), and the largest reductions are
observed over China (−6± 3 Tg) and India (−2± 3 Tg). We
find comparable emission changes in 2021, relative to 2019,
except for tropical and temperate South America where emis-
sions increased by 9± 4 and 4± 3 Tg, respectively, and
for temperate North America where emissions increased by
5± 2 Tg. Our results are broadly consistent with a recent
study which showed that methane emissions inferred from
TROPOMI were significantly higher in the first half of 2020
than during 2019 (McNorton et al., 2022). This study focused
mainly on major countries, while we find the largest changes
are over tropical latitudes where emissions in the second half
of 2020 make significant contributions (Fig. A4).

Figure 2 shows the distribution of methane emissions from
2020 and 2021 and the relative changes from our 2019 base-
line year (Fig. A3a). During 2020, there are significant de-
creases (20 %–30 %) over the manufacturing regions such as
eastern China, India, central America, and eastern Europe.
There are also significant increases across Eastern Africa
(30 %–40 %), eastern North America (30 %), and maritime
Southeast Asia (30 %). During 2021, we see similar changes
in emissions, but they are typically exaggerated. There is
more of a pronounced increase over Eastern Africa (> 50 %),
southern Brazil (50 %), and eastern North America (up to
40 %), and large decreases are observed over eastern China
(−50 %) and western Russia (−50 %). During 2021, there is
also a large decrease over equatorial West Africa and eastern
Europe (Fig. 1b). There are substantial seasonal changes in
methane emissions (Fig. A4) that are broadly consistent with
seasonal changes in temperature and rainfall (not shown).
Using methane columns determined by the proxy data, as-
suming model values for CO2 (Parker et al., 2020), we find
results for 2020 and 2021 that are generally within 10 % of
the values we report using the proxy data directly (Figs. A5
and A6).

Figure 3 shows different annual surface temperature
warming patterns in 2020 and 2021. During 2020, the high
northern latitudes are dominated by summer warming over
Siberia (2–3 K on an annual scale) that has been linked to
greenhouse gas emissions (Ciavarella et al., 2021), and sur-
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Table 1. Global annual emission estimates of methane (Tg yr−1) inferred from GOSAT (2019–2021) and in situ (2019–2020) atmospheric
measurements of methane. The annual atmospheric methane growth rate (ppb yr−1) for 2019 to 2022 reported by NOAA is also shown.

Global annual methane emissions (Tg yr−1)

2019 2020 2021

GOSAT methane inversion 583.7± 11.2 610.7± 11.3 604.5± 11.4

GOSAT methane–OH inversion 585.3± 13.1 603.2± 13.2 603.7± 13.2
Corresponding OH change (%) +0.91± 1.7 % −0.52± 1.7 % +0.62± 1.7 %

In situ 588.9± 18.1 601.4± 18.6 –

NOAA atmospheric growth rate (ppb yr−1) 9.67± 0.60 15.19± 0.41 18.12± 0.47

Figure 1. (a) Large-scale geographical regions for which we re-
port methane changes (TgCH4 yr−1) in 2020 and 2021. (b) Dif-
ferences between a posteriori emissions from 2020 and 2021 rel-
ative to inversion-specific baselines for 2019. Geographical re-
gions, informed by TransCom–3 experiments (Gurney et al., 2004),
include boreal North America (BNA), temperate North America
(TNA), central America (Cam), tropical South America (TrSA),
temperature South America (TSA), Europe (Eur), Western Africa
(WAf), Eastern Africa (EAf), boreal Eurasia (BEr), temperate Eura-
sia (TEr), India (IND), China (CHN), tropical Asia (TrAs), and Aus-
tralia (Aus). Panel (c) is the same as (b) but for a posteriori methane
emission from the joint methane–OH inversion.

