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Abstract. We interpret space-borne observations from the TROPOspheric Monitoring Instrument (TROPOMI)
in a multi-inversion framework to characterize the 2018–2019 global methane budget. Evaluation of the inverse
solutions indicates that simultaneous source+ sink optimization using methane observations alone remains an
ill-posed problem – even with the dense TROPOMI sampling coverage. Employing remote carbon monoxide
(CO) and hydroxyl radical (OH) observations with independent methane measurements to distinguish between
candidate solutions, we infer from TROPOMI a global methane source of 587 (586–589) Tg yr−1 and sink of
571 Tg yr−1 for our analysis period. We apply a new downscaling method to map the derived monthly emissions
to 0.1◦× 0.1◦ resolution, using the results to uncover key gaps in the prior methane budget. The TROPOMI data
point to an underestimate of tropical wetland emissions (a posteriori increase of +13 % [6 %–25 %] or 20 [7–
25] Tg yr−1), with adjustments following regional hydrology. Some simple wetland parameterizations represent
these patterns as accurately as more sophisticated process-based models. Emissions from fossil fuel activities are
strongly underestimated over the Middle East (+5 [2–6] Tg yr−1 a posteriori increase) and over Venezuela. The
TROPOMI observations also reveal many fossil fuel emission hotspots missing from the prior inventory, includ-
ing over Mexico, Oman, Yemen, Turkmenistan, Iran, Iraq, Libya, and Algeria. Agricultural methane sources are
underestimated in India, Brazil, the California Central Valley, and Asia. Overall, anthropogenic sources world-
wide are increased by +19 [11–31] Tg yr−1 over the prior estimate. More than 45 % of this adjustment occurs
over India and Southeast Asia during the summer monsoon (+8.5 [3.1–10.7] Tg in July–October), likely due
to rainfall-enhanced emissions from rice, manure, and landfills/sewers, which increase during this season along
with the natural wetland source.
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1 Introduction

Methane (CH4) has a 20-year global warming potential 85
times that of carbon dioxide (CO2) and is an important
driver of decadal climate changes (IPCC, 2021). Global
mean methane mole fractions reached 1879 ppb in 2020,
2.6× pre-industrial levels, with a recent growth rate accel-
eration (+10–15 ppb yr−1 in 2019–2020) whose cause is not
well understood (NOAA, 2022; Peng et al., 2022; Saunois
et al., 2020; Stevenson et al., 2022). Strong spatial and tem-
poral heterogeneity in methane emissions and limited obser-
vational coverage have historically challenged our ability to
explain such trends in terms of underlying sources. How-
ever, the recent availability of high-resolution, near-global,
and daily methane measurements from the TROPOspheric
Monitoring Instrument (TROPOMI) provides a transforma-
tive advance in this area. Here, we apply these data in a 4D-
Var inversion+ spatial downscaling framework to quantify
the 2018–2019 global methane budget and determine the im-
portance of missing and unexpected sources.

The atmospheric methane burden increased by an aver-
age of 18 (17–19) Tg yr−1 during 2008–2017 (Saunois et
al., 2020), with conflicting explanations proposed. Top-down
studies have inferred a ∼ 30 Tg yr−1 emission increase over
tropical regions between 2000–2006 and 2017 (Bergamaschi
et al., 2013; Lunt et al., 2019; Jackson et al., 2020). How-
ever, such inferences can be highly sensitive to even mod-
est uncertainties in the atmospheric hydroxyl radical (OH,
the main methane sink) – particularly over the tropics with
their sparse observations (Mcnorton et al., 2016; Rigby et al.,
2017; Turner et al., 2017). Some top-down studies have ap-
proached this problem by co-optimizing methane emissions
and sinks (Lu et al., 2021; Maasakkers et al., 2019; Qu et
al., 2021; Turner et al., 2017; Zhang et al., 2018). Unfortu-
nately, these terms may be insufficiently resolved for robust
inverse analysis when using methane data alone, leading to
aliasing between the optimized source and sink terms (Lu et
al., 2021; Zhang et al., 2021). Isotopic analyses invoke in-
creased biogenic sources (Nisbet et al., 2016; Schaefer et
al., 2016) to explain the post-2016 13C depletion, whereas
ethane-based constraints indicate a fossil fuel emission un-
derestimate (Franco et al., 2016; Kort et al., 2016; Peis-
chl et al., 2016; Xiao et al., 2008). Unfortunately, the latter
approach is limited by the large variability in methane-to-
ethane emission ratios.

Bottom-up inventories also point to substantial uncer-
tainties in the spatial distribution of methane sources. For
instance, the two most commonly used anthropogenic in-
ventories for the US (EDGAR v5, 2019, and GEPA,
Maasakkers et al., 2016) are essentially uncorrelated (R =
0.1) at 0.1◦× 0.1◦ resolution. Meanwhile, current invento-
ries also lack the ability to predict emission sporadicity (e.g.,
Irakulis-Loitxate et al., 2022; Pandey et al., 2019), while tem-
poral representation errors can also arise between inventories
due to time lags associated with their development. Such bi-

ases, when coupled with sparse observations, model trans-
port errors, and source/sink ambiguity, degrade the accuracy
of observation-based (top-down) emission estimates – which
as a consequence often arrive at inconsistent emission allo-
cations (Alexe et al., 2015; Bruhwiler et al., 2014; Jackson et
al., 2020; Lu et al., 2021; Maasakkers et al., 2019; Mcnorton
et al., 2018; Monteil et al., 2013; Qu et al., 2021; Yu et al.,
2020, 2021a, c; Zhang et al., 2021).

TROPOMI provides an unprecedented observational ex-
pansion for addressing these science gaps, offering sub-
10 km global monitoring of total column methane concentra-
tions with dense overland coverage (Bousserez et al., 2016;
Jacob et al., 2016; Maasakkers et al., 2022; Turner et al.,
2018b). Here, we interpret 2 years of TROPOMI data in an
analysis framework that couples multiple 4D-Var adjoint in-
versions with a novel spatial downscaling approach to derive
emissions at 0.1◦× 0.1◦ horizontal resolution. This yields a
suite of candidate solutions for the 2018–2019 methane bud-
get, which we evaluate a posteriori against independent ob-
servations of methane, carbon monoxide (CO), and OH. In
this way we identify the most robust solution set based on
the ensemble of observational constraints and use this new
spatial information to better understand regional and sec-
toral contributions to the methane budget and the underlying
drivers of those emissions.

2 Data and methods

Figure 1 summarizes our inversion framework. We
employ TROPOMI measurements from January 2018–
February 2020 with the GEOS-Chem adjoint model in
a suite of 4D-Var inversions to optimize monthly total
methane emissions at 2◦× 2.5◦ (latitude× longitude) resolu-
tion. These derived emissions are then spatially downscaled
to 0.1◦× 0.1◦. We omit the first and final 4 months from in-
terpretation to further minimize initial condition errors and
to ensure that all derived fluxes are adequately informed by
subsequent observations. Our final analysis timeframe thus
spans 18 months from May 2018 through to October 2019.

2.1 TROPOMI observations and independent evaluation
datasets

TROPOMI was launched in October 2017 on board the
Copernicus Sentinel-5 Precursor satellite into a low-Earth
polar orbit and monitors greenhouse gases and air pollutants
with daily near-global coverage at∼ 13:30 LT (Equator over-
pass) on the ascending node (Hu et al., 2018). We use the
SRON-corrected retrieval described in Lorente et al. (2021),
which is based on the S5P-RemoTeC full-physics algorithm
with albedo correction and updated regularization scheme,
spectroscopic information, and surface treatment. This up-
dated algorithm mitigates the albedo bias that affected earlier
versions (Qu et al., 2021). Relative to the albedo-corrected
product, the prior TROPOMI version exhibits high biases
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Figure 1. Flowchart showing the TROPOMI methane inversion methodology.

over North Africa, the Middle East, and the western US and
low biases over Amazonia, the eastern US, central Africa,
and eastern China (Lorente et al., 2021).

The TROPOMI total column (XCH4 in ppb) retrievals
employ combined solar backscatter measurements in the
near infrared (NIR; 0.8 µm) and shortwave infrared (SWIR;
2.3 µm) and have 5.5/7× 7 km2 nadir resolution on a
2600 km swath. The data have < 1 % nominal bias, 0.6 %
instrument noise, and an estimated 0.8 % forward model er-
ror (Hu et al., 2016). We omit high-latitude (> 60◦) obser-
vations and require quality filter QA > 0.5 (Sentinel-5 Pre-
cursor/TROPOMI Level 2 Product User Manual: Methane,
2022) to avoid errors associated with high solar or viewing
zenith angles, low surface albedo, excessive aerosol loading,
clouds, terrain roughness, and measurement noise (Lorente
et al., 2021). Figure 2 shows the resulting TROPOMI XCH4
data for March 2018–February 2020, gridded to 0.1◦× 0.1◦

using the method described by Sun et al. (2018). In total,
91 million retrievals during May 2018–October 2019 pass
quality filtering and are available for analysis, an average of
31 000 per 2◦× 2.5◦ GEOS-Chem grid cell (Fig. S1). For in-
versions on the 2◦× 2.5◦ model grid, we first average the
TROPOMI observations to this resolution.

