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Abstract. Atmospheric aerosols and their impact on cloud properties remain the largest uncertainty in the hu-
man forcing of the climate system. By increasing the concentration of cloud droplets (Nd), aerosols reduce
droplet size and increase the reflectivity of clouds (a negative radiative forcing). Central to this climate impact is
the susceptibility of cloud droplet number to aerosol (β), the diversity of which explains much of the variation in
the radiative forcing from aerosol–cloud interactions (RFaci) in global climate models. This has made measuring
β a key target for developing observational constraints of the aerosol forcing.

While the aerosol burden of the clean, pre-industrial atmosphere has been demonstrated as a key uncertainty
for the aerosol forcing, here we show that the behaviour of clouds under these clean conditions is of equal
importance for understanding the spread in radiative forcing estimates between models and observations. This
means that the uncertainty in the aerosol impact on clouds is, counterintuitively, driven by situations with little
aerosol. Discarding clean conditions produces a close agreement between different model and observational
estimates of the cloud response to aerosol but does not provide a strong constraint on the RFaci. This makes
constraining aerosol behaviour in clean conditions an important goal for future observational studies.

1 Introduction

Changes in atmospheric aerosols driven by human activity
can increase the supply of cloud condensation nuclei (CCN;
Andreae and Rosenfeld, 2008). This increases the cloud
droplet number concentration (Nd), resulting in smaller
droplets and more reflective clouds for a given liquid water
content (the Twomey effect; Twomey, 1974), leading to the
radiative forcing from aerosol–cloud interactions (RFaci).
Changes to the droplet size can have further impacts on the
cloud, known as cloud adjustments, including increases in

cloud fraction and changes to the liquid water path (Albrecht,
1989). Cloud adjustments and the RFaci comprise the ef-
fective radiative forcing from aerosol–cloud interaction (ER-
Faci), which is the most uncertain component of the anthro-
pogenic radiative forcing (Bellouin et al., 2020).

There is a large diversity in the strength of these effects in
global climate models (Zelinka et al., 2014; Gryspeerdt et al.,
2020), emphasising the need for observation-based estimates
of the RFaci and the radiative forcing from adjustments.
Given the non-linearity of theNd response to aerosol, the pre-
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industrial aerosol burden is a significant uncertainty in these
estimates (Carslaw et al., 2013). Pre-industrial conditions are
rare in the present-day atmosphere (Hamilton et al., 2014), so
this aspect is difficult to constrain with observations. Much
of the remaining uncertainty is driven by the activation term
(β) and the sensitivity of Nd to an aerosol proxy (A; Quaas
et al., 2020).

β =
d lnNd

d lnA
(1)

The variation in β is responsible for much of the varia-
tion in aerosol–cloud effective radiative forcing in ensembles
of climate models (Quaas et al., 2009; Ghan et al., 2016).
Recent observational estimates have thus focussed on better
estimates of this term. Theoretical considerations (Twomey,
1959), supported by observational studies (Gryspeerdt and
Stier, 2012; Jia et al., 2021, 2022), suggest it is a strong func-
tion of cloud updraught, entrainment, and hence cloud type.

Previous studies have placed the value for β between 0.3
and 0.8, with considerable variation across the globe (Bel-
louin et al., 2020). This corresponds to a range for the RFaci
of between −0.3 and −1.1 W m−2. More recent studies have
found higher values for β and hence more negative values
for the RFaci (McCoy et al., 2017; Hasekamp et al., 2019).
This variation in β explains around 50 % of the uncertainty in
RFaci estimates. Cloud adjustments also depend on aerosol-
induced changes in Nd, making β central to the strength
of cloud adjustments (Ghan et al., 2016; Gryspeerdt et al.,
2016). Perfect knowledge of β would also reduce the uncer-
tainty in the ERFaci by up to 20 % (based on Bellouin et al.,
2020).

The wide range of possible values for β limits the accuracy
with which the RFaci can be constrained by observations,
leading to a wide spread in the RFaci estimates from global
climate models. This work demonstrates that the behaviour
of clouds in clean conditions (clean clouds) is responsible
for much of the diversity in both model and observational es-
timates of the RFaci. Reconciling these estimates, this work
provides more stringent constraints on the RFaci and high-
lights directions for future research.

