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Abstract. The applications of geostationary (GEO) satellite measurements at an unprecedented spatial and
temporal resolution from the Geostationary Environment Monitoring Spectrometer (GEMS) for monitoring and
forecasting the alarming ozone pollution in Asia through data assimilation remain at the early stage. Here we
investigate the benefit of multiple ozone observations from GEMS geostationary satellite, low Earth orbit (LEO)
satellite, and surface networks on summertime ozone simulations through individual or joint data assimilation,
built on our previous observing system simulation experiment (OSSE) framework (Shu et al., 2022). We find
that data assimilation improves the monitoring of exceedance, spatial patterns, and diurnal variations of surface
ozone, with a regional mean negative bias reduction from 2.1 to 0.2–1.2 ppbv in ozone simulations as well as
significant improvements of a root-mean-square error (RMSE) of by 5 %–69 % in most Asian countries. Fur-
thermore, the joint assimilation of GEMS and surface observations performs the best. GEMS also brings direct
added value for better reproducing ozone vertical distributions, especially in the middle to upper troposphere at
low latitudes, but may mask the added value of LEO measurements, which are crucial to constrain surface and
upper tropospheric ozone simulations when observations from other platforms are inadequate. Our study pro-
vides a valuable reference for ozone data assimilation as multisource observations become gradually available
in the era of GEO satellites.
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1 Introduction

Ozone is a secondary air pollutant formed in a complex
chemical interaction between nitrogen oxides (NOx) and
volatile organic compounds (VOCs) in the presence of sun-
light. Long-term exposure to ozone increases the risk of pre-
mature mortality from respiratory causes, for example, re-
portedly contributing to an estimated 365 000 deaths from the
chronic obstructive pulmonary disease worldwide in 2019
(Health Effects Institute, 2020). In particular, the majority
(∼ 80 %) of estimated ozone-attributable respiratory deaths
are in Asia, predominantly in India and China (Malley et al.,
2017), where operational monitoring sites are spatially scat-
tered and sparse. As the first geostationary air quality mon-
itoring satellite instrument, the Geostationary Environment
Monitoring Spectrometer (GEMS) on board the Geostation-
ary Korea Multi-Purpose satellite (Geo-KOMPSAT)-2B con-
tinuously measures tropospheric ozone in the daytime over
East Asia (Kim et al., 2020), providing unprecedented oppor-
tunities to fill the observational gaps over this region. How-
ever, the extent to which the observing system during the
operation of GEMS, principally consisting of measurements
from GEMS, low Earth orbit (LEO) satellites, and ground-
based stations, would improve ozone simulations and fore-
casting remains unclear. We quantify here the added value of
individually or jointly assimilating multiple ozone observa-
tions for improving ozone simulations in Asia, built on our
previous observing system simulation experiment (OSSE)
framework (Shu et al., 2022).

Ozone pollution in Asia has been worsening in the last
decade, resulting from rapid urbanization and industrializa-
tion (Gaudel et al., 2018; Chen et al., 2021). In East Asia,
lower tropospheric ozone column measurements reveal a
decadal increase of 0.21± 0.05 Dobson unit (DU) during
2005–2018 in eastern China, South Korea, and Japan (Lee
et al., 2021). Near the surface, the observed daily maxi-
mum 8 h average (MDA8) ozone concentrations steadily in-
creased by ∼ 4 % yr−1–8 % yr−1 during 2013–2020 accord-
ing to the Chinese surface network (Han et al., 2020; Lu et
al., 2020), along with intensified persistent ozone pollution
episodes lasting 5 d or longer (Gong et al., 2020; Shu et al.,
2020). Ground-based observations in South Korea likewise
indicate a nationwide increase of 0.3 to 1.7 ppbv yr−1 in sur-
face MDA8 ozone during 2001–2018 (Yeo and Kim, 2021).
In Southeast Asia, elevated MDA8 ozone levels exceeding
the recommended exposure of 50 ppbv (Assareh et al., 2016;
Marvin et al., 2021) are reported from biomass burning (Red-
dington et al., 2021; Sonkaew and Macatangay, 2015; Yadav
et al., 2017), often recurringly during the dry season (Ziemke
et al., 2009), causing deteriorated ozone pollution in down-
stream areas (Deng et al., 2008; Lin et al., 2013). In South
Asia, countries have observed the steepest increase in ozone
exposure globally. For example, India has witnessed an in-
crease of about 17 % in population-weighted average MDA8

ozone concentrations, ramping from 56.5 ppbv in 2010 to
66.2 ppbv in 2019 (Health Effects Institute, 2020).

The alarming ozone pollution in Asia calls for better un-
derstanding and forecasting from air quality models. In par-
ticular, data assimilation, incorporated into chemical trans-
port models (CTMs), maximizes the value of observations,
thus reducing biases in ozone numerical simulations (Boc-
quet et al., 2015; Wu et al., 2008; Huang et al., 2015). Data
assimilation utilizes a wide range of observations, generally
involving measurements from ground-based stations (Tang
et al., 2011; Peng et al., 2018; Ma et al., 2019), LEO satel-
lites (Huang et al., 2015; Miyazaki et al., 2012, 2020b; Inness
et al., 2015, 2019b), and geostationary satellites (Claeyman
et al., 2011; Zoogman et al., 2011, 2014; Quesada-Ruiz et
al., 2020; Shu et al., 2022) in the current and anticipated ob-
serving system. As such, data assimilation applications have
propelled to the forefront of the development of tropospheric
and surface ozone reanalysis, e.g. Monitoring Atmospheric
Composition and Climate (MACC) reanalysis (Inness et al.,
2013), Copernicus Atmosphere Monitoring Service (CAMS)
interim reanalysis (Flemming et al., 2017), CAMS reanalysis
(Inness et al., 2019a), Tropospheric ozone reanalysis (TCR-
1/TCR-2) (Miyazaki et al., 2015, 2020a), and Chinese air
quality reanalysis (CAQRA) (Kong et al., 2021).

