

Supplement of

Sources of organic aerosols in eastern China: a modeling study with highresolution intermediate-volatility and semivolatile organic compound emissions

Jingyu An et al.

Correspondence to: Cheng Huang (huangc@saes.sh.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Gas-ratios for specific sources and emission profiles used in CMAQ simulations. The characters in brackets are the source codes in the SPECIATE 5.1
database.

			Volatility (C* at 298 K, µg·m ⁻³)											
	Source	G-ratios	IVOCP6	IVOCP5	IVOCP4	IVOCP3	SVOCP2	SVOCP1	SVOCP0	SVOCN1	IVOCP6ARO	IVOCP5ARO	References	
			106	105	104	10 ³	10 ²	10	1	10-1	106	10 ⁵		
T 1 . • 1	Oil refinery	0.039	0.759	0.123	0.004	0.110	0.003	0.000	0.000	0.000	0.000	0.000	SPECIATE 5.1	
maasaa	Chemical production	0.282	0.430	0.230	0.025	0.116	0.199	0.000	0.000	0.000	0.000	0.000	SPECIATE 5.1	
process	Pulp and paper	0.140	0.571	0.393	0.028	0.006	0.001	0.001	0.000	0.000	0.000	0.000	SPECIATE 5.1	
	Textile	2.473	0.041	0.448	0.182	0.268	0.040	0.002	0.019	0.000	0.000	0.000	SPECIATE 5.1	
	Leather tanning	0.231	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	SPECIATE 5.1	
	Timber processing	0.119	0.584	0.416	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	SPECIATE 5.1	
Industrial	Furniture coating	0.021	0.888	0.112	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	SPECIATE 5.1	
solvent-use	Solvent-based coating	0.177	0.948	0.044	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	SPECIATE 5.1	
	Water-based coating	0.504	0.096	0.893	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000	SPECIATE 5.1	
	Dry cleaning	0.004	0.885	0.115	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	SPECIATE 5.1	
	Paint remover	0.072	0.987	0.010	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	SPECIATE 5.1	
	Gasoline vehicle	0.265	0.206	0.056	0.113	0.098	0.000	0.000	0.000	0.000	0.406	0.121	SPECIATE 5.1	
	Diesel vehicle	1.358	0.331	0.318	0.244	0.095	0.000	0.000	0.000	0.000	0.004	0.007	SPECIATE 5.1	
Mobile	Fuel evaporation	0.002	0.841	0.159	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	SPECIATE 5.1	
sources	Diesel machinery	0.400	0.282	0.279	0.264	0.102	0.057	0.012	0.003	0.000	0.000	0.000	Qi et al., 2019	
	Marine vessel	0.300	0.230	0.375	0.193	0.097	0.029	0.000	0.000	0.000	0.077	0.000	Huang et al., 2018	
	Aircraft	0.482	0.761	0.148	0.063	0.028	0.000	0.000	0.000	0.000	0.000	0.000	SPECIATE 5.1	
	Coal combustion	0.180	0.439	0.439	0.088	0.035	0.000	0.000	0.000	0.000	0.000	0.000	Cai et al., 2019	
Residential	Residential solvent-use	0.240	0.938	0.047	0.003	0.007	0.000	0.003	0.000	0.001	0.000	0.000	SPECIATE 5.1	
sources	Cooking	0.036	0.554	0.374	0.052	0.015	0.003	0.001	0.000	0.000	0.000	0.000	SPECIATE 5.1	
Agriculture sources	Biomass burning	0.064	0.337	0.330	0.215	0.118	0.000	0.000	0.000	0.000	0.000	0.000	SPECIATE 5.1	

Source		P-ratios	IVOCP3	IVOCP3 SVOCP2 SVOCP1 SVOCP0 SVOCN1	SVOCN1	References		
			10 ³	10 ²	10	1	10-1	-
	Gasoline vehicle	0.901	0.000	0.323	0.406	0.073	0.197	Lu et al., 2020
Mahila annuar	Diesel vehicle	0.867	0.000	0.419	0.420	0.099	0.063	Lu et al., 2020
Mobile sources	Diesel machinery	0.420	0.455	0.204	0.123	0.131	0.087	Qi et al., 2019
	Marine vessel	0.469	0.305	0.140	0.185	0.166	0.204	Huang et al., 2018
Residential sources	Cooking	0.830	0.000	0.152	0.152	0.196	0.500	Louvaris et al., 2017
Agriculture sources	Biomass burning	0.150	0.500	0.250	0.125	0.125	0.000	May et al., 2013

Table S2. P-ratios for specific sources and emission profiles used in CMAQ simulations.