2 Results

2.1 Aerosol–Nd relationships

Multiple satellite studies have investigated the link between
Nd and an aerosol proxy, such as the aerosol optical depth
(AOD; Quaas et al., 2006, 2008), aerosol index (AI; AOD
times Ångström exponent; Nakajima et al., 2001; Gryspeerdt
et al., 2017), reanalysis aerosol (McCoy et al., 2017), or a
retrieval of the CCN (Hasekamp et al., 2019). While they
show Nd increasing with aerosol under almost all condi-
tions, the shape of the relationship is typically non-linear.
At high aerosol, a saturation effect is sometimes observed

(Gryspeerdt et al., 2016; Hasekamp et al., 2019), in which the
Nd no longer increases with increasing aerosol. This is con-
sistent with a transition to an updraught-limited state (Reutter
et al., 2009) and is reproduced in global model parameterisa-
tions of aerosol activation (Fig. 4a; see Methods).

At low aerosol, a reduced β is often observed (Fig. 1a, b).
The strength of this “shallowing” of the relationship varies
with aerosol proxy and is often stronger for observed satel-
lite aerosol proxies (e.g. AOD, AI) than for reanalysis prod-
ucts (SO4). A weaker β under low-aerosol conditions has
also been observed for CALIPSO observations, resulting in
an underestimate of the RFaci (Ma et al., 2018).

The “shallowing” effect is responsible for much of the
variation in β estimates between different aerosol proxies.
The two examples shown in Fig. 1a and b use satellite-
retrieved AI and reanalysis aerosol as the aerosol proxy for a
region in the south-east Pacific. While they have very differ-
ent values of β, they are remarkably similar when consider-
ing only high-aerosol conditions (βhi). Similar behaviour was
observed in Hasekamp et al. (2019), where β (and RFaci) cal-
culated with AI and satellite-retrieved CCN was found to be
more similar when low-aerosol conditions were excluded.

This convergence of βhi is not a purely regional effect. β
calculated using AI is almost always smaller than when cal-
culated with reanalysis aerosol (Fig. 1c, blue line), resulting
in lower RFaci estimates. There is a larger spread when using
βhi, but the global mean difference between the two aerosol
proxies moves close to zero, and the difference in the global
mean value is less than 0.01 (Fig. 1c, orange line).

The similarity between βhi (and variation in β) calcu-
lated using different aerosol proxies demonstrates the im-
portance of clean conditions to this metric. While the obser-
vational studies agree on the behaviour of polluted clouds,
clean clouds are very common, with 44 % of retrievals glob-
ally and over 80 % of retrievals in many locations being in
this shallow-β regime. These clean clouds thus have a vital
role to play in determining the magnitude of β and the RFaci.

2.2 β in global climate models

Quaas et al. (2009) demonstrated that the RFaci in global cli-
mate models is a strong function of β, a relationship that still
holds in the latest generation of models (Fig. 2a), with varia-
tion in β explaining about 50 % of the variance in the RFaci
for the models from the AeroCom indirect-effect experiment
(Zhang et al., 2016; Ghan et al., 2016). Despite several years
of progress, the variation in modelled β remains high, rang-
ing from 0.25 to 1.5, outside the range identified from satel-
lite studies.

In contrast, global models agree fairly closely on the value
for βhi, which in turn agrees with the value from satellite ob-
servations in the range 0.5–0.6 (Fig. 2a). This is a remarkable
agreement; although models are regularly assessed using β,
βhi is rarely calculated (Ma et al., 2018). Unfortunately, de-
spite this model–observation agreement, βhi only provides a
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Figure 1. (a) The relationship between MODIS droplet number concentration (Nd) and aerosol index (AI) in the south-east Pacific as a
normalised histogram (shading), with the mean value in black. Blue lines are the mean relation for a selection of global aerosol–climate
models. The solid orange line is the susceptibility (β; Eq. 1) fit for data with an AI> 0.1, and the dashed line is for all data. Panel (b) as
(a) but for reanalysis SO4. (c) The global distribution of the difference in β for all conditions (blue) and under only polluted conditions (βhi;
orange) calculated with AI and reanalysis SO4, with vertical lines at the global arithmetic mean. Panel (d) as (a) but a global mean calculated
using retrieved cloud condensation nuclei (CCN) column (following Hasekamp et al., 2019; see Methods in Appendix A).