Figure S2 shows that TROPOMI measurements within
our inversion timeframe agree well with independent mea-
surements from the Total Carbon Column Observing Net-
work (TCCON, 2014) and the Greenhouse Gases Observing
Satellite (GOSAT, 2022), with major axis regression slopes
of 1.02 (R = 0.82) and 0.99 (R = 0.88), respectively. The
inter-dataset mean biases are −7.1 ppb (0.4 %, TROPOMI –
GOSAT) and −5.4 ppb (0.3 %, TROPOMI – TCCON; see
Text S1). Our initial condition optimization further ensures
that the model and TROPOMI are unbiased with respect to
each other so that mismatches arising during the simulation

timeframe reflect source–sink disparities rather than any sys-
tematic observational bias.

We use a large suite of independent measurements to eval-
uate the inversions. These include methane columns from
the TCCON (2014) network of Fourier transform spectrome-
ters and methane mole fractions from the ObsPack (near-real
time version v2.0; 2021) compilation of ground-based and
airborne measurements. We further use CO and OH measure-
ments from the Atmospheric Tomography (ATom) airborne
campaign (Wofsy et al., 2018) to test inversion success at
separately optimizing methane sources and sinks. ATom fea-
tured pole-to-pole profiling (0.2 to 12 km) during four sea-
sons over 4 years. The flight design is thus well suited to de-
termine whether the optimized OH fields improve or degrade
global model simulations of OH itself and of CO (whose
dominant sink is reaction with OH). Measurements of CO
during ATom were performed using the NOAA Picarro in-
strument with an estimated uncertainty of 3.6 ppb (Chen et
al., 2013). OH measurements during ATom employed the
Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS),
with an estimated uncertainty of 0.018 ppt (1 min average;
Brune et al., 2020).

2.2 Forward model and initial conditions

We use the GEOS-Chem adjoint model (v35), on a 2◦× 2.5◦

grid with 47 vertical layers, to perform the global 4D-Var
inversions. The model uses GEOS-FP meteorological fields
from the National Aeronautics and Space Administration
(NASA) Global Modeling and Assimilation Office (GMAO,
2013), with 5 and 10 min time steps for transport and emis-
sions, respectively. Transport employs fully instantaneous
boundary layer mixing (Wu et al., 2007), a relaxed Arakawa–
Schubert convection scheme (Moorthi and Suarez, 1992),
and a multi-dimensional flux-form semi-Lagrangian (FFSL)
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Figure 2. Observed and simulated methane distributions for March 2018–February 2020. (a) TROPOMI methane column (XCH4) obser-
vations oversampled to 0.1◦× 0.1◦. (b) Methane column distribution predicted by the prior model sampled according to the TROPOMI
observation operator with numbered regions described in the text. (c) The same as panel (b) but for the fixOH optimized ensemble mean. (d)
The same as panel (b) but for the optOH optimized ensemble mean. (e) Prior and optimized methane budgets. Prior probabilities (orange)
equate 1 standard deviation to 25 % of the bottom-up range from Saunois et al. (2020), following Hozo et al. (2005). The black line shows a
linear fit to the solution, emission= 0.93× loss+ 55.26 (units: Tg yr−1). Symbol sizes indicate the mean bias reduction against ObsPack in-
dependent measurements. Annual values are for November 2018–April 2019 plus the average of May–October 2018 and May–October 2019.

treatment for advection (Lin and Rood, 1996). For all model-
satellite comparisons (and at each inversion iteration) the
GEOS-Chem output is sampled according to the TROPOMI
observation operator at the overpass time and location.

We optimize the model initial conditions for 1 Jan-
uary 2018 in three steps, first starting with a 25-year
global spin-up to achieve a globally representative methane
field. We then apply a latitude-dependent correction based
on the TROPOMI–model difference for November 2017–
January 2018 to speed up the optimization process in the next
step. Correction over land employs the median TROPOMI–
model difference by latitude; over oceans (which lack
TROPOMI XCH4 data) we use the 0.1 quantile difference.
Finally, we optimize the resulting fields in a 4D-Var inver-
sion based on TROPOMI data for January–February 2018.
The optimized global methane burden is 0.99× that in the
original 25-year spin-up, and the north : south hemispheric
(NH : SH) XCH4 ratio increases from 1.11 to 1.13.

2.3 Prior model sources and sinks

Global anthropogenic methane emissions in the prior model
use the gridded United Nations Framework Convention on
Climate Change (UNFCCC) inventory for fossil fuels (year
2016; GFEI, Scarpelli et al., 2020) and Emissions Database
for Global Atmospheric Research (EDGAR) v5 for other
sources (year 2015; Crippa et al., 2019, 2020). These are

superseded by the 2012 GEPA inventory for US anthro-
pogenic emissions (Maasakkers et al., 2016), the CanMex
inventory for Canadian (year 2013) and Mexican (year 2010)
oil and gas emissions (Sheng et al., 2017), and for Chinese
coal mine emissions (year 2011) (Sheng et al., 2019). Wet-
land emissions use the 2018–2019 WetCHARTs ensemble
mean flux (Text S2; Bloom et al., 2017), scaling the total to
149 Tg yr−1 to match the 2008–2017 global methane bud-
get from Saunois et al. (2020). We apply Fung et al. (1991)
and Maasakkers et al. (2019) for termite and geological
seep emissions, respectively, and employ biomass burning
emissions for 2018–2019 from the Quick Fire Emissions
Dataset (QFED, Darmenov and Silva, 2015; Koster et al.,
2015). Figure S3 maps these prior emissions, which total
535 Tg yr−1 and include 356 Tg yr−1 from anthropogenic
sources (119 Tg yr−1 livestock, + 101 Tg yr−1 fossil fuel,
+ 80 Tg yr−1 waste, + 37 Tg yr−1 rice, + 19 Tg yr−1 other),
165 Tg yr−1 from natural sources (149 Tg yr−1 wetlands,
+ 16 Tg yr−1 geological seeps and termites), and 14 Tg yr−1

from biomass burning. Emissions from EDGAR v5 vary
monthly based on national and sub-national sectoral activ-
ity levels. GEPA includes monthly emission profiles for US
rice and manure management, and we assume aseasonal
emissions for indoor animal husbandry following Crippa et
al. (2020). The WetCHARTs emissions are monthly, reflect-
ing temporal changes in wetland extent, respiration, and tem-

Atmos. Chem. Phys., 23, 3325–3346, 2023 https://doi.org/10.5194/acp-23-3325-2023



X. Yu et al.: A high-resolution satellite-based map of global methane emissions 3329

perature. QFED emissions are daily with an hourly diel pro-
file applied.

Atmospheric methane removal by OH (87 % of the total
sink, 494 Tg yr−1) in the prior model uses archived monthly
oxidant fields from GEOS-Chem (v5) benchmark simula-
tions (Wecht et al., 2014), which have an annual tropospheric
air-mass-weighted mean of 1.03× 106 molec. cm−3 and a
1.04 NH : SH ratio. Other minor sinks include stratospheric
oxidation (6 %, 33 Tg yr−1) based on NASA’s Global Model-
ing Initiative monthly loss frequencies (Murray et al., 2013),
soil uptake (6 %, 34 Tg yr−1) following Fung et al. (1991),
and tropospheric oxidation by chlorine (2 %, 10 Tg yr−1) us-
ing 3D monthly Cl fields from Sherwen et al. (2016). The
above sinks total 571 Tg yr−1 (Fig. 2e) and yield a 9.1-year
methane lifetime in our prior simulations.

Simulations to evaluate posterior model performance for
CO and OH employ anthropogenic emissions (for CO,
NOx , and VOCs) from the Community Emissions Data Sys-
tem (Hoesly et al., 2018), the 2016 EPA National Emis-
sions Inventory (NEI) v1 (NEIC, 2019), and the Air Pollu-
tant Emission Inventory (APEI, 2020). Corresponding bio-
genic and biomass burning emissions are obtained from the
Model of Emissions of Gases and Aerosols from Nature
(MEGANv2.1; Hu et al., 2015), and QFED (Koster et al.,
2015).

