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Abstract. To curb the spread of the COVID-19 pandemic, many countries around the world imposed an un-
precedented lockdown, producing reductions in pollutant emissions. Unfortunately, the lockdown-driven global
ambient benzene changes still remain unknown. An ensemble machine-learning model coupled with chemical
transport models (CTMs) was applied to estimate global high-resolution ambient benzene levels. Afterwards,
the extreme gradient boosting (XGBoost) algorithm was employed to decouple the contributions of meteorology
and emission reduction to ambient benzene. The change ratio (Pdew) of the deweathered benzene concentration
from the pre-lockdown to lockdown period was in the order of India (−23.6 %) > Europe (−21.9 %) > the United
States (−16.2 %) > China (−15.6 %). The detrended change (P ∗) of the deweathered benzene level (change ratio
in 2020− change ratio in 2019) followed the order of India (P ∗ =−16.2 %) > Europe (P ∗ =−13.9 %) > China
(P ∗ =−13.3 %) > the United States (P ∗ =−6.00 %). Emission reductions derived from industrial activities and
transportation were major drivers for the benzene decrease during the lockdown period. The highest decreasing
ratio of ambient benzene in India might be associated with local serious benzene pollution during the business-
as-usual period and restricted transportation after lockdown. Substantial decreases in atmospheric benzene levels
had significant health benefits. The global average lifetime carcinogenic risk (LCR) and hazard index (HI) de-
creased from 4.89×10−7 and 5.90×10−3 to 4.51×10−7 and 5.40×10−3, respectively. China and India showed
higher health benefits due to benzene pollution mitigation compared with other countries, highlighting the im-
portance of benzene emission reduction.

1 Introduction

Volatile organic compounds (VOCs) are an important class of
organic pollutants in the urban air and have aroused great at-
tention (Kamal et al., 2016; Koppmann, 2008; Mozaffar and
Zhang, 2020). As one of the typical toxic VOC species, ben-
zene has a variety of negative impacts on human health in-
cluding respiratory irritation, asthma, and allergies (Cui et

al., 2019; Kim et al., 2013; Tang et al., 2007). Moreover,
benzene has high chemical reactivity and could participate
in photochemical reactions in the atmosphere, thereby lead-
ing to the formation of secondary organic aerosols (SOAs)
and ozone (Dumanoglu et al., 2014; Hsu et al., 2018; Li
et al., 2019). Given its high toxicity to human health and
tremendous harm to air quality (Dumanoglu et al., 2014; Lu
et al., 2020), it is highly imperative to decrease ambient ben-
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zene concentration. It has been well documented that ambi-
ent benzene mainly originates from anthropogenic emissions
(Mozaffar and Zhang, 2020; Pakkattil et al., 2021). There-
fore, understanding the response of ambient benzene to an-
thropogenic emissions is favourable to evaluating the effec-
tiveness of abatement strategies and informing policy deci-
sions.

Recently, the ongoing global COVID-19 outbreak has re-
sulted in paroxysmal public health responses including travel
restrictions, lockdown, curfews, and quarantines around the
world. These drastic lockdown measures have inevitably trig-
gered sweeping disruptions of social and economic activities
and have further affected the emissions and concentrations of
some air pollutants (Bauwens et al., 2020; Berg et al., 2021;
Doumbia et al., 2021; P. Zheng et al., 2021). The unexpected
public health emergency provided us with an unprecedented
chance to assess the response of air pollutants to emission
reduction. Bauwens et al. (2020) observed that the average
NO2 column in China during January–April 2020 decreased
by about 40 % relative to the same period in 2019 due to
dramatic decreases in NOx emissions. Later on, Keller et
al. (2021a) analysed the impact of the COVID-19 lockdown
on global NO2 concentrations and found that the surface NO2
concentrations were 18 % lower than the business-as-usual
scenario from February 2020 onward. In addition, Hammer
et al. (2021) estimated that population-weighted mean PM2.5
concentrations in China, Europe, and North America experi-
enced changes of −11 to −15, −2 to 1, and −2 to 1 µgm−3,
respectively, during the COVID-19 lockdown period. Com-
pared with NO2 and PM2.5, ambient SO2 levels in China
(−4.6 %) and India (−14 %) did not experience marked vari-
ations after lockdown (Zhang et al., 2021; Zhao et al., 2020).
It should be noted that the global O3 concentration even
increased by up to 50 % during this period (Keller et al.,
2021a). To date, most of the current studies have focused
on regional or global criteria pollutant (e.g. PM2.5, NO2,
and O3) concentration changes after the COVID-19 outbreak,
while few studies have assessed the impact of the COVID-19
lockdown on ambient benzene levels.