0		VC	OCs	POA		
50		kt	%	kt	%	
	Oil refinery	146	3.50	1.49	0.74	
Industrial process	Chemical production	865	20.7	1.65	0.82	
	Pulp and paper	0.80	0.02	0.01	0.00	
	Textile	92.9	2.22	0.11	0.06	
	Leather tanning	16.6	0.40	0.02	0.01	
	Timber processing	262	6.27	0.10	0.05	
	Furniture coating	63.0	1.51	0.00	0.00	
Industrial solvent-use	Solvent-based coating	979	23.4	1.80	0.89	
	Water-based coating	99.8	2.39	0.00	0.00	
	Dry cleaning	5.49	0.13	0.00	0.00	
	Paint remover	0.07	0.00	0.00	0.00	
	Gasoline vehicle	575	13.8	9.4	4.64	
	Diesel vehicles	88.0	2.10	28.0	13.9	
N 6 1 '1	Fuel evaporation	356	8.53	0.00	0.00	
Mobile source	Diesel machinery	112	2.68	11.7	5.78	
	Marine vessel	7.77	0.19	10.2	5.07	
	Aircraft	1.32	0.03	0.00	0.00	
	Coal combustion	15.1	0.36	6.42	3.18	
Residential source	Residential solvent-use	147	3.51	0.00	0.00	
	Cooking	224	5.35	82.9	41.1	
Agriculture source	Biomass burning	122	2.92	48.0	23.8	
Total anthropo	ogenic emissions	4179	100	202	100	
Total bioge	nic emissions	2005	/	/	/	

6 Table S3. Source-specific emissions of VOCs and POA for the year 2017 in the Yangtze River Delta
7 region.

)

Option	Configuration/Data source
 Version	WRF-v3.9.1
IC/BC condition	NCEP FNL1°×1°
Microphysical Process	Purdue Lin Scheme
Cumulus Convective Scheme	Grell-3 Scheme
Road Process Scheme	Noah Scheme
Boundary Layer Scheme	Yonsei University (YSU) Scheme
Long-wave and Short-wave radiation scheme	RRTM and Goddard radiation Scheme

Table S4. Parameterization scheme and inputs for the WRF model.

Table S5. The statistical results of model performance for the meteorological parameters in each

season (MB: mean bias; MGE: mean gross error; RMSE: root-mean-square error; IOA: index of

agreement).

Parameters*	Seasons	MB	Criteria	MGE	Criteria	RMSE	Criteria	IOA (-)	Criteria	
	Spr	0.2		1.46	≤2	2.0	-	0.96		
Tour and the K	Sum	-1.5	< 10.5	2.26		2.9		0.80		
Temperature (K)	Aut	0.5	≤+0.5	1.49		2.4		0.89	≥ 0.8	
	Win	1.4		1.87		2.5		0.94		
	Spr	-8.0		11.03		15.7		0.85		
H	Sum	-2.8		7.82	-	13.2	-	0.80	≥ 0.6	
Humidity (%)	Aut	-10.9	-	11.79		16.9		0.82		
	Win	-12.2		13.71		19.6		0.73		
	Spr	0.5		1.28		1.7	≤2	0.77	≥0.6	
W (Sum	0.2	< 10.5	1.15	-	1.5		0.75		
wind speed (m·s·)	Aut	0.6	$\leq +0.5$	1.14		1.5		0.75		
	Win	0.9		1.50		1.9		0.75		
	Spr	2.6		31.52		46.7		0.93		
Wind dimention (0)	Sum	1.6	< 10	31.31	< 20	46.0		0.91		
wind direction (°)	Aut	10.3	$\leq \pm 10$	28.29	≤ 30	42.9	-	0.96	-	
	Win	8.1		26.65		41.2		0.97		

*The units in the brackets are only for MB, MGE and RMSE. IOA is unitless.

Table S6. The statistical results of model performance for major air pollutants in each season. (MB:

24 mean bias; MGE: mean gross error; RMSE: root-mean-square error; MFB: mean fractional bias;

Species	Scenario	Seasons	Seasons MB ($\mu g \cdot m^{-3}$) MGE ($\mu g \cdot m^{-3}$)		RMSE ($\mu g \cdot m^{-3}$)	MFB (%)	MFE (%)	
		Spr	8.0	11.0	21.9	33	70	
50	IMPROVE	Sum	5.9	9.6	20.5	15	80	
SD2 SO2 NO2 O3	IMPROVE	Aut	9.9	12.5	23.2	43	73	
		Win	11.4	14.2	25.0	44	74	
NO ₂		Spr	-8.3	18.4	26.2	-37	61	
	IMPROVE	Sum	5.1	13.7	21.9	7	57	
	IMPROVE	Aut	-7.1	17.0	23.1	-29	53	
		Win	-10.1	19.1	25.5	-31	53	
O3		Spr	39.8	45.5	55.0	27	34	
	IMPROVE	Sum	29.8	43.7	54.3	17	33	
		Aut	30.0	35.4	43.1	23	29	
		Win	19.1	32.5	43.4	14	31	
		Spr	6.9	21.3	30.3	14	47	
	DACE	Sum	9.4	15.3	22.5	28	54	
	BASE	Aut	14.0	23.8	34.8	27	52	
DI (Win	4.5	25.9	38.7	8	47	
P1V12.5		Spr	9.2	22.3	31.5	18	49	
	IMPROVE	Sum	11.6	16.5	24.1	34	56	
	IMPKOVE	Aut	19.0	26.7	37.8	36	55	
		Win	7.6	27.0	40.4	12	47	