face temperatures over Alaska were 2–3 K cooler than base-
line values in 2019, where there were comparatively small
changes in groundwater (< 5 cm). North America, west-
ern Europe, and Scandinavia also experienced anomalously
warm annual mean temperatures (typically within ±2 K of
2019 values). There were smaller changes in temperatures at
low latitudes (typically ±1 K of 2019 values), but larger in-
creases in groundwater (± 10–20 cm) associated with higher
changes in rainfall (Fig. A7), particularly over Eastern Africa
and eastern Brazil. During 2021, high northern latitudes were
cooler than 2019 (< 2–3 K), except for the contiguous US
and Canada (higher than 2019 values by 2–3 K). Midlatitudes
and low latitudes generally did not experience the warm tem-
peratures of 2020. Elevated groundwater was sustained in
2021 over Eastern and southern Africa, eastern tropical South
America (principally Brazil but stretching up to Venezuela),
central America, India, maritime Southeast Asia, and North
and Southeast Australia. Groundwater decreased over the
contiguous US, part of tropical South America, and parts of
Eurasia. We find generally stronger annual and seasonal re-
lationships between methane emission anomalies and hydro-
logical anomalies (rainfall and groundwater) for 2020 and
2021 (Fig. 3) than for temperature anomalies. Particularly,
we find statistically significant large-scale positive correla-
tions (typically 0.6–0.9; p < 0.001) for all seasons between
methane and groundwater anomalies over Eastern Africa,
tropical South America, and tropical Asia (Fig. 4), but there
is no significant correlation between methane and surface
temperature anomalies (not shown). This is consistent with
recent studies that have highlighted an increasing role for mi-
crobial sources in the tropical methane budget (Lunt et al.,
2019; Feng et al., 2022b; Wilson et al., 2021). Over North
America, we find a significant negative correlation (from
−0.3 to−0.6; p < 0.001) with rainfall during MAM and JJA
and a significant positive correlation with temperature during
JJA (0.4; p < 0.001), which we do not currently understand.
Fire emissions did not increase much where we report the
largest increases in methane emissions in 2020 or 2021, ex-
cept over central Canadian provinces (Fig. A7).
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Figure 2. Global a posteriori emissions of methane (g m−2 yr−1) inferred from GOSAT methane : CO2 column ratio data for (a) 2020 and
(b) 2021 and how they differ from the baseline year of 2019, described in terms of (c, d, respectively) absolute and (e, f, respectively)
percentage values.

Figure 3. Global annual mean surface temperature and GRACE liquid water equivalent (LWE) anomalies in (a, c) 2020 and (b, d) 2021
relative to values in 2019.
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L. Feng et al.: Methane emissions are responsible for atmospheric methane growth rates 4869

Figure 4. Scatter plot of monthly GRACE-FP LWE anomalies (cm) and methane flux anomalies, 2018–2021, over (a) tropical South
America, (b) Eastern Africa, and (c) tropical Asia. Red lines denote the linear regression. Numbers atop of each panel denote the Pearson
correlation coefficient r and the p value.

By including OH scaling factors into our state vec-
tor, we simultaneously infer OH distributions and methane
emissions (Sect. 2.4). Table 1 reports the resulting annual
changes in tropospheric OH. The annual mean a posteri-
ori OH changes relative to climatological a priori values
are 0.91± 1.7 %, −0.52± 1.7 %, and 0.62± 1.7 % for 2019,
2020, and 2021, respectively (Table 1). These values corre-
spond to a posteriori OH reductions of 1.43 % and 0.29 % in
2020 and 2021 relative to the 2019 baseline year (Fig. A3b).
Table 1 shows that these reductions in OH correspond to
smaller a posteriori methane emissions needed to fit the ob-
servations, as expected. For 2019, we estimate a 0.3 % higher
value for the a posteriori methane emission compared the OH
climatology inversion. In 2020, we require an emission in-
crease of 17.9 Tg relative to 2019, an approximate drop of a
third in the emission growth needed to reconcile atmospheric
observations relative to the OH climatology inversion (Ta-
ble 1). However, in 2021, we require only a small emission
increase of 0.5 Tg (8 %) from 2020 due to a concomitant in-
crease in OH compared to a decrease of 6.2 Tg in 2021 for
the inversion using OH climatology (Table 1).