Mor et al. (2021) observed that the atmospheric ben-
zene level in Chandigarh, India, decreased by 27 % during
the COVID-19 period. Afterwards, Pakkattil et al. (2021)
demonstrated that the ambient benzene levels in Delhi
(−93 %) and Mumbai (−72 %) have undergone drastic de-
creases after the COVID-19 lockdown. In China, Pei et
al. (2022) revealed that the VOC concentration in the Pearl
River Delta (PRD) decreased by 19 % and the decrease rate
of ambient benzene reached ∼ 40 % after lockdown. In Eu-
rope, Cai et al. (2022) revealed that the ambient benzene level
in Orléans even slightly increased after lockdown, which
might be associated with unfavourable meteorological con-
ditions. Although ground-level measurement could reflect re-
gional ambient benzene changes during the COVID-19 lock-
down period to some extent, few regions, especially in de-
veloping countries, have collected sufficient observations for

ambient benzene exposure assessment (Geddes et al., 2016;
Van Donkelaar et al., 2015). Moreover, the limited monitor-
ing sites around the world cannot accurately reflect the global
benzene pollution because of large spatial gaps and restricted
spatial representativeness of these ground-based sites (Shi et
al., 2018). The health effect assessment based on these scarce
sites alone inevitably increases the probability of exposure
misclassification (Ling and Li, 2021). Fortunately, chemical
transport models (CTMs) give us an unparalleled chance to
capture the full-coverage ambient benzene level at the global
scale. Although CTMs generally show various biases ow-
ing to high uncertainties in initial conditions, input variables,
and parameterizations (Ivatt and Evans, 2020), the machine-
learning bias-correction method can significantly reduce bias
in air quality models (Bocquet et al., 2015). To date, some
studies have developed multiple machine-learning models to
estimate the concentrations of PM2.5 (Wei et al., 2021a, b),
NO2 (Wei et al., 2023), and O3 (Wei et al., 2022) around the
world. Unfortunately, no study has employed the ensemble
technique to analyse the change in global ambient benzene
after the COVID-19 outbreak. Besides, nearly all of the cur-
rent studies have only used original observation data to as-
sess the impact of the COVID-19 lockdown on the ambient
benzene level (Pakkattil et al., 2021). Actually, the concen-
trations of air pollutants are not only controlled by emissions
but also modulated by complex meteorological conditions
(Hammer et al., 2021). For instance, some pioneering studies
have revealed that several severe haze episodes still occurred
even with the strict restrictions put in place in China (Chang
et al., 2020; Huang et al., 2021). Hence, it is necessary to
remove the effects of meteorological parameters and then to
further quantify the isolated contribution of emission reduc-
tion to the global ambient benzene level and health risks dur-
ing the COVID-19 lockdown period.

In our study, a machine-learning model coupled with
CTMs was applied to estimate the global ambient benzene
concentrations from 23 January to 30 June in 2019 and 2020.
At first, the CTMs’ output, emission inventory, meteoro-
logical parameters, and many other geographical covariates
were integrated into the ensemble decision tree model to ob-
tain global full-coverage benzene concentrations in the at-
mosphere. Then, we also examined the synergetic impacts
from the anthropogenic emissions and meteorological fac-
tors during the pre-lockdown and lockdown periods. Finally,
we estimated the emission-induced benzene concentrations
before and after the COVID-19 lockdown and quantified the
benzene-related health benefits due to the COVID-19 lock-
down in major regions around the world. This study shows
important implications for developing control strategies to
alleviate global atmospheric benzene pollution.
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2 Data and methods

2.1 Data preparation

2.1.1 Ground-level benzene observation

Our analysis was performed based on the recent development
of unprecedented public access to ground-level air quality
observations. In our study, we collected an air quality dataset
of hourly surface benzene observations at 669 sites at the
global scale during 23 January–30 June in 2019 and 2020
(Fig. S1). The start date of the COVID-19 lockdown in China
was 23 January, and the national lockdown lasted for about
1 month. The lockdown end date in Wuhan was 8 April. The
start and end dates of lockdown in India were 25 March and
25 April, respectively. The lockdown in the United States oc-
curred firstly in California from 19 March, and then the lock-
down lasted for 1–2 months. The lockdown dates in most
European countries lasted from March to May. A detailed
spatial distribution of the monitoring sites in India, Europe,
and the United States is depicted in Fig. S1. The surface ben-
zene dataset in India was downloaded from the Central Pollu-
tion Control Board (CPCB) online database, which has been
widely utilized in previous studies (Mahato et al., 2020; Mor
et al., 2021; Sharma et al., 2020). The CPCB database pro-
vides data quality assurance (QA) or quality control (QC)
programmes by developing strict procedures for sampling,
analysis, and calibration (Gurjar et al., 2016). The ground-
level benzene observations in Europe and the United States
were collected from the air quality data portal of the Euro-
pean Environment Agency (EEA) and United States Envi-
ronmental Protection Agency (EPA), respectively. Only days
with more than 12 h of available data are included in the anal-
ysis. All of the hourly data were average to the daily scale.

2.1.2 Independent variables

The daily benzene concentrations at a global scale were
simulated using the GEOS-Chem (https://geos-chem.seas.
harvard.edu/, last access: 10 March 2023) model (v12-01),
which included the full gaseous HOx–Ox–NOx–CO–non-
methane VOC (NMVOC) chemistry and online aerosol cal-
culations. The simulation used assimilated meteorological
observations (GEOS MERRA-2) at 2◦× 2.5◦ horizontal res-
olution with 72 vertical levels for the years 2019 and 2020.
The anthropogenic emission inventory in 2019 was collected
from the Community Emissions Data System (CEDS). Then,
the emission inventory in 2020 was calculated based on that
in 2019 and on an updated adjustment factor proposed by
Doumbia et al. (2021).

