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Abstract. The greening impacts on China from 2000 to 2017 led to an increase in vegetated areas and thus
enhanced biogenic volatile organic compound (BVOC) emissions. BVOCs are regarded as important precursors
for ozone (O3) and secondary organic aerosol (SOA). As a result, accurate estimation of BVOC emissions is
critical to understand their impacts on air quality. In this study, the Model of Emissions of Gases and Aerosols
from Nature (MEGAN) v2.1 was used to investigate the impact of different leaf area index (LAI) and land cover
(LC) datasets on BVOC emissions in China in 2016, and the effects on O3 and SOA were evaluated based on
the Community Multiscale Air Quality (CMAQ) modeling system. Three LAI satellite datasets of the Global
LAnd Surface Satellite (GLASS), the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD15A2H
version 6 (MOD15), and the Copernicus Global Land Service (CGLS), as well as three LC satellite datasets of
the MODIS MCD12Q1 LC products, the Copernicus Climate Change Service (C3S) LC products, and the CGLS
LC products, were used in five parallel experiments (cases: C1–C5). Results show that changing LAI and LC
datasets of the model input has an impact on BVOC estimations. BVOC emissions in China ranged from 25.42
to 37.39 Tg in 2016 and were mainly concentrated in central and southeastern China. Changing the LC inputs
for the MEGAN model has a more significant difference in BVOC estimates than using different LAI datasets.
The combination of C3S LC and GLASS LAI performs better in the CMAQ model, indicating that it is the better
choice for BVOC estimations in China. The highest contribution of BVOCs to O3 and SOA can reach 12 ppb
and 9.8 µg m−3, respectively. Changing the MEGAN inputs further impacts the concentrations of O3 and SOA,
especially changing LC datasets. The relative difference between MCD12Q1 LC and C3S LC is over 52 % and
140 % in O3 and biogenic SOA (BSOA) in central and eastern China. The BSOA difference is mainly attributed
to the isoprene SOA (ISOA), a major contributor to BSOA. The relative differences in ISOA between different
cases are up to 160 % in eastern China. Therefore, our results suggest that the uncertainties in MEGAN inputs
should be fully considered in future O3 and SOA simulations.
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1 Introduction

Volatile organic compounds (VOCs) from both natural and
anthropogenic sources play important roles in the formation
of ozone (O3) and secondary components of fine particu-
late matter (PM2.5) in addition to their adverse health effects
(Volkamer et al., 2006; Laothawornkitkul et al., 2009; Cal-
fapietra et al., 2013; Zhao et al., 2021). Globally, biogenic
VOCs (BVOCs) from vegetation are the dominant contrib-
utor (with ∼ 90 % contribution) to VOCs (Fehsenfeld et al.,
1992; Guenther et al., 1995). Isoprene, monoterpenes, and
sesquiterpenes are major BVOC species (Guenther et al.,
2006; H. Wang et al., 2018) with high photochemical reactiv-
ity with O3, hydroxyl radical (OH), and nitrate radical (NO3).
In addition, changes in BVOC emissions also apparently al-
ter the concentrations of key pollutants that affect the cli-
mate. In particular, O3 and CH4 can warm the climate, while
the aerosols (organics, sulfate, and nitrate) have a cooling ef-
fect by scattering solar radiation (Unger, 2014a, b). Conse-
quently, studies on BVOC emissions and their effects on air
quality and climate are of vital significance.

The Model of Emissions of Gases and Aerosols from Na-
ture (MEGAN) is a widely used (Guenther et al., 2012; Zhao
et al., 2016; Emmerson et al., 2018) model to quantify BVOC
emissions at different spatial scales (Guenther et al., 1995;
Sindelarova et al., 2014; Zhang et al., 2017; Jiang et al., 2019;
Wang et al., 2021). Global annual inventories of the isoprene
emission range from 500 to 750 Tg yr−1 (Guenther et al.,
2006) and those of monoterpene emissions range from 74.4–
157 Tg yr−1 (Guenther et al., 2012; Messina et al., 2016).
BVOC emissions have also been estimated in China by var-
ious studies, and the results showed that isoprene emissions
were 7.17–29.30 Tg yr−1, and monoterpene emissions were
2.83–5.60 Tg yr−1 (Guenther et al., 2006; Fu and Liao, 2012;
Li et al., 2020). The model determined the vegetation types
according to model inputs and then used the activity factor
multiplied with the emission factor to calculate emissions for
each vegetation type (Guenther et al., 2012). However, there
are considerable uncertainties in BVOC estimations due to
incomplete information on model inputs, activity factors, and
emission factors (Situ et al., 2014; Guenther et al., 2012).
Those factors can influence the accuracy of estimations and
further result in uncertainties of O3 and SOA. Therefore, it
is necessary to quantify the influence of those factors and to
determine the bias in BVOC emissions.

Land cover (LC), including leaf area index (LAI) and plant
function type (PFT) fractions, is a major factor affecting
the BVOC emissions in the MEGAN model (Guenther et
al., 2006; Pfister et al., 2008; Guenther et al., 2012). There
are many LAI and LC products generated by various satel-
lite sensors with different process methods and spatial and
temporal resolutions. These products show discrepancies in
biomass distributions and PFT fractions, which can increase
bias in BVOC estimations (Leung et al., 2010; Y. Wang et
al., 2020; Opacka et al., 2021). Guenther et al. (2006) re-

ported that differences in isoprene emissions could be 24 %
and 29 % due to changing PFTs and LAI, respectively. Pfister
et al. (2008) found that differences in BVOC emissions were
more significant on a regional scale than a global scale by
employing three different PFT and LAI databases to drive the
MEGAN model. H. Wang et al. (2018) showed that the dif-
ferences in BVOC estimations were 35.5 % and 22.8 % as a
result of changing PFTs and LAI, respectively. China is glob-
ally a typical greening country with a forest area of 22.96 %
in 2018 (SFA, 2019), contributing large annual BVOC emis-
sions to the world (Opacka et al., 2021), and thus reasonable
comparisons in LAI and LC satellite products are essential
for a better understanding of BVOC emissions from China.