2.4 Inversion frameworks and sensitivity to OH

Optimizations are performed in the GEOS-Chem adjoint
model (Henze et al., 2007) through iterative minimization of
the Bayesian cost function J (x):

J (x)= (x− xa )TS−1
a (x− xa )+ γ (y−F (x))TS−1

O (y−F (x)) . (1)

The first right-hand term imposes a penalty based on the
deviation of x (the state vector to be optimized) from xa (the
prior estimates), weighted by the prior error matrix Sa. The
state vector x includes monthly 2◦× 2.5◦ grid-level emis-
sions and (in some cases) the 2-year-mean hemispheric loss
to OH. This penalty is counteracted by the second right-hand
term, which reflects the mismatch between the observations
y and model predictions F (x) sampled in the same man-
ner, weighted by the observing system error matrix So. The
regulation parameter γ is applied to balance the influence
of the above two terms in the overall cost function J (x).
Our inversions run continuously from January 2018 to Febru-
ary 2020, optimizing monthly grid-total methane emissions
and 26-month mean hemispheric OH concentrations. To min-
imize any effects from initial conditions and to allow for suf-
ficient observational constraints throughout the analysis pe-
riod, we focus interpretation on the 18-month period from
May 2018 to October 2019. Annual values discussed later
are for November 2018–April 2019 plus the mean of May–
October 2018 and May–October 2019.

The prior error covariance matrix Sa for methane emis-
sions is constructed as follows. We use Maasakkers et

al.’s (2016) scale-dependent uncertainties for anthropogenic
emissions over the GEPA and CanMex domain, as well as
Sheng et al.’s (2019) province-level error estimates for Chi-
nese coal mine emissions. For other global anthropogenic
emissions we use the gridded fossil fuel uncertainty estimates
from Scarpelli et al. (2020) and assume 50 % uncertainty in
the remaining sources (Maasakkers et al., 2019; Yu et al.,
2021c). Uncertainties for wetland emissions are derived as 1
standard deviation across the WetCHARTs ensemble, aver-
aging 105 % at the grid level. Other sources employ a prior
error standard deviation of 50 %, consistent with earlier stud-
ies (Maasakkers et al., 2019; Sheng et al., 2018; Turner et
al., 2015; Wecht et al., 2014; Yu et al., 2021c). The diagonal
of the prior error matrix combines the above flux-weighted
terms in quadrature and averages 66 %. We find that the spa-
tial covariance in the total prior emissions decreases by 50 %
over a mean distance of approximately 300 km, and we pop-
ulate the exponentially decaying off-diagonal elements of Sa
accordingly. This is comparable to the 200–500 km correla-
tion length scales applied in previous methane studies (Mon-
teil et al., 2013; Wecht et al., 2014; Yu et al., 2021c).

We test the impacts of OH on our results through three sep-
arate inversion treatments: the first uses the prior OH with no
optimization, while the second and third optimize methane
loss to OH on a hemispheric basis with an assigned uncer-
tainty (included in Sa) of either 1 % or 10 % (Prather et al.,
2012; Saunois et al., 2020). We find that both the 1 % and
10 % uncertainty assumptions for OH give effectively iden-
tical inversion solutions: in both cases the optimization has
sufficient OH flexibility to correct a global mean budget im-
balance on that basis, with the remaining spatial errors re-
solved through grid-level emission adjustments (Fig. S4). We
therefore mainly discuss results from the 1 % optimization
(referred to as optOH), along with those from the fixed OH
(fixOH) inversion. Other minor sinks, such as soil uptake, are
also uncertain but not addressed here.

Observing system errors combine measurement errors and
forward model errors. Building on Heald et al. (2004), we
compute the elements of So (which is diagonal) from the
residual standard deviation between the observations and the
prior simulations within a 2◦× 2◦ moving window, further
imposing a lower bound of 56 ppb2 (0.25 quantile of the over-
all results). The resulting observing system errors average
11 ppb, mainly reflecting instrument noise, and are compa-
rable to previous estimates for GOSAT and TROPOMI (11–
13 ppb; Maasakkers et al., 2019; Zhang et al., 2020).

The regulation parameter γ is defined through sensitivity
inversions for January 2018 with γ varying from 10−5 to
103. The optimal monthly value is selected based on the re-
sulting L curve and total error reductions (Fig. S5) and then
scaled to the number of observations for the full 2-year inver-
sion period. The result (γ = 0.03) is consistent with previous
TROPOMI inversions by Qu et al. (2021) (γ = 0.002) given
their optimization of annual rather than monthly emissions.
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Adjoint 4D-Var inversions do not directly provide poste-
rior error estimates. Methods are available to indirectly de-
rive such estimates (Bousserez et al., 2015; Yu et al., 2021a);
however, our previous observing system simulation experi-
ments (OSSEs; Yu et al., 2021a) showed that for methane
the computed posterior error reductions do not correlate with
more accurate flux estimates in the presence of model trans-
port errors and spatially inaccurate prior emissions. Here, we
instead combine multiple inversion strategies (Sect. 2.5) with
an ensemble of independent observations (Sects. 2.1, 3) to
test the robustness of our results and characterize the associ-
ated uncertainties.

Recent inverse analyses by Qu et al. (2021) likewise ex-
amined the global methane budget using TROPOMI (and
GOSAT) observations. Our study advances on that work in
several ways. First, we optimize monthly rather than an-
nual fluxes to identify seasonal patterns of variability. Sec-
ond, in place of a traditional analytical optimization we com-
bine 4D-Var with new inverse formalisms for better identi-
fication of missing sources. Third, we develop a new down-
scaling approach to constrain emissions at high resolution
and use this framework to elucidate flux mechanisms and
missing sources. Finally, our analysis leverages an updated
TROPOMI methane product (Lorente et al., 2021) that cor-
rects an albedo-dependent bias present in the version used by
Qu et al. (2021).

2.5 Inversion ensemble to explore sensitivity to missing
sources

Our previous OSSE-based work (Yu et al., 2021a) empha-
sized that classical scaling factor (SF)-based inversions have
limited ability to recover missing sources. Here, we apply
multiple inversion formalisms to diagnose and address this
issue:

1. Classical SF inversions (SF). SF inversions employ the
bottom-up inventories described earlier as prior. These
inversions solve for scale factors s in x = s ◦ xa.

2. Background increment inversions (BI). BI inversions
employ a revised prior consisting of the above inven-
tories scaled by 90 % plus the remaining 10 % as a uni-
form overland flux. This revised prior is then subjected
to SF optimization.

3. Observational guess inversions (OG). OG inver-
sions employ a revised prior informed by long-term
TROPOMI data for better recovery of missing sources.
Specifically, we find from sensitivity simulations that
adding 75 Tg yr−1 to the bottom-up emissions results
in a globally unbiased simulation across 2018–2020.
We distribute this 75 Tg yr−1 spatially based on the
observation-model enhancement mismatches, where the
grid-level enhancements are computed as the local

XCH4 value minus the zonal mean (2◦ bins). Figure S6
shows the resulting grid-level emission increments.

4. Emission enhancement inversions (EE). EE inversions
solve for absolute flux increments rather than scale fac-
tors via x = s◦xbase+xa. We define xbase as 2600 kg per
box per time step, which is the mean emission for grid
cells exceeding 1 kg per box per time step. We showed
previously that this approach has better performance for
missing sources than the above three SF inversions (Yu
et al., 2021a).

In the following, we interpret the multi-inversion mean as
our base-case solution and the range as the corresponding
uncertainty estimate.

2.6 Emission downscaling

We present here a new method to spatially downscale the
satellite-derived emissions from 2◦× 2.5◦ to 0.1◦× 0.1◦

for potential use in models. The downscaling, which com-
bines information from the TROPOMI column enhance-
ments, the prior emission estimates, and their uncertainties,
is necessitated by the fact that the current GEOS-Chem ad-
joint model does not have global simulation capability at
finer than 2◦× 2.5◦ resolution. Furthermore, each of the 2-
year inversions performed here required> 12 000 CPU hours
(> 80 d on multiple processors) to converge, making higher-
resolution optimizations computationally impractical. How-
ever, the inventories employed as prior, as well as the
TROPOMI observations themselves, contain information at
much finer scales (e.g., 0.1◦× 0.1◦ and 7× 7 km2) – and
thus contain additional high-resolution constraints that are
neglected by the 2◦× 2.5◦ inversions. We therefore leverage
this information to spatially downscale the optimized emis-
sions to 0.1◦× 0.1◦ via

xj
′
=ωiβOBS, i→j six

′
a, j + (1−ωi)(

1+βprior, i→j (si − 1)
)
x′a, j . (2)

Equation (2) downscales the original optimized emissions
from a given 2◦× 2.5◦ parent grid cell i to the subgrid scale
(xj ′ at 0.1◦× 0.1◦) by combining spatial information from
the observations (first right-hand term) and the prior (second
right-hand term). Here, ωi is a weighting factor to balance
these two terms; βOBS, i→j and βprior, i→j are spatial down-
scaling operators representing the observational and prior in-
formation, respectively; xa, j

′ represents the 0.1◦× 0.1◦ prior
emissions for subgrid j ; and si is the 2◦× 2.5◦ scale factor
derived for parent grid cell i.