The meteorological parameters were obtained from the
NASA Goddard Earth Observing System Composition Fore-
cast (GEOS-CF) model (Keller et al., 2021b). GEOS-CF in-
tegrates the GEOS-Chem atmospheric chemistry model into
the GEOS Earth system model (Hu et al., 2018; Long et al.,
2015) and provides global hourly analyses of meteorologi-

cal variables at 0.25◦ spatial resolution (Keller et al., 2021b).
Meteorological parameters including surface pressure (Ps),
relative humidity (RH), 2 m air temperature (T2 m), total pre-
cipitation (TPREC), the 10 m latitudinal wind component
(U10 m), the 10 m longitudinal wind component (V10 m), and
boundary layer height (BLH) obtained from GEOS-CF were
used to develop the model (Fig. S2). In addition, cropland,
forest, grassland, shrubland, and barren land have also been
integrated into the final model (Liu et al., 2020).

All of the independent variables collected from multi-
ple sources were regridded to 0.25◦ grids using spatial-
interpolation algorithms. During the process of model devel-
opment, the most important procedure was to remove some
redundant explanatory variables and then to determine the
optimal variable group. The basic principle of the variable se-
lection was to eliminate the less important predictors. These
variables generally suggested that the R2 value of the sub-
model did not experience a significant decrease or that it even
experienced a slight increase when these redundant variables
were removed from the model. Finally, a total of 64 001 sam-
ples and 7 variables were utilized to predict the ambient ben-
zene concentrations at the global scale.

2.2 Model development

2.2.1 The ensemble model development for
atmospheric benzene estimates

In pioneering studies, random forest (RF), extreme gradi-
ent boosting (XGBoost), and light gradient boosting machine
(LightGBM) have exhibited good estimation accuracy (Li et
al., 2021; Wei et al., 2021b). The RF model contains a great
number of decision trees; each one experiences an indepen-
dent sampling procedure, and all of these trees show the same
distributions (Breiman, 2001). The RF model often displays
excellent prediction performance owing to the injected ran-
domness. The model accuracy is strongly dependent on the
number of trees, splitting features, and variable group. The
detailed procedures are summarized as follows:

f (x)=
Z∑

z=1
czR(x ∈Qz), (1)

cz
1
= average(yi |xi ∈Qz), (2)

BR1(p,q)= {X|Xj ≤ q} & BR2(p,q)= {X|Xj > q}, (3)

min
p,q

[
min

∑
M1(p,q)

(y− c1)2
+min

∑
M2(p,q)

(y− c2)2

]
, (4)

c1
1
= average(yi |xi ∈Q1(pq)) and

c2
1
= average(yi |xi ∈Q2(pq)), (5)

where (xi , yi) is the sample for i = 1, 2, . . . , N in Q regions
(Q1, Q2, . . . , Qz); R denotes the weight of each branch; BR
represents the decision tree branch; cz

1 represents the opti-
mal value; p is the feature variable; c1 is the average of the
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left branch; c2 is the average of the right branch; and q rep-
resents the split point.

The XGBoost model is an improved algorithm of gradient
boosting decision tree (GBDT) models, and loss functions
have been extended to the second-order function. The de-
tailed XGBoost algorithm is shown as the following formula
(Zhai and Chen, 2018):

Y (t)
=

n∑
i=1
[l(yi,y

3(t−1))+ ∂y(t−1) l(yi,y
3(t−1))ft (xi)

+
1
2
∂2
y(t−1) l(yi,y

3(t−1))f 2
t (xi)] + ε(ft ), (6)

where Y (t) is the cost function at the t th period, ∂ represents
the derivative of the original function, ∂2

y(t−1) is the second
derivative of the original function, l is the differentiable con-
vex loss function that reflects the difference of the predicted
value (y3) of the ith instance at the t th period and the target
value (yi), ft (x) represents the increment, and ε(ft ) is the
regularizer.

The LightGBM model is an updated version of the XG-
Boost method and significantly improves the running speed
of the modelling process. Moreover, this method could de-
crease the cache miss by a large margin and further improve
the predictive accuracy. The detailed algorithms are as fol-
lows (Sun et al., 2020):

f̂ = argmin
f

L(y,f (x)), (7)

fT (X)=
T∑

t=1
ft (X), (8)

0t =

n∑
i=1

(gift (xi)+
1
2
hif

2
t (xi)), (9)

where f̂ is the lowest value of the cost function; L(y,f (x))
is the cost function; fT (X) denotes the total regression trees;
ft (X) represents each regression tree; and gi and hi repre-
sent the first- and second-order gradient statistics of the cost
function, respectively.