Contributions of BVOCs to surface O3 and SOA have
been evaluated through chemical transport models (CTMs)
at different spatial scales (Carlton and Baker, 2011; Fu and
Liao, 2014; Jiang et al., 2019; Zhang et al., 2020). Fu
and Liao (2012) used the Goddard Earth Observing Sys-
tem chemical transport model (GEOS-Chem) to quantitate
the impact of biogenic emissions on O3 in China over the
years 2001–2006 and found that the difference in O3 concen-
trations induced by interannual variability of BVOCs could
be 2 %–5 %. Based on the Weather Research and Forecast-
ing model coupled with Chemistry (WRF-Chem), Situ et
al. (2013) reported that about 57 % higher O3 formed from
isoprene in urban areas than in rural areas in the Pearl River
Delta (PRD). In addition to the impact on surface O3, Wu
et al. (2020) studied the contributions of BVOCs to SOA
in China in 2017 by using the Community Multiscale Air
Quality (CMAQ) model, and the result indicated that BVOCs
are the main source of the formation of SOA in summer,
which was up to 70 %. Qin et al. (2018) investigated the bio-
genic SOA (BSOA) during summertime in 2012 and found
that a high level of BSOA concentration appeared in the
Sichuan Basin. However, previous studies have only focused
on the impacts of BVOCs estimated by the specific LAI
and LC satellite products on air quality. The uncertainties
in BVOC estimations induced by different satellite products
also have an impact on O3 and SOA concentrations. Kim et
al. (2014) showed that the different PFT distributions had a
significant impact on hourly and local O3, which was up to
13 ppb. Y. Wang et al. (2020) evaluated that the impacts on
O3 reached 20 % by using different LC datasets in BVOC
emissions in the Yangtze River Delta (YRD). The influence
of these uncertainties on air quality was not well quantified,
and the bias in the air quality remained unclear in China.
Therefore, it is necessary to conduct a comprehensive anal-
ysis of the influence of different satellite products on BVOC
emissions as well as the further impact on air quality.

In this study, the objectives are to estimate the differ-
ence in BVOC emissions induced by different LAI and LC
databases in China and to study the effects of differences
in BVOC emissions on surface O3 and SOA concentration
in China. We used three LAI satellite datasets and three
LC satellite datasets as the MEGAN v2.1 inputs to estimate
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the BVOC emissions and then determined their impacts on
air quality by using a source-oriented model. Section 2 in-
troduces the MEGAN model, the source-oriented CMAQ
model, and datasets. The model performance, BVOC esti-
mations based on different satellite products, as well as the
impact of BVOCs on atmospheric pollutants, are described
in Sect. 3, while Sect. 4 concludes the study.

2 Methodology

2.1 Model setup

An updated source-oriented CTM was applied to determine
O3 and SOA concentrations from BVOCs based on the
CMAQ model v5.0.1 (Byun and Schere, 2006). The model
utilizes a revised State-wide Air Pollution Research Cen-
ter version 11 (SAPRC-11) photochemical mechanism (S11)
(Carter and Heo, 2013), which includes a more explicit de-
scription of isoprene oxidation chemistry to improve iso-
prene aerosol predictions (Ying et al., 2015). Changes in
the SOA module includes the surface uptake of dicarbonyls
and isoprene epoxides, as well as predictions of glyoxal and
methylglyoxal (Ying et al., 2015). The aerosol yields are up-
dated to account for vapor wall loss during chamber experi-
ments as described by Zhang et al. (2014). The S11 gas-phase
mechanism and the SOA module are further expanded with a
precursor tracking scheme to track emissions from different
sources separately so that the formation of SOA can be de-
termined. The complete description of SOA source tracking
has been described by Zhang and Ying (2011) and P. Wang
et al. (2018), and a brief introduction is described below.

The modified S11 mechanism expands the specific orig-
inal reactions into two sets of similar reactions to track the
formation of O3 and SOA. The concentrations of O3 from
different VOC sources (henceforth O3_VOCi) were deter-
mined by the source-oriented method (Ying and Krishnan,
2010). Based on the method, the non-reactive O3 tracer is
used to track O3 attributed to BVOCs, which is tagged as
O3_VOCbio and directly predicted. The descriptions of O3
source apportionment are detailed in Wang et al. (2019). As
for SOA, the specific source x (for instance, biogenic source)
is tracked by adding a superscript x on the precursors re-
lated to SOA (like TERP, the abbreviation of monoterpene
in the S11 photochemical mechanism) and their products,
while the contributions from all other sources are simulated
based on none-tagged TERP. The tagged species TERPx re-
acts with OH to form the primary product TRPRXNx , which
is the counterspecies for the aerosol precursor from monoter-
penes and subsequently formed semi-volatile oxidation prod-
ucts SV_TRP1x and SV_TRP2x based on the two-product
approach and thus determines the fine-mode SOA species
ATRP1x and ATRP2x due to gas-to-particle partitioning. By
considering those species with the superscript x, it is possi-
ble to track the SOA formed by the ATRP of source x. The

contributions of other precursors of SOA are calculated using
the same approach.