Figure 5 shows that annual a posteriori error correlations
between the six OH scaling factors and the regional methane
emission estimates are only weakly correlated (ranging
±0.1, and typically less than ±0.05), suggesting that the
GOSAT methane data support the estimation of OH scaling
factors on our large geographical scales. Our joint methane–
OH inversion results for 2020 are consistent with our sim-
pler OH perturbation studies, described in Sect. 2.3, that are
reported in Table 2. For these sensitivity experiments, we
find that we need reduced increases in methane emissions in
2020, ranging between −22.6 % and −27.4 %. They provide
confidence in our a posteriori emission estimates and our

Figure 5. A posteriori error correlation between OH scaling factors
for six latitude bands (75–50◦ S, 50–25◦ S, 25–0◦ S, 0–25◦ N, 25–
50◦ N, 50–75◦ N) and emissions for 13 regions (Fig. 1).

statement that most of the atmospheric methane growth in
2020 was due to an increase in emissions, with the OH reduc-
tion being associated with the Covid-19 lockdown represent-
ing approximately 30 % of the global atmospheric methane
growth.

Figures 1c and 6 show the geographical distribution of
methane emissions for 2020 and 2021 corresponding to the
joint methane–OH inversion and how they differ from a pos-
teriori methane emissions inferred from OH fixed climatol-
ogy. Figure 7 shows the corresponding a posteriori methane
loss due to OH oxidation from the joint methane–OH inver-
sion relative to the baseline inversion that uses OH clima-
tology. Strictly speaking, we cannot easily compare results

https://doi.org/10.5194/acp-23-4863-2023 Atmos. Chem. Phys., 23, 4863–4880, 2023



4870 L. Feng et al.: Methane emissions are responsible for atmospheric methane growth rates

Table 2. Numerical experiments that explore the influence of assumed OH distributions on a posteriori methane emission estimates.

Experiment OH field 2019–2020 emission increase (Tg yr−1)
[% difference from control]

Control run Fixed OH climatology 27.0± 11 [–]

5 % OH reduction Reduction of 5 % OH over regions with high fossil
CO2 emission

20.9± 11 [−22.6]

Ozone-like OH reduction OH reduction following observed ozone change
(Ziemke et al., 2022)

19.6± 11 [−27.4]

Joint methane–OH inversion 6 OH scaling factors for a priori monthly 3-D OH
fields inferred from atmospheric methane obser-
vations

17.9± 13 [−34]

Figure 6. Annual mean difference of a posteriori methane emis-
sions between the control inversion that uses OH climatology and
the joint OH–flux inversion that estimates OH scaling factors for
(a) 2020 and (b) 2021.

from the two inversions because the differences are relative
to their own pre-2020 baselines (Fig. A3). The 2019 base-
line for the joint methane–OH inversion is lower over east-
ern China, eastern India, and some of boreal Eurasia, and it
is higher over parts of tropical and temperate South America
and maritime Southeast Asia (Fig. A3). Differences between
the inversions are typically much smaller than 10 % of the
fluxes. Nevertheless, our main conclusions remain robust for
both inversions.

Eastern Africa remains the biggest contributor to atmo-
spheric methane growth in 2020 and 2021 but with the es-
timated emission increase reduced by ∼ 15 %, as expected,
given the decrease in OH (Fig. 1c). A notable difference in-
cludes a large drop in emissions over tropical South America
in 2020, but this partially recovers in 2021 (Fig. 1c). The dif-
ference between the two inversions for tropical South Amer-

Figure 7. Annual mean difference of a posteriori methane loss due
to OH oxidation (2020–2021) between the control inversion that
uses OH climatology and the joint OH–flux inversion that estimates
OH scaling factors.