Although all of these models showed good performance
in predicting air pollutants, nearly all of the submodels still
suffered from some weaknesses in their prediction accu-
racy. Hence, it was necessary to collocate these models us-
ing a back-propagation neutral network (BPNN) to further
simulate daily ambient benzene concentrations at the global
scale. As depicted in Fig. 1, three submodels including RF,
XGBoost, and LightGBM were stacked through the BPNN
model to simulate the daily atmospheric benzene levels at
the global scale. Firstly, a 5-fold cross-validation method was
utilized to train each submodel to determine the optimal hy-
perparameter. Then, the BPNN method was employed to fur-
ther train the estimated concentrations of three submodels
against the observations (Fig. 1). Lastly, the global ambient
benzene concentrations were predicted on the basis of the
ensemble model.

2.2.2 The meteorology-normalized benzene estimates

The ambient benzene concentration was influenced by both
meteorological parameters and emissions. To isolate the con-
tribution of emissions, the impacts of meteorological condi-
tions should be removed. In our study, the XGBoost approach
was utilized to eliminate the impacts of meteorological con-
ditions. The simulated benzene concentration in each grid
(0.25◦) based on the method in Sect. 2.2.1 was treated as the
dependent variable. The daily benzene emissions, meteoro-
logical factors, month of year (MOY), and day of year (DOY)
in each grid were regarded as the explanatory variables. The
raw dataset was randomly classified into a training dataset
(90 % of input dataset) for developing the XGBoost model,
and the remaining samples were regarded as the test dataset.
After the development of the XGBoost model, the weather-
normalized technique was employed to predict the ambient
benzene concentration at a specific time point. The detailed
deweathered algorithms were first introduced by Grange and
Carslaw (2019). The meteorology-normalized benzene level
served as the concentrations contributed by emissions alone.
The differences in total and deweathered benzene concentra-
tions were regarded as the concentration contributed by me-
teorology. In addition, the cross-validation (CV) R2 value of
the model used for the separation of meteorology and emis-
sions should also be higher than 0.50; otherwise the model
could be considered unreliable.

2.3 Health effect assessment

In our study, the carcinogenic and non-carcinogenic risks
of ambient benzene were assessed based on the standard
methodology of the United States Environmental Protection
Agency (EPA). The carcinogenic and non-carcinogenic risks
induced by benzene exposure were evaluated based on the
lifetime carcinogenic risk (LCR) and hazard index (HI). The
formulas for calculating benzene intake (BI), LCR, and HI
are as follows (Table S1):

BI= (C×ET×EF×ED)/(365× 24×AT), (10)
HI= BI/RfC, (11)
LCR= BI× IUR, (12)

where C (µgm−3) denotes the concentration of the corre-
sponding ambient benzene; ET is the exposure time; EF rep-
resents the annual exposure frequency (d a−1); ED is the ex-
posure duration (a); ATnca and ATca denote the average ex-
posure time for carcinogenic and non-carcinogenic risks (a),
respectively; BI means the benzene intake; RfC represents
the reference dose (µgm−3); and IUR is the inhalation risk
(1/µgm−3). The non-carcinogenic risk of the ambient ben-
zene is considered high when HI is above 1.0, whereas the
health risk is not obvious when HI is below 1.0. The carcino-
genic risk was regarded as definite risk when LCR was higher
than 1×10−4, while it was treated as possible risk when this
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Figure 1. The workflow of global atmospheric benzene modelling. CTM output represents the simulated benzene concentration based
on the GEOS-Chem model. Meteo denotes the meteorological parameters derived from GEOS-CF reanalysis. Emission represents the daily
emissions of benzene. MOY and DOY are the month of year and day of year, respectively. Simulated benzene represents the predicted benzene
concentrations based on the ensemble model. Deweathered benzene denotes the benzene concentration after removing meteorological effects.

indicator was located between 1× 10−6 and 1× 10−4. The
risk was treated as negligible when the indicator was lower
than 1× 10−6 (Dumanoglu et al., 2014; Li et al., 2017).

3 Results and discussion

3.1 The model fitting and validation

The ensemble model was utilized to estimate the am-
bient benzene concentrations at the global scale during
23 January–30 June in 2019 and 2020. The CV R2 value
of the ensemble model (R2

= 0.60) was significantly higher
than that of RF (0.52), XGBoost (0.53), and LightGBM
(0.55) (Fig. S3). Nevertheless, both the root-mean-square
error (RMSE) (1.18 µgm−3) and the mean absolute error
(MAE) (0.59 µgm−3) of the ensemble model were signif-
icantly lower than those of RF (RMSE and MAE: 1.41
and 0.72 µgm−3), XGBoost (RMSE and MAE: 1.37 and
0.70 µgm−3), and LightGBM (RMSE and MAE: 1.34 and
0.69 µgm−3). The higher R2 value and the lower RMSE
and MAE suggested the higher accuracy of the ensem-
ble model in air quality simulation. In pioneering studies,
Wolpert (1992) confirmed that the joint use of multiple statis-
tical models could decrease the probability of overfitting and
strengthen the predictive accuracy and transferability of fi-
nal models. Besides, our previous studies also demonstrated
that the stacking of various decision tree models could sig-
nificantly outperform an individual model because each deci-
sion tree model could suffer from some weaknesses (Li et al.,
2021). For instance, the dataset in the RF model appeared to
be overfitted when much noise existed in the training data of
regression problems (Breiman, 2001). Besides, the RF model
might underestimate/overestimate the extreme values of am-

bient benzene (Xue et al., 2019), which could be neutralized
by the XGBoost algorithm through the boosting method (Li
et al., 2020). For XGBoost algorithm, excessive leaf nodes
often showed low splitting gain, while the LightGBM model
could make up for this defect (Nemeth et al., 2019). Overall,
the combination of these decision tree models could over-
come the weaknesses of the individual models and enhance
the robustness of the final model.