The WRF model v3.6.1 was used to generate meteoro-
logical conditions for MEGAN and CMAQ. The modeling
domain in WRF was 36 km × 36 km in horizontal spatial
resolution, which covers China and its surrounding coun-
tries in East Asia (Fig. S1 in the Supplement) (Zhang et al.,
2012). The boundary and initial conditions applied in WRF
were from the National Centers for Environmental Predic-
tion (NCEP) Final (FNL) Operational Model Global Tro-
pospheric Analyses dataset (available at http://rda.ucar.edu/
datasets/ds083.2/, last access: 18 May 2022). The model
configurations are similar to that of the previous studies
(P. Wang et al., 2018, 2020; Zhu et al., 2021), and Table S1
briefly lists the physical options used for the WRF model.
MEGAN v2.1 was applied to estimate 19 compound classes
of BVOCs (Guenther et al., 2012). In MEGAN, the LC and
LAI datasets in 2016 were used and then were gridded to the
same spatial resolution to generate PFT fractions and LAIv
(the LAI of vegetation-covered surfaces) maps as inputs for
the model. The CMAQ model used the same horizontal res-
olution as WRF with a horizontal domain of 197 × 127 grid
cells. This domain covers China and its surrounding areas
(Fig. S1). The meteorological conditions as inputs to the
CMAQ model were provided by the WRF model v3.6.1. The
anthropogenic emissions of China used the datasets from the
Multi-resolution Emission Inventory for China (MEIC; avail-
able at http://www.meicmodel.org, last access: 3 May 2022).
Since the MEIC only provides anthropogenic emissions for
China, anthropogenic emissions from foreign countries were
provided by the Emissions Database for Global Atmospheric
Research (EDGAR) v4.3 (available at http://edgar.jrc.ec.
europa.eu/overview.php?v=_431, last access: 10 May 2022).
The MEIC inventory is widely used in air quality studies in
China (M. Li et al., 2017; Hu et al., 2016; Wu et al., 2020). It
was improved in a vehicle emission inventory with high res-
olution (Zheng et al., 2014) and a non-methane VOC map-
ping approach for different chemical mechanisms (Li et al.,
2014). EDGAR is a gridded emission inventory with a high
horizontal resolution of 0.1◦

× 0.1◦ (Saikawa et al., 2017).

2.2 Data description

LAI and PFTs are key parameters for BVOC estimations.
Three LC datasets were applied as PFT inputs, including the
Moderate Resolution Imaging Spectroradiometer (MODIS)
MCD12Q1 LC products (Friedl and Sulla-Menashe, 2019),
the Copernicus Climate Change Service (C3S) LC prod-
ucts (C3S, 2019), and the Copernicus Global Land Service
(CGLS) LC products (Buchhorn et al., 2020). MCD12Q1
provides yearly global LC maps from 2001 to 2020 with
a spatial resolution at 500 m, which has been widely used
in previous studies (Guenther et al., 2006; H. Wang et al.,
2018; Wu et al., 2020). Thus, MCD12Q1 is chosen as the
baseline LC input for MEGAN v2.1 to investigate the model
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performance with different LAI satellite products. Sources
of these products are listed in Table S2. PFTs used in the
MEGAN model adopt the scheme used for the Community
Land Model v4.0 (CLM4) (Guenther et al., 2012). Three LC
maps are first regridded to the CMAQ domain (Fig. S2). Sec-
ondly, LC types are categorized into eight vegetation types
according to legend descriptions of LC maps. Lastly, eight
vegetation types are further reclassified into 15 CLM4 PFTs
based on the climate rules described in Bonan et al. (2002).
Figure 1 shows the simulation domain with the spatial distri-
bution of major PFTs. The three datasets show a consistent
distribution of grass in northwestern China, but they display
distinct PFTs in central and southern China. Cropland is the
dominant PFT in central and southern China in the C3S LC
map. Although MCD12Q1 and CGLS LC both show a large
area in central and southern China, the area fraction of the
broadleaf tree in CGLS LC is higher than that in MCD12Q1
(Figs. 1 and S3).

The Global LAnd Surface Satellite (GLASS) (Xiao et al.,
2014, 2016), the MODIS MOD15A2H version 6 (MOD15)
(Myneni et al., 2015), and the CGLS LAI products (Fuster
et al., 2020) were applied as LAI inputs for MEGAN v2.1.
The spatial resolutions of GLASS, MOD15, and CGLS are
500, 500, and 300 m, respectively, while the temporal res-
olutions of these three products are 8, 8, and 10 d, respec-
tively. Sources of these products are listed in Table S2. Ac-
cording to validation results in Xiao et al. (2016), GLASS
shows better consistency than MOD15 in high resolution in
LAI maps, while CGLS is slightly less accurate than MOD15
(Fuster et al., 2020). Therefore, GLASS is used as the base-
line LAI input. In the MEGAN model, the grid average LAI
is divided by the fraction of the grid that is covered by veg-
etation to represent the LAI of vegetation-covered surface,
which is referred to as LAIv (Guenther et al., 2006). Figure 2
represents the spatial distribution of LAI from three satellite
datasets in the summer of 2016. The MOD15 LAI dataset
used in C2 shows differences from C1, especially in south-
ern China, where the GLASS LAIv is about 50 % higher
than the MOD15 LAIv. The MOD15 LAIv is lower in the
North China Plain (NCP) than in other products because the
MOD15 underestimates the LAI of maize and wheat in NCP
(Yang et al., 2015; Wang et al., 2022).