Widely recognized, the value of the measurements from
LEO satellites, e.g. Ozone Monitoring Instrument (OMI)
(Levelt et al., 2018), Global Ozone Monitoring Experiment-2
(GOME-2) (Munro et al., 2016), and TROPOspheric Moni-
toring Instrument (TROPOMI) (Veefkind et al., 2012), for
improving tropospheric chemistry modelling is immense due
to the high spatial coverage (Inness et al., 2019a, b). For
example, Miyazaki et al. (2020b) demonstrated that the as-
similation of multiconstituent LEO satellite data reduces an-
nual mean ozone bias by 39 %–97 % in the middle tropo-
sphere. Sekiya et al. (2022) manifested that the assimila-
tion of TROPOMI tropospheric nitrogen dioxide (NO2) col-
umn retrievals leads to improved agreements (by 7 %–40 %)
with independent validation observations compared to con-
trol simulation, which is more obvious than those by assim-
ilating OMI data (by 1 %–22 %) for many cases, owing to
the higher spatial resolution and smaller observation errors
of TROPOMI measurements.

Observing air quality from space is entering a new era of
geostationary satellites, marked by the launch of GEMS on
February 2020. Compared with LEO satellites, geostationary
satellites can monitor the diurnal variations in tropospheric
ozone and its precursors in the daytime. A virtual geostation-
ary constellation, consisting of GEMS over East Asia (Kim et
al., 2020), Tropospheric emissions: Monitoring of pollution
(TEMPO, 2023) over North America (Zoogman et al., 2017),
and Sentinel-4 (2024) over Europe (Ingmann et al., 2012),
focuses on the most polluted and industrialized regions in
the Northern Hemisphere. Their value for atmospheric chem-
istry modelling has been investigated preliminarily through
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the OSSE approach (Zoogman et al., 2014; Quesada-Ruiz et
al., 2020; Shu et al., 2022).

GEMS is an ultraviolet (UV) and visible (Vis) imaging
spectrometer that facilitates tropospheric ozone monitoring
at an unprecedented spatial (7×8 km2 at Seoul) and temporal
(eight times per day at least) resolution in a spectral range of
300–340 nm over East Asia, yielding massive observations
for data assimilation applications (Kim et al., 2020; Bak et
al., 2013, 2019). An OSSE presented in our previous work
(Shu et al., 2022) has revealed that GEMS could provide
useful information to constrain surface and middle-to-upper
tropospheric ozone simulations. However, there remains a
need for more investigations involving multisource data as-
similation. Here we examine to what extent the assimilation
of multiple ozone observations (GEMS, LEO satellite, and
surface observations), individually or in combination, would
improve ozone simulations in Asia through a robust OSSE as
described below.

2 Observing system simulation experiment (OSSE)

OSSE is a critical tool for objectively assessing the added
value of proposed satellite observations to an existing ob-
serving system and investigating the impact of instrument de-
signs (Timmermans et al., 2015; Brasseur and Jacob, 2017).
In general, the air quality OSSE framework involves the fol-
lowing: (1) application of a CTM to generate time-varying
3-D fields of atmospheric compositions (taken as the “true”
atmosphere), called nature run; (2) virtual sampling of such
“true” atmosphere following the observing schedules and er-
ror characteristics of proposed instruments, that is, to gen-
erate synthetic observations; (3) application of a second,
preferably independent CTM to obtain a priori and a posteri-
ori estimates of atmospheric compositions (without and with
the assimilation of synthetic observations), called control run
and assimilation run, respectively; and (4) quantification of
the benefit of proposed instruments by examining the correc-
tion of mismatch between the “true” state and the a priori
after data assimilation (Zoogman et al., 2014). In Fig. S1, we
sketch the abovementioned steps.

We perform our OSSE for June 2020 to represent sum-
mertime ozone in Asia. The observing system includes the
GEMS geostationary satellite, an LEO satellite instrument
(i.e. OMI), and the surface monitoring network. This study
only simulates synthetic OMI ozone profile retrievals to rep-
resent the LEO satellite measurements. In the nature run, we
use a regional CTM, the Weather Research and Forecasting
model coupled with Chemistry (WRF-Chem) (Grell et al.,
2005), to construct the “true” atmosphere. We then sample
such a virtual atmosphere to retrieve synthetic GEMS and
OMI ozone profiles based on optimal estimation (Rodgers,
2000) and to extract synthetic surface observations. Next, we
use a global CTM GEOS-Chem (Bey et al., 2001; Park et
al., 2004; Mao et al., 2013) as the forward model for data

assimilation to perform the control run and assimilation run.
Last, we quantify the information contributed by the observ-
ing system by comparing paired differences between these
two simulations and the “true” atmosphere.

2.1 Simulation models

We apply a regional CTM, WRF-Chem (version 4.1) (Grell
et al., 2005), for the nature run of the OSSE to simulate the
“true” state of atmospheric compositions. The selection of
nature run is crucial to characterize the realistic model errors
dedicated to the robustness of the OSSE. Here we configure
WRF-Chem with a grid resolution of 50 km× 50 km cover-
ing most of Asia and 34 vertical layers extending from the
surface to 50 hPa. The setup of the WRF-Chem simulation,
as well as the GEOS-Chem simulations described below, fol-
lows our preceding work (Shu et al., 2022) and is summa-
rized in Table S1. We have previously shown its robust ca-
pability in reproducing the temporal variations and vertical
distributions of ozone through validation against actual sur-
face ozone and ozonesonde measurements, respectively.

For the control run and assimilation run, we use a
nested version of the GEOS-Chem (version 12.9.3), which
is a global CTM with a detailed HOx–NOx–VOC–ozone–
aerosol–halogen tropospheric chemistry mechanism (Bey et
al., 2001; Park et al., 2004; Mao et al., 2013) and has been
widely applied in ozone simulations (Zoogman et al., 2014;
Gong et al., 2020; Shu et al., 2022). The nested Asian (11◦ S–
55◦ N, 60–150◦ E) simulation has a resolution of 0.5◦×
0.625◦, with 47 vertical layers up to 0.1 hPa and boundary
conditions updated every 3 h from a global 2◦×2.5◦ simula-
tion. As indicated in Table S1, we configure GEOS-Chem
as differently as possible in meteorological fields, chemi-
cal mechanisms, and emission inventories relative to WRF-
Chem simulation to maximize their independence for the
proper interpretation of OSSE results, as previously empha-
sized.