ica in 2020 can be attributed to a decrease in the methane
loss due to OH oxidation in the north of that region (Fig. 7)
but also the higher 2019 baseline for the joint methane–OH
inversion (Fig. A3b) that effectively reduces the emission in-
crease needed to reconcile with observations (Fig. 6). This
argument is also relevant to smaller a posteriori methane
emissions for the joint methane–OH inversion over South-
east Asia and Southeast Australia (Figs. 1c, 6, A3). A lower
2019 baseline over China and India for the joint methane–
OH inversion (Fig. A3) results in small reductions in a pos-
teriori methane emissions needed to reconcile with obser-
vations (Figs. 1c, 6). A similar argument associated with a
lower 2019 baseline value for the joint methane–OH inver-
sion helps to explain the increase in a posteriori methane
emissions over temperate North America and Europe in both
years (Figs. 1c, 6).
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Our a posteriori emission estimates from our baseline in-
version that uses climatological OH values and from joint
methane–OH inversion are consistent with independent ob-
servations from the TCCON network (Figs. C1 and C2 in Ap-
pendix C). A posteriori methane emission estimates for the
joint methane–OH inversion generally has slightly smaller
differences at southern and northern midlatitude sites (within
1 ppb) but does slightly worse (within 3 ppb) for the Bremen
(Br), Karlsruhe (Ka), and Paris sites. Both inversions have
comparable standard deviation about the mean differences
that are typically within 10 ppb.

4 Concluding remarks

We reported regional emission estimates of methane during
2020 and 2021, 2 years with record-breaking atmospheric
growth rates, inferred from satellite observations of methane
from the Japanese Greenhouse gases Observing SATellite.
For our control inversion, we used fixed climatological OH
values. Substantial, widespread reductions in nitrogen oxides
during 2020 associated with the shutdown of manufacturing
and other industries will have perturbed atmospheric con-
centrations of the OH loss of methane. A reduction in OH
could also help explain, in principle, the record-breaking at-
mospheric increase in methane. To address this point, we also
report a posteriori zonal mean OH scaling factors that form
part of a joint methane–OH inversion. Generally, we find that
our results from the joint methane–OH inversion are broadly
consistent with our idealized sensitivity calculations that de-
scribe changes in OH informed by distributions in anthro-
pogenic emission and the response of tropospheric ozone, re-
sulting in a reduced emission growth of 17.9 Tg yr−1 in 2020
that represents 66 % of our baseline inversion.

We find that emissions from Eastern Africa, tropical South
America, and temperate North America play a significant
role in determining the global atmospheric growth rate of
methane in one or both years. The contribution from Eastern
Africa dominates the global growth and is consistent with
previous studies that have reported emissions from recent
years (Feng et al., 2022b; Pandey et al., 2021; Lunt et al.,
2021b, 2019), ranging from 13 to 14 Tg in 2020 and 2021,
relative to the 2019 baseline year. The magnitude of this
increase in regional emission is reduced by approximately
∼ 15 % due to a 4 % reduction in OH, as expected. The influ-
ence of tropical South America and temperate North America
is sensitive to the OH distribution, particularly during 2020.
The joint methane–OH inversion results in a substantial de-
crease in emissions over tropical South America, but this
largely recovers by 2021. We find that the joint methane–
OH inversion leads to an increase in northern midlatitude
methane emissions from temperate North America, temper-
ate Eurasia, and Europe due to a 0.3 % increase in OH. We
also find that adjusting OH results in smaller emission reduc-
tions from China in 2020 and 2021 and a smaller increase in

emissions from Southeast Asia. We find statistically signifi-
cant positive correlations between tropical methane emission
and hydrological anomalies, consistent with recent studies
that have highlighted a growing role for microbial sources
over the tropics (Lunt et al., 2019; Feng et al., 2022b; Wilson
et al., 2021).

Our results are broadly consistent with a recent study of
the 2020 period (Qu et al., 2022), including the magnitude
of change associated with a change in OH, albeit concluded
using an independent method. Recent work that used in situ
methane data reported a smaller increase in methane emis-
sions during 2020 (Peng et al., 2022), consistent with poor
data coverage over the tropics as we explain in Appendix B.
Their estimate for the Covid-19-related OH reduction during
2020 (1.6 %) is consistent with our estimate, but because they
only used surface data in their inversion, they underestimated
the atmospheric methane growth from 2019 to 2020 (Table 1)
and consequently overestimated the influence of reduced OH
on the atmospheric growth rate of methane during 2020.