Although 10-fold CV has verified that the modelling per-
formance of the ensemble model was superior to that of the
individual models, this method cannot examine the spatial
transferability of this model. In our study, many regions (ex-
cept India, Europe, and the United States) lacked monitor-
ing sites for ambient benzene. Fortunately, the CTMs’ output
provided a strong proxy to predict the daily ambient benzene
concentrations before and after the COVID-19 outbreak. In
order to examine the spatial transferability of the ensemble
model, cross-validation was performed. In each round, two-
thirds of the benzene dataset in India, Europe, and the United
States was applied to train the model, and the remaining third
was utilized to examine the model (e.g. India+Europe for
training and the United States for testing). After three rounds,
all of the simulated benzene concentrations were compared
with the corresponding observed values. As shown in Fig. S4,
the out-of-bag R2 value reached 0.58, which was slightly
lower than the R2 value (0.60) of the training model. In ad-
dition, the RMSE and MAE of the fitting equation for the
out-of-bag data were 1.18 and 0.62, respectively. The re-
sults were in good agreement with those based on the CV
database, indicating the ensemble model showed satisfactory
spatial generalization.
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The ensemble model can capture the spatiotemporal vari-
ation in ambient benzene during the COVID-19 lockdown
period, while the impact of the COVID-19 lockdown can-
not be quantified because the contribution of meteorological
parameters cannot be removed based on this model alone.
Therefore, it is proposed to employ the XGBoost algorithm
to isolate the contribution of emission reduction to global at-
mospheric benzene. As depicted in Fig. S5, the CV R2 value
and slope of the fitting curve reached 0.65 and 0.62, respec-
tively. The results suggest that the meteorology-normalized
model was robust because the CV R2 value was much higher
than 0.50.

3.2 The impact of the COVID-19 lockdown on the global
atmospheric benzene level

The ensemble model was developed to expand the ground-
observed benzene measurement to the global scale and cap-
ture the global spatial variability in ambient benzene. As
shown in Fig. S6, the global simulated (total) benzene con-
centration during 23 January–30 June in 2019 and 2020
ranged from 0.52 to 6.36 µgm−3, with an average value
of 0.92± 0.23 µgm−3. At the regional scale, the benzene
concentration displayed significant spatial variability. The
benzene concentration followed the order of India (1.44±
0.14 µgm−3) > China (1.17±0.13 µgm−3) > Europe (1.02±
0.08 µgm−3) > the United States (0.96±0.09 µgm−3) during
23 January–30 June in 2019 and 2020. Besides, the global
simulated mean benzene level underwent a slight decrease
from 0.93± 0.06 in 2020 to 0.90± 0.06 in 2019. However,
the inter-annual variation in ambient benzene exhibited a re-
markable spatial discrepancy at the global scale. As depicted
in Fig. S7, the change ratio of the simulated (total) benzene
level during the COVID-19 lockdown period (the difference
in the benzene level before the COVID-19 lockdown and
that during the COVID-19 lockdown period) in 2020 was in
the order of India (−18.5 %) > Europe (−16.7 %) > China
(−11.7 %) > the United States (−11.5 %). Compared with
2020, the change ratio of the benzene level during
the same period in 2019 followed the order of In-
dia (−16.3 %) > Europe (−6.62 %) > the United States
(−6.46 %) > China (−4.18 %). It should be noted that the
simulated ambient benzene concentration had a higher de-
creasing ratio in 2020 compared with the same period in 2019
in nearly all of the major countries and regions around the
world, which might be associated with the local COVID-19
lockdown measures in 2020.

Due to the interference of meteorological conditions, we
cannot quantify the direct impact of the COVID-19 lockdown
on ambient benzene based on the comparison of simulated
(total) benzene levels. Thus, the meteorology-normalized
method was employed to decouple the separated contribu-
tions of emission reduction and meteorology to ambient
benzene. In our study, both the change ratio and the de-
trended change ratio were applied to evaluate the impact

Table 1. The change ratio (%) of deweathered (Pdew) and detrended
(P ∗) benzene concentrations in major regions around the world.