25 MFE: mean fractional error; IOA: index of agreement)

C	S:4	MB (µg·m ⁻³)		MGE ($\mu g \cdot m^{-3}$)		RMSE (µg·m ⁻³)		MFB (%)		MFE (%)	
Seasons	Sites	BASE I	MPROVE	BASEI	MPROVE	BASEI	MPROVE	BASE	MPROVE	BASE	IMPROVE
	SAES	-4.5	-3.2	4.5	3.3	23.7	14.4	-67	-48	67	48
Spring	Changzhou	-5.3	-3.6	5.3	3.6	30.8	16.6	-74	-47	74	47
	Dianshan Lake	-2.3	-0.8	2.3	1.7	6.7	4.0	-57	-25	57	37
	Chongming Dongtan	-2.2	-1.1	2.2	1.3	5.9	2.6	-71	-41	71	45
	Hefei	-4.5	-3.5	4.5	3.5	23.7	16.2	-83	-60	83	61
	Jinhua	-4.7	-3.7	4.8	4.0	28.7	20.2	-100	-71	102	76
	Qiandao Lake	-2.3	-1.5	2.4	1.6	6.9	4.2	-82	-48	82	52
	Jiaxing	-3.3	-1.6	3.3	1.7	13.9	5.5	-63	-28	63	31
Summer	SAES	-0.3	0.3	1.0	1.0	2.0	1.6	1	12	26	24
	Changzhou	-4.4	-3.2	4.4	3.3	22.9	14.3	-75	-53	75	53
	Chongming Dongtan	0.1	0.7	1.2	1.5	2.8	6.0	-31	-12	93	98
	Jinhua	-2.0	-1.4	2.2	1.9	6.0	5.2	-61	-44	63	52
	Qiandao Lake	-1.1	-0.6	1.5	1.5	3.2	3.2	-49	-31	62	57
	Suzhou	-1.4	-0.6	1.4	1.0	3.0	1.5	-32	-15	32	23
	Jiaxing	-1.7	-0.8	1.7	1.0	4.4	1.5	-50	-24	50	27
	SAES	-2.6	-1.9	2.9	2.4	12.4	8.8	-43	-31	46	37
	Changzhou	-2.9	-1.5	3.2	2.3	12.9	7.7	-50	-27	53	35
	Dianshan Lake	-1.5	-0.6	1.6	1.1	3.6	2.0	-45	-21	47	31
	Chongming Dongtan	-1.5	-1.0	1.5	1.0	2.5	1.4	-97	-61	97	63
Autumn	Hefei	-2.6	-1.2	2.6	1.8	8.4	4.2	-54	-29	54	37
	Jinhua	-4.2	-2.9	4.3	3.5	28.4	21.3	-71	-47	72	54
	Nanjing	0.4	1.5	1.0	1.7	2.0	6.1	6	21	18	27
	Qiandao Lake	-0.4	0.8	1.5	2.0	3.2	6.2	-26	5	54	54
	Suzhou	-0.6	0.3	1.0	0.8	1.7	2.0	-16	2	24	18
	Jiaxing	-3.1	-1.9	3.1	2.2	11.8	6.7	-64	-40	65	44
	SAES	-0.9	-0.1	4.7	5.6	34.3	46.8	-16	-9	68	73
	Changzhou	-3.7	-2.5	3.7	2.7	19.3	12.1	-50	-34	50	35
	Chongming	-2.5	-2.1	2.5	2.2	8.7	6.5	-117	-105	117	107
Winter	Hefei	-3.4	-2.5	3.4	2.5	15	9.1	-58	-43	58	43
	Qiandao Lake	-2.5	-1.5	2.5	1.8	9.4	5.5	-86	-57	86	63
	Suzhou	-2.2	-1.5	2.3	1.6	7.9	5.0	-41	-35	43	38
	Jiaxing	-3.9	-2.7	3.9	2.8	22.3	11.8	-75	-57	75	58

29 Table S7. The statistical results of model performance for organic carbon (OC) in each season.

31 Figure S1. Spatial distribution of I/SVOC, POA, anthropogenic VOC (including benzene, toluene,

32 and xylene), and biogenic VOC emissions in the YRD region for the year 2017.

Figure S2. Comparisons of measured (black dots) and modeled (red lines) concentrations of (a) toluene, (b) xylene, and (c) benzene in different seasons at the SAES
supersite in Shanghai.

37

Figure S3. Spatial distributions of modeled OC concentrations in different seasons in BASE and I/SVOC-E simulations and their comparisons with OC observations. The blue triangle points represent the correlation between the modeled and observed OC in the BASE simulation, and the red dots represent the correlation between the modeled and observed OC in the I/SVOC-E simulation. The purple crosses in the left figures represent the observation sites of OC.

45 Figure S4. Comparisons of measured (grey dots) and modeled concentrations of (a) POA, (b) SOA, and (c) OA in different seasons in the BASE (bule lines) and

46 I/SVOC-E (red lines) simulation cases at the SAES supersite in Shanghai.

48 Figure S5. Comparisons of modeled POA and SOA source contributions with PMF results by AMS

49 in different seasons in the BASE and I/SVOC-E simulations at the SAES supersite in Shanghai.

50