The observational downscaling operator βOBS, i→j spa-
tially allocates the subgrid-level emissions according to the
distribution of column enhancements over the regional back-
ground:

βOBS, i→j =
(
y2y,j − ybg,i

)/∑
k∈j

(
fk
(
y2y,k − ybg,i

))
, (3)
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where y2y,j is the 2-year mean (March 2018–February 2020)
TROPOMI methane column sampled to 0.1◦× 0.1◦ (Sun et
al., 2018), and ybg,i is the methane background defined as
95 % of the y2y,j 0.1 quantile across the parent 2◦× 2.5◦

grid cell i. This background definition was determined via
OSSE analysis (described below), with the corresponding pa-
rameters varied systematically over a wide range to identify
values yielding the best consistency with the true underlying
fine-scale emissions. fk quantifies the prior fraction of total
2◦× 2.5◦ emissions contained in each subgrid k ∈ j .

The prior downscaling operator βprior, i→j spatially allo-
cates the derived flux enhancement si − 1 based on the prior
emission magnitudes and their uncertainties:

βprior,i→j = ε
′

a,jfj
/∑
k∈j

(
f 2
k ε
′
a,k

)
, (4)

where ε′a,j is the prior emission error estimate at 0.1◦× 0.1◦.
In this way larger corrections are preferentially assigned to
locations with higher prior emissions and uncertainties.

When summed to 2◦× 2.5◦, both the prior and obser-
vational downscaling terms maintain the original adjoint-
derived emissions. Weighting between these terms is com-
puted as

ωi = εa,i σ̂a,i
/

maxl∈i
(
εa,l σ̂a,l

)
, (5)

where εa,i is the prior emission error estimate at 2◦× 2.5◦,
and σ̂a,i is the log-transformed standard deviation of all
0.1◦× 0.1◦ prior emissions contained in that parent grid cell
(with an imposed zero lower bound). As shown in Fig. S7, the
resulting downscaling relies most frequently on the prior in-
formation, particularly for low-emission areas, but hotspots
and locations with higher prior uncertainties are preferen-
tially informed by the observations.

Compared to existing emission downscaling methods that
rely on prior and posterior error covariance estimates (Cus-
worth et al., 2021), or are based solely on satellite data (Liu
et al., 2021), our approach is unique in combining the prior
emission information (and its uncertainty) with the oversam-
pled TROPOMI observations themselves. Variable weighting
between these terms permits greater influence from the ob-
servations when the prior emissions are more uncertain. The
method thus assumes robust prior error estimates, a caveat
that also applies to Cusworth et al. (2021) and similar meth-
ods.

We tested the effectiveness of this downscaling approach
in a 1-month OSSE analysis over North America (which
features all relevant source types and a computationally
tractable model domain). These synthetic inversions follow
Yu et al. (2021a) in prescribing true and prior emissions
from distinct inventories (true: gridded EPA+WetCHARTs
ensemble mean; prior: EDGAR v5+ a single WetCHARTs
member) that differ by 76 Gg d−1 domain-wide and have
spatial R = 0.51 at 0.25◦× 0.3125◦. The OSSEs were per-
formed at 2◦× 2.5◦ by sampling the true-state model accord-

ing to the TROPOMI coverage for August 2018 (with mea-
surement noise applied), followed by 4D-Var optimization as
detailed by Yu et al. (2021a). The 2◦× 2.5◦ adjoint solution
was then spatially downscaled to 0.25◦× 0.3125◦ following
Eq. (2) and compared to both the true fluxes and to the ad-
joint solution performed directly on the fine-scale grid. Tests
were performed both in the presence and absence of model
transport error (Yu et al., 2021a).

Table 1 shows that in the absence of transport error
our downscaling approach outperforms the coarse-grid so-
lution and approaches the skill of the native fine-scale in-
version in representing the true fluxes. The benefits of the
4D-Var+ downscaling approach are even more pronounced
when accounting for transport error. Specifically, our pre-
vious OSSE analyses showed that high-resolution 4D-Var
inversions failed to improve methane emission estimates at
25 km for scenarios with both transport error and spatially
biased emissions (Yu et al., 2021a). Our tests here show that
spatial downscaling of the 2◦× 2.5◦ adjoint solution strongly
mitigates these effects (Table 1), yielding a larger bias reduc-
tion (98 % versus just 16 %) and more accurate flux distribu-
tion (R = 0.70 versus 0.60) than the native fine-grid 4D-Var
solution. Figure S8 further shows that the downscaled OSSE
solution reduces the prior bias by 17 %–56 % for sources ex-
ceeding 1000 kg CH4 per box per day (accounting for 99 %
of the domain-wide emissions) when not subject to trans-
port error. In the presence of transport error, the downscal-
ing method has limited improvement for the very largest
sources (> 2× 105 kg per box per day) but nevertheless ex-
hibits strong bias reduction (21 %–50 %) for sources between
1× 103–2× 105 kg per box per day (which account for 96 %
of domain-wide emissions). Given these results and the finer-
scale information available here, for the present work we ap-
ply Eq. (2) to spatially downscale our inversion solutions to
0.1◦× 0.1◦.

3 Derived global methane budget and sensitivity to
OH

3.1 Methane source–sink ambiguity

The set of inversion configurations includes multiple for-
malisms for emission adjustment and two separate treatments
for methane loss: fixOH inversions use the prior OH as a
fixed constraint, while optOH inversions optimize both OH
concentrations (as a 2-year hemispheric mean) and methane
emissions. Figure 2 shows that the fixOH and optOH multi-
model means yield similar atmospheric methane distribu-
tions, with the strongest enhancements over central Africa,
South and East Asia, the Middle East, Amazonia, and the
southern US and the lowest column concentrations over high
southern latitudes in Australia, South America, and Africa.
The two approaches also provide comparable improvement
with respect to the TROPOMI observations, with > 97 %
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Table 1. Downscaling performance evaluation via OSSE1.

Without transport error

Downscaled Fine-grid Fine-grid Coarse-grid Coarse-grid
solution prior adjoint prior adjoint

Domain-wide bias reduction 68 % 78 % 68 %
RMSE2 15 790 13 830 11 489 13 236 12 976
R 0.67 0.57 0.74 0.45 0.50
Slope of least squares fit 0.97 0.61 0.84 0.28 0.42

With transport error

Domain-wide bias reduction 98 % 16 % 98 %
RMSE2 15 461 13 830 19 292 13 236 12 917
R 0.70 0.57 0.60 0.45 0.51
Slope of least squares fit 1.04 0.61 1.01 0.28 0.45

1 Observing system simulation experiments performed for 1 month over North America. 2 Root mean square error, units: kg per day
per box.

mean bias reduction and > 45 % root mean square error
(RMSE) reduction.

Despite the above patterns of agreement, the fixOH
and optOH inversions lead to opposing methane emission
changes relative to the prior budget. The fixOH multi-model
mean provides a global methane source of 587 Tg yr−1 (10 %
higher than the prior) and a sink of 571 Tg yr−1. The optOH
multi-model mean yields a 514 Tg yr−1 source (4 % below
the prior) and a 492 Tg yr−1 sink; the latter is driven by up-
dated OH fields with an air-mass-weighted NH:SH ratio of
0.98. Figure 2e shows that the fixOH and optOH solution sets
adhere closely to a linear relationship between global sources
and sinks, in all cases with a ∼ 20 Tg yr−1 growth rate in the
atmospheric methane burden.

While mutually inconsistent, the fixOH and optOH global
methane sink terms are each physically tenable, falling,
respectively, towards the high- and low-end estimates of
Saunois et al. (2020) top-down budget assessment for 2008–
2017 (501–574 Tg yr−1). The OH fields dominating methane
removal in these two scenarios are likewise physically vi-
able based on available independent constraints. If we at-
tribute the optOH methane loss correction entirely to OH, we
arrive at global mean [OH]= 8.27× 105 molec. cm−3, plac-
ing the fixOH (1.03× 106 molec. cm−3) and optOH solutions
near the middle and lower end of the range indicated by
prior assessments (0.85–1.30× 106 molec. cm−3; Krol and
Lelieveld, 2003; Li et al., 2018; Montzka et al., 2011; Naik et
al., 2013; Patra et al., 2021; Prinn et al., 2001, 2005; Rigby et
al., 2017; Zhao et al., 2019). Our 2018–2019 analysis time-
frame also spans an El Niño, which has been tied both to
global OH decreases and to methane growth rate accelera-
tion (Anderson et al., 2021; Turner et al., 2018a) – further
complicating a differentiation between the fixOH and optOH
solutions.