Table 1 presents the setup of the simulation scenarios. Sce-
narios C1 to C3 use MCD12Q1 as the PFT input and different
LAI inputs to investigate the effects of varied LAI datasets on
BVOC emissions, while the impacts of different PFT maps
on BVOC estimations are studied in scenarios C1, C4, and
C5, which use GLASS as the LAI input. It should be noted
that those experiments use the same meteorological condi-
tions provided by the WRF model for BVOC estimations.
Besides BVOC simulations, a 1-year CMAQ simulation with
five different sets of MEGAN input data is conducted in
the year 2016 in China with the same meteorological condi-
tions and anthropogenic emissions to investigate the impacts
of BVOCs on O3 and SOA concentrations. It is worth not-

ing that the meteorological conditions remain constant when
simulating, and the model chemistry does not affect them.

3 Results and discussion

3.1 Model performance

Temperature (T 2), relative humidity (RH), wind speed
(WS), and wind direction (WD) at 10 m above the surface
were compared to observations from the National Climate
Data Center (NCDC, available at https://www.ncei.noaa.gov/
access, last access: 13 May 2022). The statistical measures
and results are shown in Tables S3 and S4, respectively. The
T 2 predictions for the entire year show a negative mean bias
(MB) value, which is slightly lower than the benchmarks
suggested by Emery et al. (2001). This is primarily due to
the overestimation of cloud coverage in the WRF model, re-
sulting in an underestimated T 2 (Wu et al., 2020). Although
biases exist in the T 2 simulation, the yearly long WRF sim-
ulation in this study shows relatively small biases compared
to previous studies (Wu et al., 2020; H. Wang et al., 2018),
and the daily variation in temperature is successfully simu-
lated for most cities in China (Fig. S4). The gross error (GE)
values of WS are within the acceptable criteria of 2 for all
seasons, but the WRF model still overpredicts the WS. The
MB values of WD meet the benchmarks of ±10 in all sea-
sons, indicating a good agreement between model predic-
tions and observations. However, the GE values exceed the
benchmarks of ±30. Moreover, the predicted RH in spring
and winter shows a slight underestimation compared to ob-
servations, whereas in summer and fall it is overestimated.
Generally, the performance of the WRF model in this study
is comparable to previous studies (Hu et al., 2016; H. Wang
et al., 2018; Wang et al., 2010; Ma et al., 2021). Therefore,
the meteorological conditions predicted by the WRF model
are acceptable inputs for the CMAQ model in follow-up re-
search.

Hourly observations from the publishing website of the
China National Environmental Monitoring Center (available
at http://www.cnemc.cn/, last access: 4 May 2022) were used
to validate the CMAQ model prediction of O3 and PM2.5. In
order to investigate the impacts of varied total BVOC emis-
sions on air pollutants, the model performance was eval-
uated separately for different cases. Table S5 presents the
model performance statistics for maximum daily averaged
1 h (MDA1) O3 and maximum daily averaged 8 h (MDA8)
O3 in 2016, including mean observations (OBS), mean pre-
dictions (PRE), mean fractional bias (MFB), mean fractional
error (MFE), mean normalized bias (MNB), and mean nor-
malized error (MNE). Cutoff concentrations of 60 ppb were
used for MDA1 O3 and MDA8 O3 in this validation, which
was suggested by the U.S. EPA (U.S. EPA, 2005). In gen-
eral, the model performance of MDA1 O3 and MDA8 O3
in China, including its important regions, meets the model
performance benchmarks suggested by the U.S. EPA (2005).
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Figure 1. Simulation domain with the spatial distribution of major PFTs in each grid.

Figure 2. Distribution of LAIv from different satellite datasets in the summer of 2016.

Table 1. Simulation schemes with different land cover (LC) and leaf area index (LAI).

Case BVOCs Description

LC LAI

C1 MCD12Q1 GLASS As baseline
C2 MCD12Q1 MOD15 Compared to C1, accounts for LAI difference between GLASS and MOD15
C3 MCD12Q1 CGLS Compared to C1, accounts for LAI difference between GLASS and CGLS
C4 C3S LC GLASS Compared to C1, accounts for LC difference between MCD12Q1 and C3S LC
C5 CGLS LC GLASS Compared to C1, accounts for LC difference between MCD12Q1 and CGLS LC

The MNB values of MDA1 O3 in China range from 0.02–
0.05, which fall within the criteria of ±0.15. Similarly, the
MNE values of MDA1 O3 range from 0.18–0.19, which fall
within the criteria of ±0.3. Notably, the MDA1 O3 concen-
tration in the PRD shows a better consistency with observa-
tions than in the YRD and NCP. Moreover, the statistical val-
ues of MDA1 O3 in C4 are closer to benchmarks, indicating
the better performance of the model simulation in C4. While
the MNB values of MDA8 O3 are slightly higher than those
of MDA1 O3, they still meet the criteria.