2.2 Observing system and synthetic observations

Our OSSE simulates the observing system over Asia during
the operation of GEMS, consisting of GEMS geostationary
satellite measurements, LEO OMI (henceforth LEO) satel-
lite measurements, and surface measurements. We produce
synthetic observations since GEMS scientific ozone profile
products have not yet been released. We assume the nor-
mal operation of OMI, acknowledging data loss due to row
anomalies and instrument degradation (Schenkeveld et al.,
2017), which will be addressed in our future study assimilat-
ing real observations.

To simulate GEMS and OMI ozone retrievals, we apply
a fast ozone profile retrieval simulation (FOR) tool (Shu
et al., 2022), in which the optimal estimation-based re-
trievals (Rodgers, 2000) and lookup table (LUT)-based ra-
diative transfer simulations (Bak et al., 2021) are merged.
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The spectral range is set to be 305–340 nm for GEMS,
while both Hartley band (269–309 nm) and Huggins band
(312–330 nm) are used for OMI (Bak et al., 2013, 2019).
Hourly GEMS ozone profiles are synthetically retrieved for
the daytime period (01:00–08:00 UTC) over East Asia (5◦ S–
45◦ N, 75–145◦ E). We likewise generate daily OMI mea-
surements within the study domain according to the real-
time orbit information of OMI (https://disc.gsfc.nasa.gov/
datasets/OMTO3_003/summary, last access: 1 March 2023).

Briefly, the a posteriori estimate of x (x̂) is determined as
a linear combination of the true state (xt) and a priori (xap)
state, with A, weighting factor:

x̂ = Axt+ (I−A)xap+Gε̂ (1)

A=
(

KT S−1
y K+S−1

a

)−1
KT S−1

y K

= ŜKT S−1
y K=GK, (2)

where Sy and Sa are covariance matrices of measurement
random-noise errors and a priori errors, respectively, with K,
weighting function matrix (K≡ ∂y/∂xt). A is the averaging
kernel matrix (A≡ ∂x̂/∂xt) representing the sensitivity of
the retrieved profile to the true state (measurement informa-
tion). Each diagonal element of A represents the degree of
freedom for signal (DFS), quantifying the number of inde-
pendent pieces of information available at that layer from ra-
diance measurements. I is the identity matrix. To account for
the impact of measurement noises on a posteriori estimate,
Gε̂ is added to the a posteriori estimate, where G describes
the relative contribution of measurement errors (ε̂) on the re-
trieval (G≡ ∂x̂/∂y). Ŝ is the covariance matrix of solution
errors, which is also seen as the sum of Sn and Ss :

Sn =GSyGT (3)

Ss = (A− I)Sa(A− I)T , (4)

where Sn and Ss quantify the retrieval errors caused by the
measurement errors and a priori errors, respectively.

In this experiment, a priori information (xap, Sa) is taken
from the climatological dataset (McPeters and Labow, 2012),
commonly for GEMS and OMI data simulation. The state
vector consists of the ozone profiles at 24 layers, surface
albedo, and cloud fraction. The pressure level grid is set
at Pi = 2−

i
2 atm for i = 0 to 23 (1atm= 1013.25 hPa, ∼

2.5 km thickness between levels), with the top of the atmo-
sphere set for P24 (∼ 55–65 km). To complete the “true” pro-
files, the WRF-Chem “true” atmosphere is used and extended
with GEOS-Chem control run outputs above ∼ 50 hPa due
to the top pressure limit of WRF-Chem and then the merged
profiles are spatially nested onto the standard retrieval grids.
Both GEMS and OMI synthetic datasets are simulated at
native spatial grids, and then the spatial binning is applied
by 4× 4 for GEMS and 4 (along-track)× 2 (across-track)
for OMI to match with the planned GEMS data format and
the current OMI data format (https://avdc.gsfc.nasa.gov/pub/

data/satellite/Aura/OMI/V03/L2/OMPROFOZ/, last access:
1 March 2023), respectively.

Figures 1 and 2 compare the performance of simulated
GEMS (Fig. 1e and f) and OMI (Fig. 2b and c) retrievals, in-
cluding ozone profiles (x̂), associated retrieval errors (

√
Ŝ),

and averaging kernels (A) at noon for a specified location
near Beijing with a high ozone level (Figs. 1b and 2a). In gen-
eral, the magnitude of GEMS retrieval errors is very close to
that of a priori errors at the upper atmospheric layers above
∼ 2 hPa due to the weak retrieval sensitivity (DFS close to
zero) and hence the strong influence of a priori on the re-
trievals (Bak et al., 2013). In comparison to GEMS, the re-
trieval quality of OMI is significantly better above 200 hPa
for representing the stratosphere and upper troposphere, with
the DFS value up to 0.53. Nevertheless, GEMS has stronger
vertical sensitivity and smaller retrieval errors relative to
OMI at each layer below 200 hPa, providing sufficient mea-
surement information to characterize tropospheric and near-
surface ozone. Specifically, GEMS has more potential to cap-
ture the hot spots and diurnal evolution of ozone pollution
in East Asia (Fig. 1a–d), as revealed in Shu et al. (2022).
In addition, the validation of retrieval errors and averaging
kernels of the OMI ozone profile at Shanghai (Fig. S2) re-
trieved by the FOR tool against the Smithsonian Astrophysi-
cal Observatory (SAO) OMI Ozone Profile (PROFOZ) prod-
uct (https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/
V03/L2/OMPROFOZ/, last access: 1 March 2023) demon-
strates the robust capability of the FOR tool to simulate satel-
lite observations.

We sample hourly surface ozone measurements based on
site information from three networks, i.e. the Tropospheric
Ozone Assessment Report (TOAR) (Schultz et al., 2017), the
China National Environmental Monitoring Center (CNEMC)
(http://www.cnemc.cn/, last access: 1 March 2023), and
the Continuous Ambient Air Quality Monitoring Stations
(CAAQMS) of the Central Pollution Control Board (CPCB)
in India (Singh et al., 2020). There are a total of 3214 sites in
the Asian domain (Fig. 3).