Additional ambiguity arises from the fact that the op-
tOH methane sink adjustments could partly reflect uncer-
tainty in the CH4+OH rate coefficient, which here follows
Burkholder et al. (2020). While the rate at 298 K has been
verified to within 1 % across many lab experiments, uncer-
tainties increase for higher and lower temperatures (up to
13 % within 273–313 K, Burkholder et al., 2020). Given all
of the above considerations, we turn to independent measure-
ments of methane, CO, and OH to assess the fixOH versus
optOH solution fidelity.

3.2 Independent model assessments to discriminate
between conflicting methane budgets

Ground-based methane column (XCH4) observations from
the TCCON network (GGG2014; 2014) show comparable
improvements over the prior for both the fixOH and optOH
solutions (and for their individual member inversions), with
71 % (from−12.9 ppb to 3.8 ppb) and 66 % (to 4.3 ppb) mean
bias reductions, respectively (Fig. 3, Table S1). However,
global in situ measurements from ObsPack (near-real time
version v2.0; 2021) reveal a 93 % (from −13.8 to −0.9 ppb)
absolute mean bias improvement for the fixOH framework
compared to just 39 % (to 8.4 ppb) for optOH (Fig. 3, Ta-
ble S1). Figure 3 further shows that the optOH solutions
overcorrect the prior negative bias with respect to ObsPack,
providing a first piece of evidence for a methane sink under-
estimate in this inversion.

Remote observations of OH and CO (the primary OH sink)
from the ATom airborne campaign (Wofsy et al., 2018) also
point to an OH underestimate in the optOH solution. Fig-
ure S9 compares the ATom observations for these species
with predictions from supplemental GEOS-Chem simula-
tions (configured as in Gonzalez et al., 2021) constrained to
the fixOH and optOH oxidant fields. With the exception of
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Figure 3. Evaluation of the prior and optimized methane simulations (May 2018–October 2019) against (a) TROPOMI XCH4 observations,
(b) ObsPack in situ methane measurements, and (c) TCCON ground-based methane column observations. Numbers inset indicate the mean
model-observation bias (unit: ppb).

ATom 3, the mean model OH biases with respect to ATom
observations are ∼ 80 % lower for fixOH than for optOH
(mean differences are all significant based on a paired t test
at 95 % confidence). These optOH results exhibit a consis-
tent OH underestimate (averaging 0.020–0.044 ppt) that ex-
ceeds the 0.018 ppt measurement uncertainty. Biases in the
simulated background CO levels are likewise lower (by 7 %–
87 %) in the fixOH simulations, with a clear CO overesti-
mate for optOH (Fig. S9). Again, the mean fixOH / optOH
differences are all statistically significant at the 95 % confi-
dence level, with model-measurement discrepancies for op-
tOH (7–12 ppb) exceeding the 3.6 ppb measurement uncer-
tainty. While the ATom timeframe (2016–2018) is distinct
from that of the TROPOMI inversions (2018–2019), the
model is sampled at the time of measurement for both com-
parisons. We therefore expect the OH and CO biases high-
lighted above to likewise manifest for 2018–2019 – an ex-
pectation that is supported by the ObsPack comparison.

When co-optimizing methane emissions and loss we thus
find that the solutions can achieve a good fit to the TROPOMI
data themselves but degrade model agreement with other ob-
servations of methane, OH and CO. We conclude that solv-
ing for global methane sources and sinks based solely on
satellite observations of methane itself remains an uncon-
strained problem – even with the dense TROPOMI data cov-
erage. In the same way, previous studies using methane data
to optimize OH alongside emissions are likely subject to
strong error correlations between the derived sources and
sinks (Lu et al., 2021; Maasakkers et al., 2019; Qu et al.,
2021; Zhang et al., 2018, 2021). On the other hand, the com-
parisons here provide robust support for the fixOH inversion
solutions based on their fidelity against independent atmo-
spheric observations.

We thus focus the remainder of this paper on the fixOH
results and treat the corresponding multi-model mean as our
base-case solution. The fixOH constituent inversions (scale
factor – SF, background increment – BI, observational guess
– OG, and emission enhancement – EE) each employ an al-
ternative framework for spatial emission correction, as de-
scribed earlier. Figure S10 shows that these individual mem-
bers converge closely (within 0.5 %) in terms of the total
derived methane flux, with a high degree of spatial simi-
larity in their derived emissions. Differences in adjustment
magnitudes emerge, with the OG and EE frameworks gen-
erally yielding the largest and smallest emission corrections,
respectively. Overall, the derived grid-level emissions agree
to within 30 % for 42 % of the emitting model grid cells,
with consistent adjustment direction over areas encompass-
ing 65 % of the total optimized emissions. In what follows
we focus discussion on these areas of consistency and use
the multi-model spread to draw insights into some of the key
disparities.

4 Global methane sources and top emitting
countries

We infer from the TROPOMI observations an optimized
global methane flux of 587 (586–589) Tg yr−1 for 2018–
2019, including 375 (367–387) Tg yr−1 from anthropogenic
sources, 197 (185–207) Tg yr−1 from natural sources, and
15 (14–15) Tg yr−1 from biomass burning. Values listed re-
flect the fixOH multi-model mean and range, with emis-
sions partitioned to individual sources according to the prior
grid-level sectoral fractions. Our derived natural source falls
at the low end of the 2017 Global Methane Project esti-
mates (GMP; 194–489 Tg yr−1), whereas we infer a larger
source from agriculture and waste than GMP does (253–
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262 versus 198–246 Tg yr−1) (Jackson et al., 2020). The
TROPOMI-derived methane emissions from fossil fuel and
industry of 118 (112–127) Tg yr−1 lie between the GMP top-
down (91–121 Tg yr−1) and bottom-up (121–164 Tg yr−1)
estimates for that sector. Jackson et al. (2020) attributed the
global methane emission increase between 2000–2006 and
2017 mainly to anthropogenic sources, with similar contri-
butions from agriculture/waste and fossil fuel. Here, we find
that emissions from agriculture and waste are even larger
than estimated by GMP.

Table 2 lists the top 10 national contributors to global
anthropogenic methane emissions (see Table S2 for natu-
ral and total emissions). Together, we find that these con-
tributors account for 58 % of the global anthropogenic
flux, and they similarly represent 60 % of the global pop-
ulation. However, within this group there are large dif-
ferences in per capita emissions, which are 72 %–286 %
higher than the global average in Brazil, the US, Russia,
and Iran but 17 % lower in China and 45 % lower in In-
dia. Table 2 also includes three of the five countries with
the largest natural methane emissions, largely from wet-
lands: Brazil (39 Tg yr−1), the US (16 Tg yr−1), and Rus-
sia (12 Tg yr−1). Together with the Republic of the Congo
(22 Tg yr−1) and Canada (15 Tg yr−1) these countries ac-
count for 53 % of natural methane sources globally. This
places Brazil (59 Tg yr−1) and the US (43 Tg yr−1) as the
second- and third-largest methane emitters in terms of total
flux, after China (61 Tg yr−1, 94 % anthropogenic; Table S2).

In total 8 of the 10 nations in Table 2 (China, India,
the US, Russia, Brazil, the European Union, Pakistan, In-
donesia) are likewise identified by Worden et al. (2022) as
among the top 10 anthropogenic emitters globally. Our in-
ferred anthropogenic fluxes for the US and China agree well
(within ∼ 10 %) with the GOSAT-based results from Wor-
den et al. (2022) and with the GOSAT+TROPOMI results
from Qu et al. (2021). Anthropogenic emissions derived here
are likewise within 10 % of Worden et al.’s (2022) results
for India and the European Union, with both studies lower
(20 %–50 %) than Qu et al. (2021). Our results for Russia and
Iran are 21 %–28 % higher than the GOSAT-based estimates,
mainly reflecting oil, gas, and coal emissions and ∼ 40 %
lower for Brazil, mainly due to livestock. Emissions for Pak-
istan and Indonesia agree to within 1 % for the TROPOMI-
and GOSAT-based results (Worden et al., 2022). However,
we find here that anthropogenic emissions from Bangladesh
(7 Tg yr−1 versus a prior of 4 Tg yr−1) are 3× higher than
the GOSAT estimate (2 Tg yr−1), while adjacent emissions
from Myanmar (4 Tg yr−1) are half the GOSAT estimate.
Worden et al. (2022) conclude that the GOSAT-derived emis-
sions for Myanmar are anonymously high due to impacts
from their prior assumptions; we attribute much of that flux
to Bangladesh and show later that it mainly arises during the
South Asian monsoon.