Change ratio China India Europe United States

Pdew in 2020 −15.6 −23.6 −21.9 −16.2
Pdew in 2019 −2.31 −7.40 −8.04 −10.2
P ∗ −13.3 −16.2 −13.9 −6.00

of the COVID-19 lockdown on the global ambient benzene
level. The change ratio represents the variation in the ambi-
ent benzene level during the lockdown period in 2020 com-
pared with the pre-lockdown period in 2020. However, the
detrended change ratio reflects the difference in the change
ratio in 2020 and the change ratio during the same period in
2019, which could avoid the inter-annual system error and
contingency of a single year. As summarized in Figs. 2 and
3, the change ratio of the deweathered benzene concentra-
tion from the pre-lockdown to lockdown period in 2020 was
in the order of India (−23.6 %) > Europe (−21.9 %) > the
United States (−16.2 %) > China (−15.6 %). Meanwhile,
the change ratio of the deweathered benzene concentra-
tion during the same time in 2019 followed the order of
Europe (−10.2 %) > the United States (−8.04 %) > India
(−7.40 %) > China (−2.31 %). The large gap in the change
ratio of the deweathered benzene level between 2019 and
2020 confirmed that the drastic and consequential quaran-
tine measures significantly decreased the ambient benzene
concentrations in nearly all of the regions with lockdown
measures. Among all of the major countries and regions, In-
dia experienced the most dramatic benzene decrease during
24 March–24 April 2020 (−23.6 %) compared with the same
period in 2019 (−7.4 %). During this period, the prohibition
of industrial activities and mass transportation was proposed
to curb the spread of the COVID-19 pandemic, leading to
a tremendous reduction in anthropogenic benzene emissions
(Pathakoti et al., 2021; Zhang et al., 2021). Sahu et al. (2022)
revealed that the substantial increase in OH radicals during
the COVID-19 period also facilitated ambient benzene re-
moval due to the photooxidation reaction. The decreasing ra-
tio of the deweathered benzene level in India was close to
that of PM2.5 (−26 %), while it is was markedly lower than
that of NO2 (−50 %) (Zhang et al., 2021). Although both
Europe and the United States also performed stringent lock-
down restrictions in some regions such as Italy, Spain, and
California (Guevara et al., 2021a; Keller et al., 2021a), the
detrended change (P ∗: change ratio in 2020− change ratio in
2019) for deweathered benzene in Europe (P ∗ =−13.9 %)
and the United States (P ∗ =−6 %) between 2020 and 2019
was still lower than that of India (P ∗ =−16.2 %) (Table 1).
It was assumed that the absolute concentrations of ambi-
ent benzene in Europe and the United States were much
lower than that in India. It should be noted that China dis-
played a relatively gently decreasing ratio (−15.6 %) after
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Figure 2. The global average deweathered benzene concentrations in 2019 (23 January–30 June) (a) and 2020 (23 January–30 June) (b).
Panel (c) represents the difference in deweathered benzene concentrations in 2020 and 2019 (unit: µgm−3).

Figure 3. The weekly variations in atmospheric benzene concentrations (µgm−3) in some major regions around the world during 23 January–
30 June. The red line and background denote mean values and standard deviation of deweathered weekly benzene concentrations in 2020.
The cyan line and background denote mean values and standard deviation of deweathered weekly benzene levels in 2019. The dashed vertical
red line indicates COVID-19 restriction dates, and the dashed vertical black line indicates the beginning of easing measures.

the COVID-19 outbreak, which was even lower than the ra-
tio in the United States. As the first epidemic epicentre coun-
try, the Chinese government imposed a rapid lockdown mea-
sure in Wuhan and other cities across China in an effort to
prevent the spread of the COVID-19 pandemic (Wu et al.,
2020). These restrictions interrupted a wide array of eco-
nomic activities and reduced primary air pollutant emissions
and thus resulted in remarkable decreases in deweathered

NO2 (−43.6 %) and PM2.5 (−22 %) (Dai et al., 2021). The
gently decreasing ratio of ambient benzene compared with
other pollutants might be linked with the source apportion-
ment of atmospheric benzene. It was well known that in-
dustrial sources (e.g. the chemical industry and solvent use)
comprised the major emission sector of benzene (Li et al.,
2019). Although the contribution from solvent use exhibited
substantial decreases in some cities (Qi et al., 2021; Wang
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et al., 2021), the chemical industry was not entirely inter-
rupted even during the COVID-19 lockdown period (Dai et
al., 2021). B. Zheng et al. (2021) also demonstrated that re-
duction in NMVOC emissions from the industrial sector was
much less than for other pollutants.