weak constraint on the RFaci, with a coefficient of determi-
nation of only 0.18 (Fig. 2a). If β could be constrained to
the same accuracy as βhi, this could reduce the uncertainty in
RFaci by half.

2.3 Limits on observing β

The uncertainty in the satellite-derived values of β comes pri-
marily from limitations in the systems that retrieve aerosol
properties from space. Satellites use top-of-atmosphere ra-
diances, together with assumed microphysical properties, to
retrieve the optical properties of aerosol and hence infer the
physical and chemical properties that are required to calcu-
late CCN concentrations. To do this, they have to separate
the aerosol signal from the surface reflectance. Almost all al-
gorithms make assumptions about the spectral and/or direc-
tional behaviour of surface reflectance (Kaufman et al., 2002;
Sayer et al., 2010) even when using multi-angle polarime-
ters such as POLDER (Dubovik et al., 2019). Uncertainties
in these assumptions are magnified when the aerosol optical
signal is small (e.g. under clean conditions).

Under polluted conditions, the aerosol signal is large rel-
ative to the surface such that the key uncertainties are in
the aerosol optical properties (single scattering albedo, phase
function). In contrast, under clean conditions, the aerosol op-
tical signal is small in comparison to errors in the surface
model, increasing the relative error in the retrieved aerosol
properties. The larger relative error in the aerosol retrieval
under clean conditions reduces the correlation between the
CCN and the retrieved aerosol due to regression dilution
(Pitkänen et al., 2016). This reduces the magnitude of β un-
der clean conditions, as observed in Fig. 1a and b. This issue
is particularly severe for AI, which is calculated using the
ratio of aerosol optical depths at two wavelengths, resulting
in a relative error which tends to infinity (and a β which ap-
proaches zero) under clean conditions (Fig. 1a).

This explains the larger β observed at high sensor zenith
angles (Fig. 3). At high sensor zenith angles, the aerosol sig-
nal is enhanced relative to the surface signal due to the longer
atmospheric path length. The enhanced aerosol signal and
corresponding lower effective noise floor (although not nec-
essarily in a straightforward manner; Grosvenor et al., 2018)
produce a larger β, highlighting the importance of the sensi-
tivity of aerosol retrievals under clean conditions to the mag-
nitude of β.

3 Discussion

These results show that β under clean conditions is driving
diversity in β and hence RFaci in both observation-based es-
timates and global models. Narrowing the cause of the β di-
versity to the behaviour under clean conditions also enables
a better constraint on its magnitude.

Previous observation-based studies have attempted to con-
strain β in clean conditions by assuming that βhi is a good ap-
proximation for β, either implicitly by using a satellite simu-
lator (Ma et al., 2018) or explicitly (Hasekamp et al., 2019).
However, the aerosol–Nd relationship is non-linear, and βhi
is not necessarily a good guide for the value of β.

If the aerosol properties remain constant with loading, βhi
is always equal to or smaller than β in clean conditions
(Fig. 4a). With lower aerosol loadings being more likely to
be aerosol-limited (Fig. 4b), this would suggest that βhi is
more likely to be an underestimate and could be considered
a lower bound for β (and hence implied RFaci).