Table S6 presents the model performance statistics of
PM2.5. The statistical values of PM2.5 in all cases are within

the criteria (MFB ≤ ±60 % and MFE ≤ 75 %) suggested by
Boylan and Russell (2006). However, the predicted PM2.5 is
slightly lower than observations, as the negative MFB values
indicate. The MNB values in the YRD are slightly higher
compared to other regions, while MFE and MNE values are
higher in the PRD. In comparison with other cases, the sta-
tistical values of PM2.5 in C4 are lower, indicating a better
performance of PM2.5 in C4. Therefore, the BVOC emis-
sions in C4 generated by C3S LC and GLASS are the best
BVOC inventory in this study. While different accuracies of
LAI satellite products were used for C1, C2, and C3, similar
statistic values indicate that the accuracies of these products

https://doi.org/10.5194/acp-23-4311-2023 Atmos. Chem. Phys., 23, 4311–4325, 2023



4316 J. Ma et al.: Impacts of land cover changes on BVOC emissions and further impacts on air quality in China

Table 2. Estimated BVOC emissions (Tg) in different cases across
China.

C1 C2 C3 C4 C5

Isoprene 19.84 16.32 19.83 12.10 22.73
Monoterpenes 4.19 3.99 4.10 2.66 3.69
Sesquiterpenes 0.58 0.50 0.56 0.37 0.52
Other BVOCs 11.49 10.42 11.46 10.29 10.45
Total 36.10 31.22 35.94 25.42 37.39

have no significant impact on the model performance. Addi-
tionally, the overall statistical values meet the criteria in all
cases, indicating that O3 and PM2.5 are well captured by the
model. Generally, the simulation results of air pollutants in
this study are acceptable for the source apportionment study
of O3 and SOA and are comparable to other studies (Hu et
al., 2016; Wu et al., 2020; Liu et al., 2020).

3.2 Simulated BVOC emissions in China

3.2.1 Quantity of BVOC emissions

Table 2 shows the total amount of BVOC emissions and
its major components in each case in China in 2016. The
use of different LAI and LC datasets as the MEGAN inputs
has an impact on BVOC emissions. Isoprene constitutes the
largest share of BVOC emissions, accounting for an average
of 54 %. The variation in the isoprene emission is the pri-
mary reason for the discrepancy in total BVOC emissions
between each case. Among all cases, C5 exhibits the high-
est BVOC emissions of 37.39 Tg, with the isoprene emis-
sion at 22.73 Tg also the highest. In contrast, BVOC emis-
sions of 25.42 Tg and the isoprene emission of 12.1 Tg in
C4 are the lowest. The difference between C1, C2, and C3
indicates the impact of LAI on BVOC emissions. In addi-
tion to the impact of LAI datasets, the LC dataset used in C4
leads to a 21.4 % decrease in isoprene emissions compared to
C1. Moreover, C5, which uses the CGLS LC dataset, shows
an 8 % increase in the isoprene emission than C1 due to a
higher percentage of broadleaf tree cover (Figs. S3 and S5).
Although C5 has 1.29 Tg higher BVOC emissions than C1,
emissions of monoterpenes, sesquiterpenes, and other VOCs
are lower than those in C1. This can be attributed to the dif-
ference in the distribution of needleleaf trees and shrubs be-
tween C1 and C5, which is consistent with the findings of
H. Wang et al. (2018) (Figs. S3 and S5).

3.2.2 Temporal and spatial variation of BVOC emissions

Figure 3 illustrates the seasonal variations in isoprene,
monoterpenes, sesquiterpenes, and total BVOC emissions in
China. It is noteworthy that the use of different LAI and
LC products has a significant impact on the temporal vari-
ability of BVOC emissions. Despite this, the seasonal pat-

terns of BVOC emissions remain relatively consistent across
all cases, with peak emissions occurring predominantly dur-
ing summer, accounting for 60.9 % to 63.8 % of the total
BVOC emissions, compared to only 2.9 % to 3.4 % in win-
ter. Besides, the differences in BVOC emissions between
C1 and the other cases are more pronounced during the
summer months, as BVOC emissions are highly sensitive
to changes in temperature and radiation in the atmosphere
(Guenther et al., 2006, 2012). Isoprene is the largest contrib-
utor to BVOCs, with summer emissions ranging from 7.94 to
14.79 Tg. The percentage of winter monoterpenes in the total
monoterpenes is higher than that of isoprene and sesquiter-
penes, probably because isoprene and sesquiterpenes are
more sensitive to temperature changes than monoterpenes
(Ibrahim et al., 2010; Bai et al., 2015). C4 shows the lowest
total BVOC emissions along with its primary species during
each season. Although C5 has the highest isoprene emission
compared to the other cases, its monoterpene and sesquiter-
pene emissions are lower than those in C1 and C3. This can
be because CGLS LC has a higher distribution of broadleaf
trees with a high isoprene emission factor (EF) and a lower
distribution of grass with high monoterpene and sesquiter-
pene EF compared to those in MCD12Q1 (Fig. S3).