Our study highlights the tremendous value of using satel-
lite observations to understand rapid changes in atmospheric
methane. They provide crucial information to not only iden-
tify regional column hotspots associated with emissions but
also provide correlative information to help attribute those
hotspots to specific anthropogenic or natural emissions. Our
study also illustrates the importance of simultaneously esti-
mating methane emissions and changes in OH to improve
quantitative knowledge of changes in methane emissions,
which is necessary to attribute global atmospheric growth to
individual source regions.

Appendix A: Additional figures

Figure A1. Assumed temporal distribution for OH reduction (%) in
the Northern Hemisphere (20–90◦ N, blue line) and the rest of the
world (red line) for our sensitivity calculation.
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Figure A2. Basis functions that describe the 487 regions where we estimate methane emissions, including 476 land regions and 11 oceanic
regions.

Figure A3. Global a posteriori emissions of methane (g m−2 yr−1) inferred from GOSAT methane : CO2 column ratio data for the baseline
year of 2019, corresponding to (a) OH climatology (Feng et al., 2022b) and (b) the joint methane–OH inversion. Panel (c) shows the
difference of a posteriori emissions of methane corresponding to the joint methane–OH inversion minus OH climatology.
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Figure A4. Global seasonal a posteriori emissions of methane (g m−2 yr−1) inferred from GOSAT methane : CO2 column ratio data for (a,
c, e) 2020 and (b, d, f) 2021 relative to the baseline year of 2019, described in terms of absolute values. Seasons are based on rainfall changes
over the tropics.

Figure A5. Global a posteriori emissions of methane (g m−2 yr−1) inferred from GOSAT methane column data for (a) 2020 and (b) 2021.
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Figure A6. The same as Fig. 1b but for an inversion that uses GOSAT proxy XCH4 and in situ methane data.

Figure A7. Global annual mean NOAA CMAP precipitation (mm month−1 yr−1) and GFED fire emission (kgC m−2 yr−1) anomalies in (a,
c) 2020 and (b, d) 2021 relative to values in 2019.

Appendix B: Description of box model calculation

To calculate global emissions of methane from the NOAA
global mean data, we use a simple one-box model. In this
model, the change in global mean methane concentration
over time is given by

dB

dt
=Q− kB,

where B is the atmospheric mass of methane in Tg, k is the
loss rate, given by the reciprocal of the lifetime of methane
in the atmosphere, and Q is the emissions rate. From this,
after integration, the annual emissions rate can be calculated
as follows:

Qt =
k(Bt −Bt−1 · e

−k)
(1− e−k)

.

The loss rate was tuned to match a steady state concentration
of 1775 ppb during 2000–2006 based on constant emissions
of 530 Tg yr−1 during this period. We calculated the rolling
12-month annual emissions to track the progression of global
emissions between 2019 and 2021. We used the difference
between the atmospheric concentration in January 2019 and
January 2020, February 2019 to February 2020, etc. to cal-
culate the change in emissions in the intervening 12 months.
Figure B1 shows the increase in emissions throughout 2020
followed by more variable month-to-month changes in 2021.
The large increase in emissions primarily occurs in 2020,
with emissions at the 12-month period ending in Decem-
ber 2020 being 27 Tg yr−1 larger than the emissions 1 year
earlier. In contrast, if emissions are calculated using annual
mean concentrations, it appears as if there is a larger emission
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Figure B1. Global box model methane emission estimates between 2011 and 2021, respectively. Emission estimates are based on NOAA
global mean surface data. The blue line denotes the rolling 12-month annual emissions, and the orange line denotes the emissions based on
annual mean concentrations.

increase in 2021. The box model results show that the highly
simplified calculation based on global average data is con-
sistent with the more complex inverse modelling approach
applied to the GOSAT data.