Although the deweathered benzene concentrations in
nearly all of the major countries underwent obvious de-
creases during the COVID-19 lockdown period, the change
ratios of deweathered benzene in different regions of these
countries still showed large spatial variability. In China, most
of the cities in eastern China such as Beijing (−30.6 %),
Shanghai (−6.25 %), and Wuhan (−45.3 %) experienced
dramatic decreases in deweathered benzene levels (Fig. S8),
which was mainly contributed by the simultaneous emission
reduction of the industrial and transportation sectors. Be-
sides, enhanced atmospheric oxidation capacity could have
accelerated the benzene removal due to the unbalanced de-
creases in VOC and NOx emissions (Jensen et al., 2021).
However, the deweathered benzene concentrations in north-
eastern China and Yunnan Province even exhibited slight
increases after the COVID-19 outbreak (Fig. 4). Dai et
al. (2021) also found that the deweathered PM2.5 concen-
tration in Kunming increased ∼ 20 % after the COVID-
19 outbreak. At first, the contribution of residential com-
bustion sources (62.1 %) to atmospheric benzene in Yun-
nan Province was higher than that of other sectors (Gue-
vara et al., 2021b; Kuenen et al., 2022). Moreover, the in-
crease in domestic emissions due to home quarantine reg-
ulations further increased the ambient benzene concentra-
tion (10 %) in this province, which has been demonstrated
by the updated emission inventory in 2020 (Doumbia et al.,
2021). The slight increases in deweathered benzene levels in
northeastern China after the COVID-19 outbreak could be
linked with earlier work resumption (https://baijiahao.baidu.
com/s?id=1658138056285012986&wfr=spider&for=pc, last
access: 15 December 2022). Based on the simulation re-
sult, the deweathered ambient benzene level in northeast-
ern China rebounded sharply after the third week and then
returned back to normal in late February. In India, the de-
creasing ratios of deweathered benzene in Delhi, Mumbai,
Kolkata, Bengaluru, Hyderabad, Chennai, Ahmedabad, and
Lucknow reached 21.6 %, 20.9 %, 73.7 %, 26.9 %, 38.0 %,
33.7 %, 25.1 %, and 33.3 %, respectively, during the COVID-
19 lockdown period (Fig. S9). Among all of the major cities
in India, the ambient benzene level in Kolkata underwent
the most drastic decrease. It was assumed that Kolkata is a
dusty city and filled with vehicle emissions. Fortunately, the
city experienced a complete stop of vehicle movement and
of burning of biomass and dust particles from construction
works, which had been important sources for ambient ben-
zene (Bera et al., 2021; Kumar and Singh, 2003). In Europe,
the deweathered benzene levels in nearly all of the cities dis-
played marked decreases because most European countries
imposed lockdowns to combat the spread of the COVID-
19 pandemic (Guevara et al., 2021a). For example, private

cars and heavy goods vehicles (HGVs) on the road in Lon-
don reduced by 80 % and 30 %–40 %, respectively (Shi et
al., 2021). The drastic decrease in transportation emissions
triggered the P ∗ value in London between 2020 and 2019
reaching −43.6 %. In the United States, the decreasing ra-
tios of deweathered benzene levels in the cities of the eastern
United States and California were generally higher than those
in the central United States, which was in good agreement
with the spatial variability in the PM2.5 decrease (Hammer
et al., 2021). It was closely associated with the length of the
lockdown period (https://en.wikipedia.org/wiki/COVID-19_
lockdowns, last access: 14 January 2023).

In addition, ambient benzene levels were also strongly af-
fected by meteorological conditions that alter photochemical
production, advection, and depositional loss. Hence, we ex-
amined how meteorological parameters influenced the tem-
poral variability in ambient benzene during the COVID-19
lockdown period. In 2020, most of the major countries and
regions including China (3.9 %), Europe (5.2 %), and the
United States (4.7 %) experienced slightly unfavourable me-
teorological conditions, which is in good agreement with the
impact of meteorological conditions on ambient NO2 con-
centrations (Shi et al., 2021). Among all the meteorological
parameters, air temperature was the most important factor
for ambient benzene in nearly all of the regions around the
world during the study period. Compared with 2019, the air
temperatures in China, India, Europe, and the United States
increased by 0.4, 0.9, 0.4, and 0.2 ◦C during the same pe-
riod in 2020, respectively. Jia and Xu (2014) demonstrated
that the increased air temperature generally suppressed ben-
zene photooxidation and secondary organic aerosol (SOA)
formation. Thus, the increased air temperature was not ben-
eficial to the further reduction in ambient benzene. Apart
from air temperature, some other factors such as RH, rain-
fall amount, and wind speed might have affected the ambi-
ent benzene level. For instance, the increased RH could have
been favourable to benzene oxidation and the higher rainfall
amount could have promoted benzene removal. However, in
the machine-learning model, the importance values of these
variables were much lower than that of air temperature. Over-
all, the results suggest that the unfavourable meteorological
conditions (air temperature) weakened the health benefits of
reduced ambient benzene due to drastic lockdown measures
around the world.

3.3 The effect of the COVID-19 lockdown on global
health risks

The global average LCR during 23 January–30 June in 2019
and 2020 was 4.89×10−7 and 4.51×10−7, respectively, af-
ter removing the contributions of meteorological conditions
(Fig. S10). Although the COVID-19 lockdown decreased the
LCR value slightly, both of the LCR values during the two
periods were lower than the threshold level of 10−6, suggest-
ing that dwellings in most regions could avoid carcinogenic
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Figure 4. The concentration difference for deweathered benzene between the COVID-19 period in 2020 and the same period in 2019 in
(a) East Asia, (b) South Asia, (c) Europe, and (d) North America (difference= deweathered benzene concentration in 2020− deweathered
benzene concentration in 2019) (unit: µgm−3).