Since a large proportion of BVOCs is released in sum-
mer, contributing about 62 % of total annual emissions, the
analysis of the spatial distribution is mainly concentrated
on summer BVOC emissions. Figure 4 illustrates the spa-
tial distribution of total BVOCs, isoprene, monoterpenes, and
sesquiterpenes during summer in C1 as well as the compar-
isons between C1 and the other cases. In general, the dif-
ference in the spatial distribution of BVOCs mainly focuses
on central and southeastern China, and the differences in-
duced by different LC products are more significant than
those by different LAI products. Isoprene, monoterpene, and
sesquiterpene emissions show similar distribution patterns
with hotspots primarily located in central and southeastern
China, as shown in Fig. 4f, k, and p. This is due to the high
density of tree covers in those regions. Although GLASS has
the same temporal resolution of 8 d as MOD15, differences
between the two products still play an important role in im-
pacting the BVOC emissions (Figs. 2 and 4b). According
to Fig. 4a and q, the emission distribution of isoprene and
sesquiterpene differs between C1 and C2, consistent with the
difference in GLASS and MOD15 in summer (Fig. 2). Com-
pared to C2 and C3, the changes in the spatial distribution
of BVOC emissions in C4 and C5 are more significant. This
is because the impact on BVOC emissions decreases when
LAIv exceeds three (Guenther et al., 2012). Higher BVOC
emissions in southern China in C1 compared to C4 are due
to higher vegetation cover in C1, as shown in Fig. 4i, n, and
s. C4 uses the C3S LC as the model input, with crops dom-
inating in nearly half of China. This results in lower BVOC
estimations in C4 because of the relatively low EF of the crop
for BVOC emissions compared to the other PFTs (Figs. 1 and
S5). The spatial distribution of isoprene emission in C5 is
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Figure 3. Seasonal emissions of isoprene, monoterpenes, sesquiterpenes, and total BVOCs of each case in China. Unit is teragrams.

Figure 4. Comparison of three main BVOC species in different cases in summer (June, July, and August). (a, f, k, p) C1, (b, g, l, q) C1–C2,
(c, h, m, r) C1–C3, (d, i, n, s) C1–C4, and (e, j, o, t) C1–C5. Unit is milligrams per square meter per hour (mg m−2 h−1).

conspicuously different from that in C1, which is consistent
with a difference in the broadleaf tree distribution (Fig. S5).
Although C5 shows a higher forest cover than C1 in the north
of China, the isoprene emission in C1 is higher than in C5
likely due to the difference in the grass distribution and the
impact of temperature. Cooler temperatures at higher lati-
tudes inhibit the release of isoprene from forests (Guenther
et al., 2006).

3.2.3 Comparison with previous studies

Table 3 illustrates the annual BVOC emissions estimated by
MEGAN in China in this study and previous studies. The
annual BVOC emissions in this study range from 25.42–
37.39 Tg, within the range of 17.30–54.60 Tg reported in the
literature from 2001 to 2018. BVOC emissions estimated by
this study are higher than 18.85 and 23.54 Tg estimated by
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Fu and Liao (2012) and Wu et al. (2020), respectively. How-
ever, the results of this study are lower than 58.9 Tg estimated
by Li et al. (2020) for 2018. Several factors may account
for the differences between this study and previous stud-
ies. One major reason could be the increase in forest cov-
erage. According to the National Forest Resources census
reports, forest coverage increased by about 18.8 % between
2003 and 2013 (SFA, 2003, 2014). In addition, BVOC emis-
sions can be influenced by the inputs and algorithms used
in the MEGAN model. In this study, the default EFs listed
in Guenther et al. (2012) are used for all BVOC species. Fu
and Liao (2012) used a set of EFs with 25 PFTs for isoprene
and monoterpenes, which generally have lower EFs than the
default ones used in MEGAN. Consequently, their study re-
ported much lower BVOC emissions of 18.85 Tg compared
to our findings. Wu et al. (2020) used the same datasets of
MODIS MOD15A2H and MODIS MCD12Q1 as this study
but estimated lower BVOC emissions due to lower area frac-
tions of high-isoprene-emitting broadleaf trees (Guenther et
al., 2012) and no inclusion of crop area in calculations for
China. Moreover, Li et al. (2020) reported a considerable dif-
ference in BVOC emissions compared to this study, mainly
due to the combined effect of emission rate and PFTs. Liu
et al. (2020) produced the basal emission rates for 192 plant
species and categorized them into 82 PFTs for China, result-
ing in more BVOC estimates. Besides, the higher estimate of
35.48 Tg for 2016 by Wang et al. (2021) may be attributed
to the overestimated temperature. This is the primary reason
for the significant difference between this study and theirs. In
conclusion, uncertainties in the MEGAN simulations can be
attributed to these factors in different years, and such uncer-
tainties can lead to significant differences between this study
and previous studies. Nonetheless, this study suggests that
the simulated BVOC emissions fall within acceptable limits
compared to the previous studies.

3.3 Sensitivity of O3 to BVOC emissions

3.3.1 Spatial distribution of O3

Figure 5 displays the spatial distribution of MDA1 O3 and
MDA8 O3 concentrations formed by the BVOCs during the
summer in C1 as well as the difference between C1 and other
cases. Changing the LC dataset in the MEGAN model has
a more significant impact on O3 concentrations compared
to changing the LAI dataset. The O3 concentration hotspots
are mainly concentrated in central and eastern China, with
MDA1 O3 concentrations exceeding 12 ppb in C1. This is
possibly due to the combined effect of BVOC emissions and
the Asian summer monsoon. The monsoon carries oceanic
air masses with low O3 concentrations and transports O3
from southern to central and northern China (Zhao et al.,
2010; Li et al., 2018). In Fig. 5d, the spatial distribution of O3
concentration in C4 differs from that of C1, especially in cen-
tral and eastern China, where the relative difference exceeds

Figure 5. Spatial distributions of MDA1 O3 and MDA8 O3 from
biogenic sources in the different cases in summer. (a, f) C1,
(b, g) C1–C2, (c, h) C1–C3, (d, i) C1–C4, and (e, j) C1–C5. Unit is
parts per billion.