5 Wetland sources are underestimated in the tropics

The TROPOMI-derived wetland fluxes (excluding rice) to-
tal 173 (155–182) Tg yr−1 globally, representing 29 %(26 %–
31 %) of the total methane source and 88 % (84 %–91 %) of
the natural source. Figures S3, S11, and 4e show that global
wetland emissions are lowest during October–February (12–
13 Tg per month) and highest in July (17 Tg per month) due
to strong Northern Hemisphere seasonality. We find through
the inversions that global wetland fluxes are 24 Tg yr−1

higher than the prior estimate, with the increase mainly orig-
inating in the tropics (82 % within ± 23.5◦ latitude). The
tropics thus account for 70 % (68 %–72 %) of our optimized
wetland emissions. Northern temperate wetlands contribute
most of the remainder (46 Tg yr−1 from 23.5–66.5◦ N) with
a magnitude that is in line with the prior bottom-up esti-
mate (44 Tg yr−1). Our derived global wetland fluxes are
∼ 20 % higher than previous GOSAT-based estimates (145–
148 Tg yr−1: Ma et al., 2021; Zhang et al., 2021), with similar
latitudinal distribution to that found by Ma et al. (2021).

Over Amazonia (box 5 in Fig. 2b), we obtain wetland
fluxes of 51 (44–54) Tg yr−1, 29 % of the global wetland to-
tal. These fluxes are underestimated in the WetCHARTs prior
inventory by 9 (2–11) Tg yr−1; the true disparity is likely
even larger, since the inversions do not fully mitigate the
prior regional XCH4 bias (Fig. 2c). Low observation density
due to clouds (Fig. S1) leads to some ambiguity in the spatial
distribution of these derived fluxes: the SF and BI inversions
allocate the upward corrections according to the prior spa-
tial patterns over Amazonia, while the OG inversion iden-
tifies broader sources extending to northern Brazil (Figs. 4
and S10). Upward corrections occur mainly during the wet
season (December–April) and are temporally correlated with
runoff (mean monthly R = 0.85, ERA5, 2019). This strong
dependence on hydrology is likewise seen in the GOSAT-
inferred flux increases over Amazonia that has been linked
to increased flooding with strengthening Walker circulation
(Barichivich et al., 2018; Zhang et al., 2021). However, east-
ern Brazil is also an agricultural frontier with forests transi-
tioning to agricultural lands (Nepstad et al., 2019; Zhang et
al., 2021), and our inversions point to a 9 % (5 %–15 %) un-
derestimate of Amazonian livestock sources. Bottom-up cal-
culations suggest a 33 % increase in this source from 2010–
2018 (EDGAR v6, 2021); if such trends are in fact underesti-
mated then our prior-based partitioning would imply an even
larger livestock contribution to the derived regional emission
corrections.

The inversions also point to a substantial (26 % [5 %–
36 %]) upward correction for central African wetlands (box
12 in Fig. 2b) that is concentrated during December–May
(Fig. S12). The optimized regional emissions are then 33
(28–36) Tg yr−1, 19 % of the global wetland total. How-
ever, while these adjustments effectively correct the prior
model bias for this latitude band, there is a clear XCH4
overcorrection for the Democratic Republic of the Congo
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Table 2. Top 10 contributors to global anthropogenic methane emissions.1,2

Sector emissions (Tg yr−1)

Total Change Per capita Wetland Agriculture Fossil fuel Other
anthropogenic from prior anthropogenic and waste

emissions (%) emissions (kg per
(Tg yr−1) year per person)

China 57 (52–61) −4 40 2 (2–2) 34 (32–36) 18 (16–21) 6 (6–6)
India 36 (34–38) 16 26 2 (2–3) 32 (30–33) 2 (2–2) 3 (3–3)
US 27 (26–28) −5 82 15 (14–15) 16 (15–17) 11 (10–11) 2 (1–2)
Russia 26 (22–29) −21 184 10 (8–12) 5 (5–6) 21 (17–24) 2 (2–4)
Brazil 20 (20–21) 6 102 35 (31–37) 20 (19–20) < 0.2 4 (4–4)
European Union 17 (15–17) −9 38 2 (1–2) 14 (12–14) 2 (2–2) 2 (2–2)
Pakistan 10 (9–10) 28 44 < 0.1 9 (8–9) 1 (1–1) 1 (1–1)
Indonesia 10 (9–10) 15 37 9 (8–10) 8 (8–8) 1 (1–1) 2 (2–2)
Iran 9 (7–9) 70 103 < 0.2 2 (2–3) 6 (4–7) 1 (0–1)
Bangladesh 7 (5–8) 60 43 1 (1–1) 7 (4–8) < 0.1 < 0.4
Others 157 (151–168) 13 50 97 (87–103) 111 (108–118) 37 (36–38) 37 (30–46)

1 This is based on the fixOH inversion ensemble mean and range. 2 Values in parentheses indicate the range in emission estimates across the suite of inversions.

(DRC; Fig. 2c). Here, the modeled XCH4 enhancement over
the background (Fig. S13) is degraded from a prior model-
observation mismatch of +3 to +11 ppb. The low data den-
sity over central Africa and Amazonia (Fig. S1) thus appears
to cause some tropical flux misattribution – with the DRC
overcorrection offset by under-corrections over Amazonia
(as discussed above), Nigeria, and the nearby Sudd wetlands
(Fig. 2c). The latter region is examined further below.

Figure 2a shows that the south Sudd wetlands (box 13 in
Fig. 2b) are a major methane hotspot that is underestimated
in the prior model by a column average of 41 (21–65) ppb.
Despite this, we derive a regional upward emission correc-
tion of just 13 % (optimized flux: 1.3 [1.2–1.4] Tg yr−1). This
yields a residual underestimate (Fig. 2c), reflecting the alias-
ing discussed above and showing that the optimized south
Sudd fluxes are still too low. Anomalous hydrology may con-
tribute to these elevated Sudd fluxes: wetland extent for this
area was ∼ 10 % higher in 2019 than the 2010–2019 mean
(Jensen and Mcdonald, 2019), and ERA5 reanalysis (2019)
points to elevated precipitation over central Africa during
September–November (22 % above the 2010–2019 mean).
This interpretation is consistent with a previous study by
Lunt et al. (2021) linking anomalous East Africa rainfall dur-
ing the 2018 long rains (March–May) and 2019 short rains
(October–December) with 10 %–40 % methane emission in-
creases over the south Sudd. Over longer timescales, GOSAT
analysis has pointed to a 3 Tg yr−1 emission increase over
the broader Sudd region caused by increased inflow from the
White Nile and Sobat rivers (Lunt et al., 2019; Maasakkers et
al., 2019; Parker et al., 2020). Previous SCIAMACHY- and
TROPOMI-based analyses have likewise identified concen-
tration hotspots over this area (Hu et al., 2018; Frankenberg
et al., 2011).

North American wetlands in Alberta, Saskatchewan, and
the US Upper Midwest are revised downward (by −1.6
[−0.7 to −2.6] Tg yr−1 for box 1 in Fig. 2b), with most
of the adjustment occurring during early summer (−18 %
for June–July vs. −1 % for August–September; Fig. 4). We
thus obtain optimized regional wetland emissions of 16 [15–
17] Tg yr−1, 9 % of the global flux from this source. Wetland
emissions over this area are highly sensitive to soil tempera-
ture and surface water extent (R> 0.7 and R> 0.4, respec-
tively; Fig. 5). The stronger June–July adjustment derived
here suggests that the post-thaw onset of northern wetland
fluxes occurs too early in WetCHARTs, which uses surface
skin rather than soil temperatures to predict emissions. Sim-
ilar downward emission corrections have been inferred from
GOSAT (Zhang et al., 2021), aircraft, and long-term eddy
covariance measurements (Yu et al., 2021c).

Across the wetland regions examined above, Fig. S14
shows that our optimized emissions fall towards the middle
of the land-surface model estimates from the Global Carbon
Project (GCP; details on these bottom-up models and their
differences are provided by Saunois et al., 2020). Among the
GCP bottom-up estimates, we see in Fig. S14 that simple
model parameterizations can obtain comparable agreement
with the TROPOMI-optimized emissions as more complete
process-based models. For example, LPJ-WSL, a parsimo-
nious model that predicts net emissions based on soil charac-
teristics without explicitly representing oxidation, transport,
or wetland plant types, achieves similar fidelity (in terms of
bias and RMSE versus the optimized values) as JSBACH
(Kleinen et al., 2020), which features more sophisticated
treatment of soil carbon, roots, and plant-mediated processes.
Many simple wetland models rely on reanalysis-based wet-
land extent estimates such as the Global Lakes and Wet-
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Figure 4. (a) Optimized global methane emissions based on the fixOH inversion ensemble. (b–d) Seasonal fixOH emission corrections. Dots
indicate missing sources where the EE and BI inversions point to positive corrections that the SF inversion misses. (e) Time series of prior
and optimized methane sources and sinks.

lands Database (GLWD) (Lehner and Döll, 2004); within the
WetCHARTs ensemble we find here that GLWD-based flux
predictions overestimate emissions in northern North Amer-
ica, while underestimating those in central Africa (Fig. S15).