Figure 5. The carcinogenic risk differences (unit: 10−7) for atmospheric benzene between the COVID-19 period in 2020 and the same
period in 2019 in (a) East Asia, (b) South Asia, (c) Europe, and (d) North America (difference= benzene concentration in 2020− benzene
concentration in 2019).
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Figure 6. The non-carcinogenic risk differences (unit: 10−3) for atmospheric benzene between the COVID-19 period in 2020 and the same
period in 2019 in (a) East Asia, (b) South Asia, (c) Europe, and (d) North America (difference= benzene concentration in 2020− benzene
concentration in 2019).

risk through inhalation exposure to benzene (Li et al., 2017).
However, the LCR values showed significant spatial differ-
ence in different regions. For instance, northern China of-
ten suffered from relatively high benzene pollution, and the
LCR value in this region decreased from 1.03×10−6 (possi-
ble risk) during the study period in 2019 (the same period to
2020) to 7.37×10−7 during the COVID-19 lockdown period.
The result verified that the stringent emission control mea-
sures significantly decreased the health risk due to benzene
exposure. The LCR value across India only decreased from
6.55×10−7 to 6.42×10−7 during the study period, whereas
the value in the northern part of India, including for exam-
ple Bihar, decreased from 1.14×10−6 to 1.09×10−6 due to
the impact of the COVID-19 lockdown (Fig. 5). As the most
populous state of India, Bihar had more than 124 million peo-
ple at the time (http://kolkata.china-consulate.org/chn/lqgk/
t1331638.htm, last access: 31 January 2023). The results
suggest that the COVID-19 lockdown certainly obtained re-
markable short-term health benefits through decreasing am-
bient benzene exposure. The LCR values in Europe and the
United States decreased from 4.99× 10−7 and 4.77× 10−7

to 4.57×10−7 and 4.63×10−7, respectively. Compared with
China and India, Europe and the United States faced rela-
tively low carcinogenic risk of benzene exposure even before
the COVID-19 lockdown. Although the COVID-19 lock-
down further decreased the LCR values in these regions, the
overall carcinogenic risk was negligible.

Additionally, the non-carcinogenic risk around the world
during the period was also assessed based on HI. The aver-
age HI of ambient benzene exposure in China, India, Europe,
and the United States reduced from 8.92×10−3, 7.45×10−3,
6.32×10−3, and 5.76×10−3 in 2019 to 8.53×10−3, 7.13×
10−3, 5.81×10−3, and 5.59×10−3, respectively, during the
COVID-19 lockdown period in 2020 (Fig. 6). Although the
HI value in some regions including Bihar (1.52× 10−2 to
1.41×10−2) and Uttar Pradesh (1.04×10−2 to 1.03×10−2)
in India and Beijing–Tianjin–Hebei (BTH) (1.25× 10−2 to
1.14× 10−2) in China still experienced decreases during the
COVID-19 lockdown period, the HI values in these regions
were still significantly lower than the risk threshold (HI= 1).
Therefore, the impact of the COVID-19 lockdown on the
non-carcinogenic risk of benzene exposure was insignificant.

4 Conclusions and limitations

The drastic lockdown measures largely reduced the air pol-
lutant emissions. The meteorology-normalized ambient ben-
zene concentrations in China (−15.6 %), India (−23.6 %),
Europe (−21.9 %), and the United States (−16.2 %) experi-
enced dramatic decreases after the COVID-19 outbreak. Fur-
thermore, the decreasing ratios in these major regions dur-
ing the COVID-19 lockdown period were much higher than
in the same period in 2019, indicating the aggressive emis-
sion control measures efficiently decreased ambient benzene
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concentrations. Emission reductions from industrial activi-
ties and transportation were major drivers of the decrease
in the ambient benzene level during the lockdown period,
while the relatively stable solvent use emissions could have
restricted a further decrease in benzene pollution. Besides,
the slight increase in domestic emissions during this period
might be an important reason for the benzene increase in
some regions (e.g. Yunnan Province). There is also an ur-
gent need to control the household combustion and solvent
use emissions in addition to the emissions from the indus-
trial and transportation sectors.

Besides, substantial decreases in atmospheric benzene lev-
els could have sufficient health benefits. Dramatic decreases
in benzene emissions in Europe and the United States could
not have brought about effective health benefits because the
ambient benzene levels in both of these regions during the
business-as-usual scenario were already significantly lower
than the risk threshold. However, the benzene decreases in
the North China Plain (NCP), China, and Bihar, India, could
have had abundant health benefits because these regions
often suffered from severe atmospheric benzene pollution
during the business-as-usual scenario. Thus, more targeted
abatement measures are needed to reduce the benzene emis-
sions in these areas. For instance, stricter industrial and ve-
hicle emission standards for VOC control should be imple-
mented in China and India. Moreover, some measures includ-
ing limiting the number of coal-fired power plants, adding
environmentally friendly cars and clean fuels for vehicles and
vessels, and strengthening the labelling system for vehicles
in use should be pursued.

It should be noted that our study still suffered from some
limitations. First of all, the monitoring sites were not evenly
distributed around the world, and thus the simulation results
might show higher uncertainty in the regions lacking mon-
itoring sites. Besides, the GEOS-Chem model still suffered
from some uncertainties due to an imperfect chemical mech-
anism and inaccurate emission inventory. In future work, the
model should be further improved.
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