2.3 Assimilation of satellite and surface observations

We adopt a sequential sub-optimal Kalman filter technique
(Parrington et al., 2009; Zoogman et al., 2011, 2014; Shu et
al., 2022) in the data assimilation system. At each assimila-
tion time step, we calculate the optimal estimate x̂a of the
true ozone concentrations (x, state vector) as a weighted av-
erage of the model forecast xb and the observation y:

x̂a = xb+M
(
y−Hxb

)
, (5)

where H represents the observation operator that maps the
model forecast into the observation space. For satellite mea-
surements Hxb = xap+A

(
Sxb− xap

)
, it utilizes the spatial

interpolation operator S, the a priori profile xap, and averag-
ing kernels A from satellite retrievals (Sect. 2.2) to remove
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Figure 1. Example of diurnal cycles of surface-layer ozone partial column (02:00, 04:00, 06:00, and 08:00 UTC, a–d), vertical ozone profiles
and relative retrieval errors (e), and averaging kernels (f) at 04:00 UTC for a specified grid with high ozone level (36.6◦ N, 117.1◦ E, denoted
using the black triangle in b) from simulated GEMS retrievals on 16 June 2020. In (a–d), captions give the regional average of the degree of
freedom for signal (DFS; defined as the trace of the averaging kernel matrix in Sect. 2.2) of the corresponding GEMS retrievals. The black
box areas in (a) define the regions of East Asia (EAS), Southeast Asia (SEAS), and South Asia (SAS). In (e), the solid lines denote the a
priori (black), true (red), and retrieved (blue) profiles. The dashed lines represent the a priori (black) and solution (orange) errors that both
normalized to a priori profiles. In (f), the caption gives the total DFS. Averaging kernels (coloured by layers) are normalized to the thickness
of each layer and a priori errors. Also inserted are elements of the DFS vector along with the central pressure of each layer.

the dependence of the analysis on the model-retrieval com-
parison (Miyazaki et al., 2012, 2020b). We limit our assimi-
lation exercise to satellite pixels with cloud fraction less than
0.3 and vertical profiles at the bottom 11 retrieval layers (see
Figs. 1 and 2) to avoid introducing redundant stratospheric
information. For surface measurements, Hxb = xb.

The Kalman gain matrix M measures the relative weight
apportioned to the model forecast and the observation:

M= PbHT
(

HPbHT
+R

)−1
, (6)

where Pb is the model error covariance matrix that ex-
presses the errors in the forward model. Following Zoog-
man et al. (2014) and Shu et al. (2022), we initialize the
model error variances (diagonal terms) with a priori errors
of 25 %. We parameterize the model error covariances (off-
diagonal terms) using the horizontal and vertical error cor-

relation lengths of 450 and 1.7 km, respectively (Fig. S3).
We update this matrix at each assimilation time step by
Pa = (I−MH)Pb, where I is the identity matrix.

R is the observation error covariance matrix, including the
contributions from the measurement error and the represen-
tativeness error. Since the horizontal resolution of all syn-
thetic observations (GEMS, LEO satellite, and surface ob-
servations) is much finer than that of the model, we apply
a super-observation approach to produce more representa-
tive data and reduce the horizontal observation error corre-
lations (Miyazaki et al., 2012; Ma et al., 2019). A super-
observation is generated by averaging all the observations
(including errors and averaging kernels) within the same 0.5◦

latitude× 0.625◦ longitude GEOS-Chem model grid. Thus,
R is assumed to be diagonal; that is, the observation errors
are not correlated. For satellite measurements, the observa-
tion error (i.e. solution error from Sect. 2.2) is determined

https://doi.org/10.5194/acp-23-3731-2023 Atmos. Chem. Phys., 23, 3731–3748, 2023
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Figure 2. Same as Fig. 1 but from simulated OMI retrievals at 04:55 UTC on 16 June 2020.

Figure 3. Distributions of surface monitoring site over the Asian
domain. The red, blue, and green dots represent monitoring
sites from the Tropospheric Ozone Assessment Report (TOAR),
the China National Environmental Monitoring Center (CNEMC),
and the Continuous Ambient Air Quality Monitoring Stations
(CAAQMS) of the Central Pollution Control Board (CPCB) in In-
dia, respectively. The coloured areas indicate monthly mean daily
maximum 8 h average (MDA8) ozone concentrations in June 2020,
as simulated by the control run.

during the retrieval procedure and reduced by the square root
of the number of observations averaged over each GEOS-
Chem grid square (Zoogman et al., 2014; Shu et al., 2022).
We assume zero representation error since the synthetic satel-
lite observations are spatially dense. For surface measure-
ments, we reduce more than 3000 surface monitoring sites to
725 super-observation grids and then randomly select 80 %
of these super-observations for assimilation and 20 % for val-

idation (Fig. S4). The measurement error ε0 is assumed to
be 4 % for ozone, according to officially released documents
from the CNEMC (HJ 193–2013 and HJ 654–2013, avail-
able at http://www.cnemc.cn/jcgf/dqhj/, last access: 1 March
2023) following Kong et al. (2021). The representativeness
error is parameterized as proposed by Elbern et al. (2007):

εr =
√
1x/L× εabs, (7)

where 1x is the model resolution (∼ 56 km), and L repre-
sents the characteristic representativeness length of the sur-
face stations and is set as 2 km due to the lack of observation
site information. εabs represents the error characteristic pa-
rameters (1.2 for ozone) according to Elbern et al. (2007).
Finally, the total observation error εt is defined as

εt =

√
ε2

0 + ε
2
r . (8)

To distinguish the impact of assimilated observations and as-
similation time step on the performance, we conduct nine
data assimilation experiments (Table 1). We assimilate day-
time synthetic GEMS, surface, and LEO satellite observa-
tions at 1 or 3 h time steps individually or simultaneously. We
use the mean bias error (MBE), mean absolute error (MAE),
root-mean-square error (RMSE), and correlation coefficient
(r) to assess the assimilation performance in reproducing
surface and tropospheric ozone relative to the “true” atmo-
sphere.