Figure 5c explores the environmental sensitivities of the
TROPOMI-derived wetland sources to gauge how future
rainfall or temperature changes may alter emission magni-
tudes and to motivate further analyses. We see that the op-
timized tropical and subtropical wetland methane emissions
exhibit only modest sensitivity to soil temperature (0–7 cm,
ERA5, 2019) but have a strong (R> 0.7) correlation with sur-
face water extent (SWAMPS, Jensen and Mcdonald, 2019)
for key areas of India, Bangladesh, Brazil, Bolivia, Mexico,
and Africa. Conversely, northern temperate wetland emis-
sions in the US Upper Midwest and southeastern China re-
spond more directly to temperature changes, while those in
Canada and Russia show strong sensitivity to both hydrol-
ogy and temperature. Projected precipitation increases for
mid-to-high latitudes and decreases for the subtropics (IPCC,
2021) may thus increase the importance of temperate and bo-
real wetland fluxes in the coming years.

6 Anthropogenic sources and emission hotspots

We derive global anthropogenic methane sources of
375 Tg yr−1, with 132 (127–136) Tg yr−1 from livestock, 98
(93–104) Tg yr−1 from fossil fuel, 83 (79–87) Tg yr−1 from
waste, 42 (40–45) Tg yr−1 from rice, and 20 (19–23) from
other sources. This represents a 19 Tg yr−1 increase over the
prior flux that on a global basis is mainly driven by upward

corrections for livestock (+11 %) and rice (+15 %). The
2019 global anthropogenic methane emissions obtained here
are modestly (12 %) higher than GOSAT-based results for
2010–2018 (336 Tg yr−1; Zhang et al., 2021), with both re-
sults pointing to higher-than-predicted biotic emissions (con-
sistent with isotopic constraints; Nisbet et al., 2016). Since
our prior anthropogenic emissions are based on inventories
for 2010–2016, the derived flux corrections could reflect in-
ventory errors, temporal changes between 2010 and 2019, or
some combination of the two. Below, we employ the spa-
tially downscaled TROPOMI-derived emissions to elucidate
key anthropogenic sources and to identify missing and un-
derreported flux hotspots.

6.1 The Middle East and North Africa: missing and
underestimated emission hotspots from fossil fuel
activities

The largest fossil fuel emission corrections occur over the
Middle East, where total fluxes increase throughout the year
by 48 % (34 %–60 %) over the prior (+12 [9–16] Tg yr−1,
box 9 in Fig. 2b). These upward corrections successfully re-
duce the mean regional model bias from −29 to 0 ppb and
are attributed to a combination of fossil fuel (41 %), livestock
(23 %), and waste (20 %). The Middle East possesses approx-
imately ∼ 50 % of global oil reserves and ∼ 40 % of global
natural gas reserves, with increasing production over the past
3 decades (BP, 2021; Schneising et al., 2020; UNFCCC,
2021). Bottom-up information (EDGAR v6, 2021) accord-
ingly points to a significant increase in methane hotspots for
this area over the recent decade (Fig. 5a) and to an over-
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Figure 5. (a) Methane emission increases during 2010–
2018 estimated from bottom-up information (EDGAR v6,
2022). (b) Methane source hotspots (> 200 kg d−1 km−2) and
their TROPOMI-derived emission corrections (blue: > 30 % over-
estimate; green: accurate to ± 30 %; red: > 30 % underestimate).
(c) Correlations between the optimized wetland emissions, soil tem-
perature (0–7 cm; ERA5 2019), and surface water extent (Jensen et
al., 2019).

all 26 % regional emission increase from 2010 to 2018. The
1.8× larger adjustment revealed here by the TROPOMI ob-
servations points to both temporal increases and inventory
underestimates for this area.

Middle East methane emissions are highly localized, with
just 5 % of model grid cells (at 0.1◦× 0.1◦) accounting for
70 % of the prior regional emissions and 60 % of the de-
rived adjustments. Our multi-model inversion results point
to consistent prior underestimates for high emitters in Azer-
baijan, Turkmenistan, and Iran, supporting previous satellite-
based analyses (Buchwitz et al., 2017; Lauvaux et al.,
2022; Schneising et al., 2020; Varon et al., 2019). However,
TROPOMI also reveals a large number of hotspots (over
Oman, Yemen, Saudi Arabia, Iraq, Turkmenistan, and Iran;
Figs. 2a, 5b, and S16) that are entirely missing from the
prior inventory. Many of these missing emission hotspots

are consistent with facilities on the ground. For example,
missing sources in Oman identified through the OG inver-
sion (Figs. S10 and S16) match the location of the Khaz-
zan gas field – one of the Middle East’s largest natural gas
fields producing ∼ 1–1.5 billion cubic feet per day of nat-
ural gas and ∼ 35 000 barrels per day of light oil (NS En-
ergy, 2022). Other detected hotspots correspond to the Masila
Basin in Yemen (EIA, 2022), oil fields in Saudi Arabia (e.g.,
the Ghawar Field, Maps Saudi Arabia, 2022), and super-
emitters in Iraq (Lauvaux et al., 2022).

Over northern Africa, TROPOMI identifies large XCH4
enhancements extending from the Libyan coast to Algeria
(box 8 in Fig. 2b). These sources are not well represented in
the prior inventory but correspond to oil fields in Libya and to
part of the Greenstream pipeline system. The OG inversion
is partially able to identify these sources, but the attribution
is limited to a single 2◦× 2.5◦ grid cell (Fig. S10).

6.2 Western Russia and North China Plain: an
overestimate of fossil fuel emissions

We find from the TROPOMI data that emissions are overesti-
mated in northern Asia, mainly reflecting fossil fuel sources.
Specifically, fossil fuel methane emissions are overestimated
by 27 % (11 %–40 %) over western Russia (box 6 in Fig. 2b)
and by 17 % (1 %–29 %) over the North China Plain (box
7), with these downward corrections reducing the regional
model bias to < 6 ppb. The UNFCCC 2016 emissions used
a prior account for accidental and intentional methane re-
leases not considered in previous inventories (Scarpelli et
al., 2020), leading to a > 2-fold increase over western Rus-
sia compared to EDGAR v5. Our results indicate that these
emission pathways may be overestimated in UNFCCC 2016
and that the actual fossil fuel methane source from Russia for
2018–2019 lay between the UNFCCC 2016 and EDGAR v5
values. Indeed, subsequent revisions (year 2019; Scarpelli et
al., 2022) to the UNFCCC 2016 inventory used here have
strongly reduced fossil fuel emission estimates for Russia
(e.g., 21 Tg yr−1 from oil in the year 2016 vs. 2 Tg yr−1 in
the year 2019) due to updated emission factor assumptions.

Methane emissions in the North China Plain are primar-
ily from coal mines; prior work suggests that these facili-
ties have lower emission factors than in southern China and
that their emissions have been declining since 2012 (Sheng
et al., 2019). Satellite-based and in situ measurements have
pointed to EDGAR v4.3.2 and GFEI emission overestimates
for this area (Alexe et al., 2015; Lu et al., 2021; Maasakkers
et al., 2019; Monteil et al., 2013; Qu et al., 2021; Turner
et al., 2015; Zhang et al., 2021). Here, we use a detailed
new inventory for China coal emissions (Sheng et al., 2019)
that has > 50 % lower fluxes than EDGAR v4.3.2 over the
North China Plain – but find that these are still overestimated.
By contrast, upward adjustments are derived over other re-
gions in China such as Xinjiang, where TROPOMI XCH4
enhancements are attributed by the OG and EE inversions to
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underestimated fossil fuel sources (Fig. S10). Recent work
by Lorente et al. (2022) points to some erroneous emission
hotspots for this area associated with surface reflectance; we
therefore restrict our interpretation here to the regional scale.
Positive corrections are also derived for fossil fuel sources
in southern China, but their emissions are difficult to isolate
from those of nearby rice fields.