52 %. Although C5 has higher BVOC emissions than C1 in
southern China, it has little impact on O3 formation (Fig. 4).
This may be due to the effect of O3–NOx–VOC sensitivity, as
reported by Jin and Holloway (2015). These regions belong
to NOx-limited regions in which NOx is limited but VOCs
are abundant. Thus, the higher BVOC emissions have mini-
mal effects on the O3 formation. Conversely, areas with low
VOC emissions, such as the NCP and YRD, will contribute
more to the O3 formation when VOC emissions increase. The
spatial distribution pattern of MDA8 O3 is similar to that of
MDA1 O3 in C1, but its concentration is 3–6 ppb lower than
that of MDA1 O3.
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Table 3. Previous studies of BVOC emissions estimated using MEGAN in China; unit is teragrams per year.

Reference Year LAI PFT Isoprene Monoterpenes Total BVOCs

Wang et al. (2021) 2016 MODIS
MOD15A2H

MODIS
MCD12C1

16.70 4.12 35.48

Wu et al. (2020) 2017 MODIS
MOD15A2H

MODIS
MCD12Q1

13.30 3.09 23.54

Li et al. (2020) 2018 MEGAN-L
database

Vegetation atlas 37.45 6.69 58.89

Stavrakou et al.
(2014)

1979–2012 MODIS
MOD15A2H

Default MEGAN map
with the updated crop-
land map

9.30 – –

Li et al. (2013) 2003 Biomass-apportion
model results

Vegetation atlas 20.70 4.90 42.50

Fu and Liao (2012) 2001–2006 MODIS
MOD15A2H

MODIS
MCD12Q1

9.59 2.83 18.85

3.3.2 Temporal distribution of O3

Figure 6 illustrates the contribution of BVOC emissions to
MDA1 O3 and MDA8 O3 in China and important regions
in different seasons. O3 concentrations, which are formed by
BVOCs, show seasonal variations in China, with the highest
in summer and the lowest in winter. This is a result of the
interplay between BVOC emissions and wind. In the PRD,
wind plays an important role in O3 concentrations (Fig. S6),
as it can transport clean oceanic air masses to the south-
east of China, decreasing local O3 concentrations (Zhao et
al., 2010). However, wind transports heavy pollutants from
northern to southern China in the fall, increasing O3 concen-
trations in the PRD (Li et al., 2018). In addition, compared to
other regions, the temperature variation in the PRD is not sig-
nificant (Table S7). Therefore, the seasonal variations in O3
are not significant in the PRD due to the combined effect of
wind and temperature. The seasonal variation in O3 formed
by BVOCs also varies in different cases. In China, MDA1
O3 concentrations increase by approximately 40 %–50 % in
summer compared to spring, whereas C2 increases by 75 %.
C2 also shows the highest increase in O3 concentrations in
important regions from spring to summer. Moreover, in the
YRD, MDA1 O3 in C1 is 78 % higher than in C4 because of
the O3–NOx–VOC sensitivity, with higher BVOC emissions
in VOC-limited areas leading to higher O3 formation (Jin
and Holloway, 2015). In China and other important regions,
MDA8 O3 shows a temporal distribution similar to MDA1
O3 in all cases. However, the contribution of MDA8 O3 to the
fall season is lower than its contribution to the spring season,
which contrasts with MDA1 O3.

3.4 Sensitivity of SOA to BVOC emissions

3.4.1 Spatial distribution of SOA and components

Figure 7 presents the spatial distribution of BSOA during
summer in C1 and the difference between C1 and other cases.
Changing the LC dataset in the MEGAN model has a more
significant impact on BSOA formation than changing the
LAI dataset. The hotspots of BSOA are mainly concentrated
in central and eastern China, with the Sichuan Basin (Fig. S1)
having the highest BSOA concentration of up to 9.8 µg m−3.
This is because high surface winds transport BSOA from
southern China to central China, where low wind speeds and
the topography of the Sichuan Basin hinder pollutant diffu-
sion, leading to BSOA accumulation (J. Li et al., 2017). The
difference in BSOA concentrations between C1 and C2 is
minor due to the slight change in BVOCs. In contrast, the
difference in BSOA concentrations between C1 and C4 is
significant due to the use of different LC datasets. As shown
in Fig. 7d, the difference in BSOA concentrations between
C1 and C4 is noticeable, especially in central and eastern
China, where the relative difference is over 140 % in sum-
mer. The differences in the spatial distribution of BSOA be-
tween C1 and C5 are similar to those in isoprene, suggest-
ing that BSOA concentrations are more sensitive to isoprene
emissions. Considering the share of BSOA in the total SOA
concentration in summer, the difference in BVOC emissions
due to changing the MEGAN inputs can significantly impact
SOA concentrations estimated by CMAQ.

Figure 8 displays the spatial distribution of SOA formed
by isoprene (ISOA), monoterpenes (MSOA), and sesquiter-
penes (SSOA) during summer in C1 as well as the differ-
ence between C1 and the other cases. The ISOA, MSOA, and
SSOA show a similar spatial distribution in China. Accord-
ing to Fig. 8a, b, and c, high SOA concentrations from these
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Figure 6. Seasonal-averaged concentrations of MDA1 O3 and MDA8 O3 from biogenic emissions in important regions and China.