Similar to observation-based studies, some models show
a β that is lower than βhi. All of the four models with
this behaviour have a minimum Nd implemented in their
cloud scheme. This removes any aerosol–Nd dependence at
low aerosol, setting β for these clean clouds to zero. Sharp
changes in cloud properties under very clean conditions (Ko-
ren et al., 2014) and the formation of ship tracks in otherwise
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Figure 2. (a) The relationship between the radiative forcing from
aerosol–cloud interactions (RFaci; calculated following Gryspeerdt
et al., 2020): susceptibility (β) in all conditions (blue) and polluted
conditions only (βhi; orange). The MODIS value for βhi and the
RFaci range are given, following Bellouin et al. (2020). (b, c) The
RFaci patterns from ECHAM6-HAM2.2 and CAM5.3-CLUBB-
MG2 respectively (see Ghan et al., 2016), normalised to the same
total radiative forcing.

cloud-free scenes (Gryspeerdt et al., 2021) hint at aerosol-
limited conditions and a potential minimum Nd for cloud
formation. However, the increasing β with increasing zenith
angle (and sensitivity to aerosol in clean conditions; Fig. 3)
suggests that a minimum Nd is not responsible for the low β.
The rarity of low-Nd measurements (fewer than 1 % below
20 cm−3 in Gryspeerdt et al., 2022) suggests that a minimum
Nd has little impact on β and that βhi provides a lower bound
for β (and hence the RFaci).

A plausible upper limit for β is 1, such that increasing
aerosol by 10 % increases Nd by 10 %. However, this as-
sumes that the aerosol has constant properties with varia-
tions in loading, an assumption that rarely holds in the at-
mosphere. The addition of even a small amount of coarse-

Figure 3. Susceptibility (β) as a function of MODIS sensor zenith
angle for the aerosol index (AI) retrieval for two different droplet
number concentration (Nd) sampling strategies – Q06 (based on
Quaas et al., 2006) and G18 (based on Grosvenor et al., 2018) –
in the south-east Pacific. Note that different sensors are used for the
Nd and AI retrievals so that the Nd retrieval is close to nadir, min-
imising error in the retrieval (Grosvenor et al., 2018; Gryspeerdt
et al., 2022).

sea-salt aerosol has the potential to shift low-Nd cases from
aerosol-limited to updraught-limited conditions, particularly
for cases with an updraught less than 1 m s−1 (typical of stra-
tocumulus; Fig. 4b).

Changes in aerosol type between clean and polluted con-
ditions can also produce β values considerably greater than 1
in global models (Fig. 2a). This effect becomes particularly
strong when using an aerosol proxy that depends on the opti-
cal properties of the aerosol. This allows β values larger than
1 – further measurements are required to constrain the lower
(most negative) bound to the RFaci.

Following Fig. 1c, this would put a likely range on the
RFaci of −0.45 to −1.2 W m−2, with a more certain up-
per bound. While this reasoning can constrain the global
mean RFaci, there is significant regional variation in the
RFaci pattern between climate models (e.g. Fig 2b, c). To
further reduce this global and regional uncertainty, new re-
trievals of aerosol properties are required that are accurate
at low-aerosol loadings, enabling a closer constraint of β. If
the “shallow-β” threshold is indicative of the effective noise
floor, increasing the accuracy of retrievals sufficiently to re-
duce this threshold by a factor of 4 would be sufficient to
leave only 5 % of retrievals below this noise floor, enhancing
the accuracy of β estimates.

4 Conclusions

The aerosol impact on clouds through changes in the Nd is
one of the largest uncertainties in the anthropogenic forcing
of the climate. The diverse observation-based estimates for
the susceptibility of Nd to aerosol perturbations (β) are re-
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Figure 4. (a) The relationship between aerosol number (Naer) and
droplet number concentration (Nd) for a selection of updraught
speeds. Black lines are Nd contours. The aerosol is a monodis-
perse ammonium sulfate with a mean radius of 40 nm. (b) The Nd
as a function of aerosol number and updraught speed for the same
monodisperse aerosol. Red contours show the boundary between
aerosol-limited and updraught-limited regions. Dashed and dotted
red contours show the location of this boundary with the introduc-
tion of 10 and 20 cm−3 for 850 nm background sea salt (SS) aerosol.

sponsible for about half the uncertainty in the RFaci. This
diversity comes from clean conditions, where the aerosol op-
tical signal is weak compared to the surface background. This
increases the relative error in the retrieved aerosol properties,
reducing the magnitude of the calculated β through regres-
sion dilution (Fig. 1a).