6.3 South and Southeast Asia: Major methane
emissions during summer monsoon

Methane emissions from South and Southeast Asia are dom-
inated by agriculture (livestock, rice) and waste. The largest
emission correction for this area occurs over India, where
we find a 23 % (10 %–30 %) underestimate (mainly due to
those two sources) and derive total national emissions of
61 [55–64] Tg yr−1. India contains over 35 % and 20 % of
the world’s cattle and water buffalo, respectively, with both
populations increasing over the past decade (Sonavale et
al., 2020). Such changes are reflected in both the EDGAR
bottom-up inventory (+0.4 Tg yr−1 annual livestock+waste
emission increase for 2010–2018, EDGAR v6, 2021) and in
analyses based on GOSAT observations (+0.2–0.7 Tg yr−1

inferred annual increase for Indian livestock, Maasakkers et
al., 2019; Miller et al., 2019; Zhang et al., 2021). Our inver-
sion for 2018–2019 uses an EDGAR v5 prior estimate for
the year 2015, but the inferred +23 % (11 Tg yr−1) correc-
tion is too large to be explained solely by intervening trends
and thus indicates an emission underestimate for this source.

Over 90 % of the world’s rice production occurs in In-
dia and Southeast Asia, and we find that the associated
methane emissions are underestimated by 39 % (7 %–53 %)
and 17 % (7 %–28 %), respectively (boxes 10 and 11 in
Fig. 2b). Bottom-up statistics from FAOSTAT (2021) indi-
cate an 8 % increase in crop production over these areas for
2010–2019 due to a 10 % yield increase combined with a 2 %
cropland area decrease. Expected emission trends between
the timeframe of the EDGAR v5 emissions (2015) and our
inversions (2018–2019) can therefore not fully explain the
TROPOMI observations, indicating that the prior emissions
for this source are too low. The emission corrections mainly
occur during the July–October rice growing season that coin-
cides with the summer monsoon. The TROPOMI data reveal
several other connections between the East Asian summer
monsoon and the regional methane budget, which we explore
next based on our monthly downscaled top-down emissions.

Approximately 80 % of India’s annual rain falls during
the summer monsoon (IPCC, 2021), and across this July–
October season we find that methane emissions from the In-
dia and Southeast Asia boxes in Fig. 2b are underestimated
by 37 % (15 %–45 %). The resulting seasonal flux increase
then accounts for over 68 % of the total annual emission cor-
rection. While clouds reduce the TROPOMI sampling cov-
erage during this time, we still obtain > 370 000 and > 9000
observations per monsoon season over India and Southeast

Asia, respectively, after applying the data quality filters de-
scribed in Sect. 2.1. The above emission corrections strongly
reduce the prior model biases (from −28 to 3 ppb over India
and from −41 to −7 ppb over Southeast Asia), with the indi-
vidual inversions pointing to consistent spatial adjustments.
Prior work using GOSAT and in situ measurements has also
identified a peak in Indian emissions during July–October
that was not well captured by bottom-up predictions (Palmer
et al., 2021).

Figure 6 shows that the TROPOMI-derived South Asian
emission corrections are spatially and temporally coherent
with the summer monsoon onset and withdrawal. Strong
upward adjustments are first derived over Bangladesh and
East India following monsoon arrival over these areas (early
June 2018; late June 2019). As the monsoon advances, the
emission corrections then extend more broadly over northern
India during July–September. In concert with the monsoon,
the upward corrections subsequently withdraw south and east
to Bangladesh in October. Only minor emission adjustments
are derived for this region outside of the summer monsoon.

The above patterns likely reflect hydrologic influences on
methane emissions from biotic sources such as wetlands, rice
fields, manure, landfills, and sewers. The derived emission
corrections exhibit a strong temporal correlation with runoff
(R = 0.82 in eastern India; R = 0.62 in western India), sup-
porting the underlying role of hydrology. Baker et al. (2012)
similarly concluded on the basis of aircraft measurements
that 64 % of Indian methane emissions during this season re-
flect monsoon-driven biogenic sources. Increases in Indian
summer monsoon precipitation that are projected over the
21st century (Katzenberger et al., 2021) thus raise the strong
possibility of enhanced regional methane emissions in the
years to come.

6.4 North and South America: increases for fossil fuel
sources

We turn next to key oil and gas production fields in North and
South America. This includes the US Permian, Barnett, and
Eagle Ford region (box 2 in Fig. 5b), previously shown to be
the largest US oil- and gas-related methane source (Zhang
et al., 2020). Here we infer methane fossil fuel emissions
for 2018–2019 that are within 2 % of the prior GEPA esti-
mate. The GEPA estimates are for the year 2016, but based
on EDGAR v6 there was no significant regional trend be-
tween 2016 and the 2018–2019 inversion period. Over north-
ern Venezuela (box 4 in Fig. 5b), we derive a 28 % (2 %–
41 %) upward correction for fossil fuel exploration activi-
ties that is consistent across the year, in agreement with the
+32 % bottom-up increase for that source that is estimated
to have occurred between the prior inventory and inversion
timeframes (2016–2018; EDGAR v6, 2021).

Extensive TROPOMI XCH4 enhancements are seen over
southern Mexico (Fig. 2b, box 3), and our inversions re-
veal a 15 % (9 %–25 %) emission underestimate for this area
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Figure 6. TROPOMI-derived emission corrections over South and East Asia based on the fixOH ensemble mean. Shading indicates areas
where corrections are not distinguishable from zero (i.e., inversion ensemble includes both positive and negative adjustments).

(optimized flux 10 [9–10] Tg yr−1). Trend information from
EDGAR v6 (2021) suggests a regional 25 % emission in-
crease for 2016–2020, which could in theory fully explain the
derived upward adjustments. However, the observed hotspot
locations are largely missing in the prior inventory, and as
a result the SF inversion falsely attributes the corrections to
upwind waste/landfill sources in Sinaloa. The OG inversion
solution aligns more closely with the actual locations of these
sources based on the oversampled TROPOMI data (Fig. S10)
and is supported by previous regional-scale TROPOMI inver-
sions (Shen et al., 2021) that point to a > 2× emission un-
derestimate of onshore/offshore oil and gas production in the
UNFCCC 2016 inventory used here. Aircraft measurements
in 2018 also revealed substantial (29 000 kg h−1) methane
emissions in the same general region (Zavala-Araiza et al.,
2021).

7 Conclusions

A suite of two-year 4D-Var inversions using satellite-based
data from TROPOMI places new constraints on global
methane sources. We obtain in this way optimized global
emissions of 587 (586–589) Tg yr−1 for 2018–2019. Com-
pared to the most recent GCP estimates (Jackson et al.,
2020), our 2018–2019 results point to a larger role for an-
thropogenic sources, mainly tied to agriculture and waste.
We further develop a new framework to map the derived
monthly emissions to 0.1◦× 0.1◦ resolution, enabling the
identification of key missing and underestimated sources as
highlighted below.

We derive a +24 Tg yr−1 increase in wetland emissions
over the prior estimate of 149 Tg yr−1 that mainly (82 %)
occurs over the tropics and appears to be related to posi-
tive hydrologic anomalies in Amazonia and the Sudd. Mean-

while, fossil fuel emissions in the Middle East are under-
estimated by 47 % (23 %–57 %) and reached 15.7 (13.2–
16.8) Tg yr−1 during our analysis period. Our inversions fur-
ther uncover missing emission hotspots over Turkmenistan,
Iran, Oman, Yemen, Iraq, Libya, Algeria, and Mexico. We
estimate long-standing fossil fuel sources in Venezuela at 4.8
(3.8–5.3) Tg yr−1, 28 % (2 %–41 %) higher than the prior es-
timate (which is for the year 2016).

Inversions point to underestimated agricultural sources in
India, the Amazon Basin, central Africa, the US California
Central Valley, and Asia. However, more than 45 % (8.5 [3–
11] Tg) of the global anthropogenic source adjustment de-
rived here occurs over India and Southeast Asia during the
summer monsoon (July–October). We postulate that this re-
flects the influence of monsoon rainfall on methane emis-
sions from rice, manure, waste, and landfills. Given the pro-
jected increase in monsoon precipitation over the coming
century (IPCC, 2021), a better understanding of these effects
is crucially needed.

Finally, our analyses show that even the dense TROPOMI
data coverage does not fully resolve variability in methane
sources from that in its sinks. We address the issue in this
work by employing validated OH fields from a chemical
transport model, but future methane inversions can bene-
fit from incorporating additional datasets (e.g., CO, methyl
chloroform, formaldehyde) as constraints on the methane
sink (McNorton et al., 2016; Rigby et al., 2017; Turner et
al., 2017; Wolfe et al., 2019). Quantitative evaluation of the
influence of the 2018–2019 El Niño and the 2021 Hunga
Tonga–Hunga Ha’apai eruption on OH variability will also
help to advance the accuracy of contemporary methane bud-
get estimates.
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