Figure 7. Spatial distributions of simulated SOA from biogenic
sources in the different cases in summer. Unit is micrograms per
cubic meter of air. (a) C1, (b) C1–C2, (c) C1–C3, (d) C1–C4, and
(e) C1–C5.

three BVOC species are mainly concentrated in central and
eastern China. This phenomenon is likely due to the com-
bined effect of BVOC emissions and meteorological condi-
tions in these areas. A large amount of SOA is generated
in southern China and then transported to central and east-
ern China due to wind effects in summer. The ISOA is the
most crucial contributor to BSOA, which is 1 time higher
than MSOA and 1.5 times higher than SSOA. Comparing
C1 with other cases, the difference in ISOA concentrations
basically shows a certain correlation with the difference in
BVOCs (Fig. 4). The relative difference in ISOA concentra-
tions between C1 and C4 can reach 160 % in eastern China,
which is higher than that in MSOA and SSOA. This can be
attributed to the large discrepancy in their isoprene emission
(Fig. 8j, k, and l). ISOA concentrations in southeastern China
are lower in C1 than in C5, but MSOA and SSOA concentra-

tions are higher than in C5, which is due to the difference in
BVOC estimations. Changing the MEGAN inputs has a large
impact on isoprene emissions, which are the main contribu-
tor to BVOC emissions. This further impacts the formation
of SOA.

3.4.2 Temporal distribution of SOA

Figure 9 illustrates the seasonal variation in BSOA concen-
trations in China and the important regions for all cases.
In general, the differences in BSOA concentrations between
each case are more significant in summer than in other sea-
sons. The BSOA concentration follows the seasonal cycle of
summer > spring > fall > winter in China, NCP, and YRD.
However, the higher BSOA concentration in the PRD occurs
during spring, and this can be attributed to changes in wind
direction, from erratic winds in spring to southerly winds
in summer, as shown in Fig. S7. BSOA concentrations vary
slightly between C1, C3, and C5 in China, but the differences
are significant between C2 and C4, particularly in the YRD,
where the summer BSOA in C1 is 2.5 times higher than in
C4. This is because the summer BVOC emissions in C1 are
higher than those in C4 in the YRD (Fig. S8) and thus formed
more BSOA. C1 tends to have higher BSOA concentrations
than C5 in most regions of China. However, this differs in
the PRD, where C5 has higher BSOA concentrations due to
higher isoprene emissions (Fig. 4).

4 Conclusion

In this study, we used the different LAI and LC datasets
as the MEGAN inputs to estimate the BVOC emissions in
2016 over China and then utilized the WRF-CMAQ model
to quantify the contribution of BVOCs to O3 and SOA con-
centrations. Besides, the impact induced by those inputs on
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Figure 8. Spatial distributions of simulated SOA from isoprene (ISOA), monoterpenes (MSOA), and sesquiterpenes (SSOA) in the different
cases in summer. (a–c) C1, (d–f) C1–C2, (g–i) C1–C3, (j–l) C1–C4, and (m–o) C1–C5). Unit is micrograms per cubic meter of air.

O3 and SOA formation was also evaluated. Five experi-
ments were conducted based on three LAI satellite products
(GLASS, MOD15, and CGLS) and three LC satellite prod-
ucts (MCD12Q1, C3S, and CGLS). According to model val-
idations, C4 with GLASS and C3S LC was a better choice
for China BVOC estimations than other scenarios. BVOC
emissions in China ranged from 25.42 to 37.39 Tg in 2016
and were mainly concentrated in central and southeastern
China due to the high density of tree covers in those regions.
In comparison with LAI inputs, using different LC satellite
products had a more significant impact on BVOC emissions.

The O3 formed by BVOCs was mainly concentrated in
central and eastern China, where O3 concentrations could
reach 12 ppb. This was likely due to the combined effect of
BVOC emissions and the summer monsoon. According to
the sensitivity analysis, C1 contributed the most to the sum-
mer O3, which was 78 % higher than C4 in the YRD. The

BSOA was also concentrated in central and eastern China,
especially in the Sichuan Basin, where the BSOA concen-
tration was up to 9.8 µg m−3. The differences in BSOA con-
centrations between C1 and C2 are inconspicuous due to the
slight change in BVOCs induced by LAI inputs. In contrast,
the LC inputs show higher impacts on BSOA concentrations.
This is the same as for O3. Therefore, changing LAI and LC
datasets in the model impacts O3 and SOA formation, where
the LC shows a more pronounced effect than the LAI. Our re-
sults suggest that the uncertainties in MEGAN inputs should
be carefully considered in future O3 and SOA simulations.

From 2000 to 2017, the global leaf area of vegetation in-
creased by 6.6 % due to direct land use management, which
may also enhance BVOC emissions and further affect air
quality. Thus, the findings of this study can be extended to
other regions and global scales, suggesting an urgent need
to construct a reliable BVOC emission inventory for local

https://doi.org/10.5194/acp-23-4311-2023 Atmos. Chem. Phys., 23, 4311–4325, 2023



4322 J. Ma et al.: Impacts of land cover changes on BVOC emissions and further impacts on air quality in China

Figure 9. Seasonal distributions of biogenic SOA (BSOA) for all
cases in important regions and China. Unit is micrograms per cubic
meter of air.

and global scales and to evaluate their impacts on air qual-
ity. However, the limitation in observed data of BVOCs and
organic components impedes the construction of an accu-
rate emission inventory. Therefore, field measurements are
needed to provide more data for model validations. In addi-
tion, urban BVOC emissions play important roles in urban
air quality. It would be interesting to study the impact of bio-
genic sources on urban air quality using high-resolution LC
satellite maps.
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