3 Results and discussion

3.1 Improved simulations of surface ozone

Our analysis starts with evaluating the benefit of multiple
ozone observations on surface ozone simulations. Figure 4
compares the surface MDA8 ozone concentrations and the

Atmos. Chem. Phys., 23, 3731–3748, 2023 https://doi.org/10.5194/acp-23-3731-2023
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Table 1. Configuration of data assimilation experiments.

No. Experiments Assimilated observations Assimilation

GEMS Surface LEOa time step

Exp 1 GEMS 1h
√

1 h
Exp 2 Surface 1h

√

Exp 3 GEMS+Surface 1h
√ √

Exp 4 GEMS+Surface+LEO 1h
√ √ √

Exp 5 GEMS 3h
√

3 h
Exp 6 Surface 3h

√

Exp 7 GEMS+Surface 3h
√ √

Exp 8 GEMS+Surface+LEO 3h
√ √ √

Exp 9 LEO 3h
√

a LEO observations are assimilated when available.

frequency of high-ozone days (hereafter defined as surface
MDA8 ozone>80 ppbv) in June 2020 between the “true”
atmosphere and GEOS-Chem simulations without assimila-
tion (a priori) and with assimilation (a posteriori) of syn-
thetic GEMS, surface, and LEO satellite observations at 1 h
time steps (Exp 1–4). Compared to the “true” atmosphere,
the GEOS-Chem a priori is biased low (−2.1 ppbv for re-
gional mean bias) and performs poorly in capturing excessive
ozone. In the “true” atmosphere, the frequency of high-ozone
days is found to be ∼ 1.79 d on average over the Asian do-
main, with recurrent ozone exceedance in eastern China, the
Tibetan Plateau, and northern India. However, the a priori
only captures 0.2 high-ozone days per grid square per month
with weak spatial correlation (r = 0.51). The individual or si-
multaneous assimilation of GEMS and surface observations
effectively corrects the negative MDA8 ozone bias (drop-
ping from 2.1 to 0.2–1.2 ppbv) and better captures ozone ex-
ceedance (increasing to 0.46–0.75 d). We also observe an im-
proved spatial pattern of simulated ozone against the “true”
atmosphere, with r increasing by 0.01–0.05 for MDA8 ozone
concentrations and by 0.07–0.23 for high-ozone days.

On the whole, the added value of GEMS measurements
(Exp 1) to surface ozone simulations is smaller but non-
negligible compared to that of surface observations (Exp 2),
while the simultaneous assimilation of GEMS and surface
data (Exp 3) provides the best performance among these as-
similation runs. On that basis, we further discover that the
addition of the LEO instrument (Exp 4) may not provide
new valuable information to constrain surface ozone beyond
GEMS and surface observations (Exp 3), as similarly indi-
cated in Zoogman et al. (2014) because OMI and GEMS have
similar spectral information on surface ozone.

To investigate the influence of assimilation frequency, we
perform four sensitivity experiments with a longer assim-
ilation time step of 3 h (Exp 5–8, Fig. S5). We find that
additional assimilation of LEO measurements (Exp 8) de-
creases the mean bias from −0.8 to −0.4 ppbv and improves
the prediction of high-ozone days from 0.49 to 0.57 d with

a stronger spatial correlation (r increases by 0.05) beyond
GEMS and surface data (Exp 7). This highlights the impor-
tance of the LEO instrument in constraining surface ozone
when observations from other platforms are inadequate for
assimilation. Furthermore, we conduct an additional ex-
periment that only assimilates LEO measurements (Exp 9,
Fig. S6). Compared to LEO satellite observations, the indi-
vidual assimilation of GEMS observations (Exp 5, Fig. S5)
provides more added value for monitoring surface ozone in
East Asia and Southeast Asia due to the stronger sensitivity
to surface ozone and smaller retrieval errors (Figs. 1 and 2),
especially more effectively diagnosing the ozone exceedance
in eastern China, while making little corrections to simulated
surface ozone in South Asia owing to the limited coverage
over this region (Fig. 1). However, this inability of GEMS
observations to correct ozone bias in South Asia could be
addressed by additionally assimilating surface observations
(Exp 7, Fig. S5). As such, the use of joint assimilation is es-
sential to efficiently enhance the information of GEMS and
surface observations to constrain surface ozone simulations.

Considering the heterogeneous spatial corrections made to
surface ozone in Asia after data assimilation, which is likely
a cause of the space layout of the observing system, we
thereby review the statistics for 18 designated Asian coun-
tries (Fig. 5). We show the reduction in MAE and RMSE and
the difference in the spatial correlation coefficient between
GEOS-Chem simulations with and without data assimilation
relative to the “true” atmosphere. We rule out the assimila-
tion experiments involving the LEO instrument considering
its insignificant impacts on surface ozone simulations, as dis-
cussed above.

Taking the assimilation runs with a 1 h assimilation time
step (Exp 1–3) as an example, our analysis confirms that
the joint assimilation of GEMS and surface data has the
best performance in more than half of the Asian countries,
with MAE reduced by 7 %–74 % (except for North Korea
and Myanmar) and RMSE reduced by 5 %–69 % (except for
Japan, North Korea, and Myanmar) in simulated ozone. In
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Figure 4. Monthly mean daily maximum 8 h average (MDA8) ozone at the surface and the frequency of high-ozone days (defined as surface
MDA8 ozone exceeding 80 ppbv) for June 2020 over the Asian domain, as simulated by the nature run (“True”), the control run (a priori),
and four assimilation runs (Exp 1–4 in Table 1). The domain-averaged value over the land is inset. For the control run and assimilation runs,
the spatial correlation coefficients relative to the nature run are also inset in parentheses.