When considering only polluted conditions (βhi), obser-
vational estimates typically agree closely with each other
(Fig. 1) and with global models (Fig. 2a). However, although
these β estimates can be reconciled through βhi, βhi alone is
a poor constraint on the RFaci (Fig. 2a). Better constraints
on β and hence an improved understanding of the behaviour
of clean clouds are thus vital to reduce our uncertainty in the
RFaci. The dependence of cloud adjustments on Nd pertur-
bations means that a more accurate β estimate also reduces
uncertainties in the forcing from these adjustments.

Identifying the source of this diversity in RFaci estimates
enables a new, stronger constraint on the RFaci (more neg-
ative than −0.45 W m−2). The lower bound on the RFaci is

harder to constrain, as variations in aerosol type can produce
β values larger than 1 in global models (Fig. 4).

To improve our observation- and model-based estimates
of RFaci and address the considerable regional variation
(Fig. 2b, c), better retrievals of aerosol behaviour in clean
environments are essential. These are challenging for cur-
rent instruments, but a combination of sensitive in situ and
ground-based remote sensing, together with new satellite in-
struments and reanalysis data, provides a path forward to pro-
duce strong constraints on the behaviour of clean clouds and
the RFaci.

Appendix A: Methods

The MODIS AI is used to provide an observational constraint
on the RFaci by generating AI–Nd joint histograms from ob-
servations. For these histograms, the Nd is calculated using
the adiabatic approximation, as specified in Gryspeerdt et al.
(2016). The AI is calculated from the AOD–Ångström ex-
ponent joint histogram in the MODIS MYD08_d3 product
using only grid boxes where no ice cloud is detected (to re-
duce possible cirrus contamination). This stringent filtering
for ice clouds also reduces the impact of undetected thin cir-
rus on the liquid-cloud property retrievals (where they are not
detected by the multi-layer identification algorithm).

The droplet number concentration (Nd) in Fig. 1 was cal-
culated using the adiabatic assumption (Quaas et al., 2006)
and the BR17 sampling strategy outlined in Bennartz and
Rausch (2017) and Gryspeerdt et al. (2022). The G18 sam-
pling strategy (based on Grosvenor et al., 2018) shows simi-
lar results but produces more variable βhi values (Fig. 1c). β
itself was calculated using a linear regression on all available
data points. This produces a slightly different value for β in
Fig. 1d when compared to Hasekamp et al. (2019), but the
consistent methodology between aerosol proxies simplifies
the comparison in Fig. 1.

For Fig. 3, both the Q06 (based on Quaas et al., 2006) and
G18 strategies were used to increase data volume. This re-
quires a small sensor zenith angle (Nd is retrieved only close
to nadir), so to examine the impact of sensor zenith angle on
β, two MODIS sensors are used, with Nd data from Aqua
MODIS and aerosol data from Terra MODIS.

Activated droplet number concentrations are calculated
using the parcel model from Rothenberg and Wang (2016),
using a mean SO4 radius of 40 nm and a sea salt radius of
850 nm. Updraught-limited conditions are defined as those
where

d lnNd

d lnw
>
d lnNd

d lnNa
, (A1)

and aerosol-limited cases are the converse.
Model data are from the AeroCom indirect-effect ex-

periment (Zhang et al., 2016; Ghan et al., 2016) but
with UKESM1 (United Kingdom Earth System Model) re-
placing HadGEM3-UKCA (Hadley Centre Global Environ-
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ment Model version 3 and United Kingdom Chemistry and
Aerosol) in the ensemble due to issues with the HadGEM3-
UKCA output. β values for UKESM1 are calculated using
AOD instead of AI, but this makes little difference to the β
values (which are very similar to HadGEM3-UKCA). Only
grid boxes with an ice water path of less than 1 g m−2 and
a cloud fraction > 10 % are used for the β calculation. Nd
is converted to an in-cloud value before calculating β. The
RFaci is diagnosed following Gryspeerdt et al. (2020).
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