Appendix C: Evaluation of a posteriori flux estimates

We indirectly evaluate our a posteriori methane fluxes by
comparing the GEOS-Chem methane distribution, driven by
the a posteriori fluxes, with independent XCH4 retrievals
from the Total Carbon Column Observing Network (TC-
CON) of Fourier transform spectrometers (Wunch et al.,
2022). We use bias-corrected TCCON XCH4 data from the
latest GGG2020 public release of the TCCON dataset from
2019 to 2021, including updates until October 2022. For a
comprehensive description of the network and the available
data from each TCCON site, we refer the reader to the TC-
CON project page. Here, we use a subset of available TC-
CON data, dependent on their availability between 2018 and
2021 (Buschmann et al., 2022; De Mazière et al., 2022; Gar-
cía et al., 2022; Hase et al., 2022; Kivi et al., 2022; Liu et al.,
2022; Morino et al., 2022a, b, c; Notholt et al., 2022; Petri
et al., 2022; Pollard et al., 2022; Warneke et al., 2022; Sh-
iomi et al., 2022; Té et al., 2022; Wennberg et al., 2022a, b,
c; Wunch et al., 2022; Zhou et al., 2022). For further details
about the data, we direct the reader to the TCCON project
page: http://tccondata.org/ (last access: 15 December 2022).

Figure C1 shows the mean and standard deviation of the
differences between our a posteriori model simulation and
TCCON GGG2020 data in 2019 and 2020. The a posteri-
ori model simulation is driven by our a posteriori methane
emission estimates. We sample the associated model 3-D at-
mospheric methane distributions at the time and location of
each TCCON site used. We then convolve the sampled verti-
cal profile with site- and time-dependent TCCON instrument
averaging kernels, which describes the altitude-dependent in-
strument sensitivity to changes in atmospheric methane con-
centration. Figure C2 shows the same statistical comparison
but using the a posteriori methane emission estimates in-
ferred with the OH scaling factors, as described in Sect. 2.4.

We do not report results for 2021 due to data availability.
For data that are available, we find that the mean statistics
(not shown) are similar to those we report here for 2019 and
2020. For most sites, we find that the mean bias is typically
smaller than ±10 ppb and the standard deviation has a range
5–15 ppb with values typically smaller than 10 ppb. We find
the largest differences at northern high latitudes where the
model has a large overestimate (∼ 10 ppb), consistent with
previous studies (Feng et al., 2017, 2022b), due to poor cov-
erage of GOSAT data during the boreal winter and to model
error.
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Figure C1. Statistical comparison of the GEOS-Chem a posteriori methane distribution and TCCON XCH4 data (v GGG2020) in 2019 and
2020. Red upward triangles denote the mean bias and the blue bars denote the corresponding 1s values.

Figure C2. The same as Fig. C1 but for the inversion that also includes OH scaling factors.

Data availability. The University of Leicester GOSAT
Proxy v9.0 XCH4 data are available from the data repos-
itory of the Centre for Environmental Data Analysis at
https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb
(Parker and Boesch, 2020). Precipitation, temper-
ature, and the GRACE datasets are available at
https://doi.org/10.5067/5ESKGQTZG7FO (GMAO, 2015)
and https://doi.org/10.5067/TEMSC-3MJC6 (Wiese et al.,
2018). The community-led GEOS-Chem model of atmo-
spheric chemistry and transport model is maintained centrally
by Harvard University (http://geos-chem.seas.harvard.edu,
last access: 8 March 2021), and is available on request.
The ensemble Kalman filter code is publicly available as
PyOSSE (https://www.nceo.ac.uk/data-tools/atmospheric-tools/,
NCEO, 2023). The TCCON data were obtained from
the TCCON Data Archive hosted by CaltechDATA at
https://doi.org/10.14291/TCCON.GGG2020 (TCCON Team,
2022). The CH4 GLOBALVIEWplus v5.0 ObsPack is available
from https://doi.org/10.25925/20221001 (Schuldt et al., 2022d),
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