Southeast Asia, the improvements are almost spatially con-
sistent with RMSE reduced by 17 %–42 % in most countries
when concurrently assimilating GEMS and surface data, es-
pecially notably in Cambodia, Vietnam, and the Philippines
(by 31 %–42 %). Meanwhile, the data assimilation results in-
cluding only GEMS observations (Exp 1) and with the ad-
dition of surface observations (Exp 3) have comparable per-
formance in some regions (e.g. the Philippines, Indonesia,
and Vietnam), revealing the dominant role of GEMS rather
than surface observations in improving surface ozone sim-
ulations as a result of the sparse surface network (Fig. 3).
In comparison, we may relate the elevated benefit of surface
observations beyond GEMS on ozone simulations in some

countries, like Thailand and Laos, to the propagation of in-
formation from more dense surface observations in East Asia
through transboundary transport.

In East Asia, we observe a steady improvement in the spa-
tial correlation of simulated ozone (e.g. by up to 0.08 in
China) relative to the “true” atmosphere after assimilating
surface observations individually (Exp 2) or in combination
with GEMS data (Exp 3). Specifically, in China, the improve-
ments in ozone simulations between these two simulations
are quantitatively close, with a reduction of ∼ 32 %–35 % in
MAE and RMSE. In comparison, here we extend the inves-
tigation to eastern China with a higher density of surface ob-
servations (Fig. S7) and observe that the joint assimilation
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Figure 5. The MAE reduction (a), RMSE reduction (b), and the difference in the spatial correlation coefficient (c) of simulated surface
ozone between the assimilation run and the control run relative to the nature run for June 2020 in 18 Asian countries.

has the best performance for improving surface ozone simu-
lations, contributing to a more significant reduction of 52 %
and 46 % in MAE and RMSE, respectively. However, the in-
fluence of assimilation efforts is complicated in East Asia,
such as in Japan and Mongolia where the a priori ozone and
its bias are relatively low. In this case, adding the synthetic
GEMS observations results in a slight deterioration of simu-
lated ozone and even counteracts the positive impact of sur-
face observations when performing the joint assimilation. We
attribute this partly to the improper specification of model er-
rors and the spatial spread of observational information via
transboundary transport.

In South Asia, we observe limited improvements in sur-
face ozone simulations in India, Nepal, Bangladesh, and
Sri Lanka introduced by GEMS due to the lack of obser-
vations (Fig. 1). Thus, surface observations provide almost
all the information to correct ozone bias when assimilating
surface data individually (Exp 2) or with additional GEMS
data (Exp 3), where we detect an MAE and RMSE reduc-
tion of 7 %–52 % and 5 %–49 %, respectively. Differently,
GEMS could provide meaningful information to track ozone
in Bhutan (RMSE reduced by over 70 %), located within its
observational field. We neglect here the slightly worsened
spatial pattern of simulated ozone in Bhutan, mainly result-
ing from the spatially scattered and sparse model grids, as
observed in Vietnam, Cambodia, and Malaysia.

We reach similar conclusions when expanding our analy-
sis to the other assimilation runs with a longer assimilation

time step of 3 h (Exp 5–7). In general, we find that the spatial
coverage of multiple observations and the spatial spread of
observational information via transboundary transport would
significantly influence the assimilation performance, result-
ing in unequally distributed improvements in surface ozone
simulations over Asia. The intercomparison of these two
groups of experiments further shows that the assimilation of
GEMS observations individually or in combination with sur-
face data at 3 h time steps could achieve comparable perfor-
mance in some regions (e.g. Laos and Vietnam) relative to
experiments assimilating all observations at 1 h time steps.
This implies the feasibility of reducing the number of assim-
ilated observations in actual applications to improve compu-
tational efficiency.

GEMS will provide continuous daytime measurements of
tropospheric ozone profiles, thus the capability of geosta-
tionary observations through data assimilation to monitor
the hourly variations of surface ozone is of particular in-
terest. Figures 6 and S8 present the diurnal and daily vari-
ations of surface ozone at validation grids (Fig. S4), respec-
tively. Overall, the joint assimilation of GEMS and surface
observations (Exp 3) shows the best performance in repro-
ducing the temporal variability of simulated surface ozone
(Figs. 6a and S8a), with the smallest bias and RMSE, es-
pecially in the late afternoon (Fig. 6b and c) and on high-
ozone days (Fig. S8b and c). Notably, it adds more valuable
information to constrain ozone for the time period of 03:00–
11:00 (03:00–08:00) UTC than the individual assimilation of
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Figure 6. Comparison of the averaged diurnal cycle of (a) surface
ozone, (b) mean bias, and (c) RMSE, as well as (d) the histogram (in
percentage) of the temporal correlation coefficient of hourly ozone
at validation grids (Fig. S4), as simulated by the control run (a
priori, in blue) and three assimilation runs (Exp 1–3 in Table 1,
in green, yellow, and red, respectively) relative to the nature run
(“True”, black line in a) for June 2020. In (d), the green, yellow,
and red bars respectively represent the frequency (%) of the tem-
poral correlation coefficient of simulated ozone between the three
assimilation runs (Exp 1–3) and the nature run, which is in compar-
ison to that of the control run (in blue). The blue bars are the same
in the three sub-panels to better illustrate the improvements in the
temporal correlation of simulated ozone relative to the control run.
The mean values of the temporal correlation coefficient (coloured
the same as lines in a) at all validation grids are inset.

GEMS (surface) measurements, principally depending on the
temporal coverage of these observations. Besides, the a priori
shows an average temporal correlation coefficient (r) of 0.55
in simulated hourly ozone relative to the “true” atmosphere.
Individually assimilating GEMS data (Exp 1) makes limited
corrections to this correlation, which is in sharp contrast to
the enhanced temporal correlation from the data assimilation
results including only surface data (Exp 2) and with addi-
tional GEMS data (Exp 3), improving the average of r to
0.72 and 0.70, respectively (Fig. 6d).

To test the value of multiple ozone observations for short-
term ozone forecasts, we conduct a series of 72 h forecasts,
each initialized at 06:00 UTC from 1 to 27 June 2020 (not
shown). The 27 forecasting experiments are conducted using
the concentration analysis from Exp 3 as the chemical initial
conditions. Our results suggest no substantial improvement
in the short-term ozone forecasts, as evidenced in Fig. 6c.
Note that the adjustments in simulated ozone vanish rapidly
after 11:00 UTC without new observations assimilated, lead-
ing to a spiked increase in ozone RMSE. We attribute this to
the unimplemented optimization of ozone precursors (Tim-

mermans et al., 2019). Further efforts concerning the simul-
taneous optimization of the chemical initial conditions and
ozone precursor emissions (NOx and VOCs) are essential
to improve the short-term ozone forecasts (Ma et al., 2019;
Peng et al., 2018).

3.2 Improved simulations of tropospheric ozone profiles

Next, we evaluate to what extent tropospheric ozone profile
simulations may benefit from the individual or simultaneous
assimilation of multiple ozone observations. Figure 7 dis-
plays the simulated ozone profiles averaged over the Asian
domain and three specified subregions, i.e. East Asia, South-
east Asia, and South Asia (defined in Fig. 1). Figure 8 fur-
ther compares the MDA8 ozone concentrations at three verti-
cal levels, i.e. 200, 500, and 700 hPa, representing the upper,
middle, and lower troposphere, respectively. Here we focus
on two assimilation runs using a 3 h assimilation time step
(Exp 7 and 8) to pinpoint the added value of the LEO instru-
ment for tropospheric ozone simulations. See Figs. S9 and
S10 for the assimilation runs using a 1 h time step (Exp 3
and 4).

Compared with the “true” atmosphere, the a priori tends
to underestimate ozone from the surface to the upper tropo-
sphere over all the specified regions (Fig. 7). The data assim-
ilation greatly removes the negative bias and large RMSE,
with more obvious improvement in the middle to upper tro-
posphere, especially in Southeast Asia. Data assimilation re-
sults without (Exp 7) and with (Exp 8) the addition of the
LEO instrument suggest that GEMS observations may have
masked the added value of LEO measurements for the whole
Asian domain as well as East Asia and Southeast Asia, with
a tiny discrepancy in improving ozone vertical distributions.
This is also demonstrated by the comparison of tropospheric
ozone profiles between two assimilation runs that only as-
similate GEMS or LEO observations (Exp 5 and 9, Fig. S11),
where we see that the individual assimilation of GEMS data
contributes to a more apparent bias and RMSE reduction in
East Asia and Southeast Asia. On the contrary, the LEO mea-
surements add valuable corrections to the upper tropospheric
ozone simulations over South Asia (Fig. 7) where GEMS ob-
servations are unavailable (Fig. 1). In addition, the changes in
the spatial correlation (varying from −0.05 to 0.04) of sim-
ulated ozone relative to the “true” atmosphere in East Asia
and South Asia are relatively small, showing a weakened
spatial correlation in the middle to upper troposphere (above
600 hPa). On a regional scale, in contrast, the data assimi-
lation slightly increases the spatial correlation at the upper
layers above ∼ 350 hPa over Asia. This improvement is pre-
dominantly due to the greatly improved ozone simulations
in Southeast Asia in the middle to upper troposphere, where
an enhancement by up to ∼ 0.16 in the spatial correlation is
broadly distributed.

Vertically, our results show that the a priori is consistently
biased low relative to the “true” atmosphere, with a regional
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Figure 7. Ozone MBE (top panels), RMSE (middle panels), and the difference in the spatial correlation coefficient (assimilation run minus
control run, bottom panels) relative to the nature run for June 2020 over the Asian domain, East Asia, Southeast Asia, and South Asia (defined
in Fig. 1), as simulated by the control run (a priori) and two assimilation runs (Exp 7 and 8 in Table 1).

mean difference of −49.2, −15.1, and −6.3 ppbv at 200,
500, and 700 hPa, respectively. Jointly assimilating GEMS
and surface observations (Exp 7) contributes to an appar-
ent bias reduction of 6.6, 2.6, and 1.5 ppbv at the three lev-
els, respectively (Fig. 8). On that basis, the application of
the LEO instrument (Exp 8) adds extra information to con-
strain ozone, with a superimposed bias reduction of 1.9, 0.7,
and 0.5 ppbv, respectively. Particularly, the LEO measure-
ments bring more practical corrections to ozone simulations
in South Asia (e.g. northern India at 500 hPa), as discussed
above. In comparison, we obtain a comparable performance
(bias decreased by 7.2, 2.7, and 1.7 ppbv, respectively) from
the joint assimilation of all GEMS and surface data (Exp 3) at
1 h times steps (Fig. S10), however, with no substantial cor-
rections when further assimilating LEO satellite data (Exp 4).
This result is consistent with that for surface ozone simula-
tions, that is, the application of all available GEMS observa-
tions may mask the direct added value of LEO instrument for
tropospheric ozone simulations. Here we neglect the small

changes in the spatial pattern of simulated ozone, given that
satellite measurements do not fully cover the Asian domain.

Figure 9 compares the RMSE reduction in simulated
ozone at 200, 500, and 700 hPa for the six assimilation runs
in 18 Asian countries. Here we rule out the experiments that
individually assimilate surface or LEO satellite data (Exp 2,
6, and 9). At 200 hPa, our analysis reveals a robust improve-
ment in ozone simulations for almost all the countries relative
to the “true” atmosphere from all assimilation experiments.
We see an RMSE reduction of 33 %–57 % in most of South-
east Asia (except for Malaysia and Indonesia), 7 %–31 % in
East Asia, and 4 %–81 % in South Asia. These results are
generally in line with our previous work (Shu et al., 2022),
which reports an RMSE reduction of 18 %–49 % between
200–300 hPa after assimilating GEMS data individually, par-
ticularly with a better performance at low latitudes.

The performance of these six assimilation experiments
is roughly comparable for East Asia and Southeast Asia,
whereas the joint assimilation of synthetic observations at
3 h time steps (Exp 8) contributes to the most significant im-

https://doi.org/10.5194/acp-23-3731-2023 Atmos. Chem. Phys., 23, 3731–3748, 2023



3742 L. Shu et al.: Improving ozone simulations in Asia via multisource data assimilation

Figure 8. Monthly mean MDA8 ozone at 200 (left panels), 500 (middle panels), and 700 hPa (right panels) for June 2020 over the Asian
domain, as simulated by the nature run (“True”), the control run (a priori), and two assimilation runs (Exp 7 and 8 in Table 1). The domain-
averaged value is inset. For the control run and assimilation runs, the spatial correlation coefficients relative to the nature run are also inset
in parentheses.

provement (e.g. RMSE decreased by >80 % in Bangladesh)
in ozone simulations in South Asia. This is also observed at
500 and 700 hPa, excluding the limited improvement in sim-
ulated ozone in South Asia after data assimilation except for
Exp 8. We suggest the closer agreement in simulated ozone
against the “true” atmosphere in South Asia that is only ob-
served at 200 hPa is primarily attributable to the stronger re-
trieval sensitivities and smaller observation errors of satellite
measurements (Figs. 1 and 2), as well as the spatial propaga-
tion of information as a result of the much more significantly
improved tropospheric ozone simulations in Southeast Asia
and East Asia.

At 500 hPa, the data assimilation contributes to an RMSE
reduction of 30 %–37 % in Japan, South Korea, and North

Korea, which is more evident than that in China and Mongo-
lia (9 %–25 %). In comparison, the improvements are much
more unequally distributed in Southeast Asia. We see a
higher RMSE reduction of up to 74 % in simulated ozone
in the Philippines, followed by Thailand, Laos, Vietnam, and
Cambodia (35 %–47 %). However, the assimilation also re-
sults in worse ozone simulations in regions like Malaysia and
Indonesia.

At 700 hPa, there is a significant RMSE reduction of
37 %–69 % in most of Southeast Asia (except for Indone-
sia, the Philippines, and Myanmar), which is more promi-
nent than that of East Asia (by 12 %–51 % except for North
Korea). Moreover, it is important to note here that the ad-
ditional assimilation of surface data (Exp 3) beyond GEMS

Atmos. Chem. Phys., 23, 3731–3748, 2023 https://doi.org/10.5194/acp-23-3731-2023



L. Shu et al.: Improving ozone simulations in Asia via multisource data assimilation 3743

Figure 9. The RMSE reduction in simulated ozone at 200 (a), 500 (b), and 700 hPa (c) between the assimilation run and the control run
relative to the nature run for June 2020 in 18 Asian countries.

(Exp 1) adds slightly visible corrections to ozone in some ar-
eas (e.g. China, Cambodia, and Malaysia), while it offsets the
positive effect of GEMS measurements and therefore leads
to a weakened improvement in ozone simulations in regions
like Mongolia, Laos, and Vietnam. This illustrates the verti-
cal propagation of information from surface observations to
upper atmospheric layers.

4 Conclusions

We have applied two independent chemical transport mod-
els (GEOS-Chem and WRF-Chem) through a robust OSSE
to investigate how the assimilation of multiple ozone obser-
vations (GEMS, surface, and LEO satellite observations), in-
dividually or in combination, would benefit the surface and
tropospheric ozone simulations in summer over Asia.

For surface ozone simulations, the individual or joint as-
similation of GEMS and surface observations reduces the
simulation biases and improves the monitoring of ozone ex-
ceedance, spatial patterns, and diurnal variations. In most
cases, the added value of GEMS observations for improv-
ing surface ozone simulations is smaller but non-negligible
compared to surface observations. The joint assimilation of
these two kinds of observations provides the best perfor-
mance, with the mean bias reduced from −2.1 to −0.2 ppbv,
the modelled high-ozone days increasing from 0.20 to 0.75 d,
and the temporal correlation coefficient increasing from 0.55
to 0.70. However, these improvements in surface ozone sim-

ulations are unequally distributed over Asia, generally with
a reduction of 5 %–69 % in the RMSE in most countries.
Specifically, we find that GEMS (surface) observations play
a more critical role in constraining surface ozone in South-
east (South) Asia due to the sparse distribution (absence) of
surface (GEMS) measurements.

For tropospheric ozone profile simulations, the use of
GEMS observations in data assimilation results in a more ac-
curate prediction of ozone vertical distributions, especially
in the middle to upper troposphere at low latitudes. On a re-
gional scale, jointly assimilating all GEMS and surface ob-
servations contributes to an apparent reduction of 7.2, 2.7,
and 1.7 ppbv in the mean ozone bias at 200, 500, and 700 hPa,
respectively. Similar to those at the surface, we observe an
inequality in the improvements in tropospheric ozone simu-
lations. The data assimilation adds the most noticeable cor-
rections in ozone vertical distributions in Southeast Asia, ex-
hibiting an enhanced spatial correlation of up to ∼ 0.16 in
the middle to upper troposphere and an RMSE reduction of
33 %–74 % at the three vertical levels in most countries. In
contrast, the assimilation performance has the largest spatial
variability in South Asia, with RMSE reduced by 4 %–81 %
at 200 hPa but no improvement achieved at the other two lev-
els from most assimilation experiments.

The spatial coverage of assimilated observations, along
with the spatial propagation of information from multiple
observations, significantly influences the assimilation per-
formance, resulting in unequally distributed improvements
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in surface and tropospheric ozone simulations over Asia. In
most cases, the join assimilation of all available synthetic ob-
servations at 1 h time steps provides the best performance,
whereas the assimilation experiments using a 3 h assimila-
tion time step may have provided sufficient information in
some cases, e.g. to constrain the surface ozone simulations in
regions of Southeast Asia and the upper tropospheric ozone
simulations in South Asia. Besides, sensitivity experiments
also reveal the enhanced role of LEO measurements in im-
proving surface and upper tropospheric ozone simulations,
only when inadequate GEMS and surface observations are
applied in data assimilation, especially in South Asia due to
the absence of GEMS observations.

The improvements introduced by the multisource data
assimilation using GEMS geostationary observations are
promising, although the data assimilation experiments still
have difficulty in fully reproducing the observed ozone fea-
tures. As an extension of our preceding work (Shu et al.,
2022), this study offers a comprehensive simulation refer-
ence for future ozone studies in Asia, acknowledging that
the improvement in ozone simulations should be interpreted
within the current OSSE framework. Further applications
need to pay more attention to multiconstituent data assim-
ilation to simultaneously optimize ozone and its precursor
fields, including chemical initial conditions and emissions
(Miyazaki et al., 2012, 2020b; Ma et al., 2019).
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