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Abstract. We present an analysis of atmospheric transport impact on estimating CO2 fluxes using two atmo-
spheric inversion systems (CarboScope-Regional (CSR) and Lund University Modular Inversion Algorithm (LU-
MIA)) over Europe in 2018. The main focus of this study is to quantify the dominant drivers of spread amid
CO2 estimates derived from atmospheric tracer inversions. The Lagrangian transport models STILT (Stochastic
Time-Inverted Lagrangian Transport) and FLEXPART (FLEXible PARTicle) were used to assess the impact of
mesoscale transport. The impact of lateral boundary conditions for CO2 was assessed by using two different es-
timates from the global inversion systems CarboScope (TM3) and TM5-4DVAR. CO2 estimates calculated with
an ensemble of eight inversions differing in the regional and global transport models, as well as the inversion
systems, show a relatively large spread for the annual fluxes, ranging between −0.72 and 0.20 PgC yr−1, which
is larger than the a priori uncertainty of 0.47 PgC yr−1. The discrepancies in annual budget are primarily caused
by differences in the mesoscale transport model (0.51 PgC yr−1), in comparison with 0.23 and 0.10 PgC yr−1

that resulted from the far-field contributions and the inversion systems, respectively. Additionally, varying the
mesoscale transport caused large discrepancies in spatial and temporal patterns, while changing the lateral bound-
ary conditions led to more homogeneous spatial and temporal impact. We further investigated the origin of the
discrepancies between transport models. The meteorological forcing parameters (forecasts versus reanalysis ob-
tained from ECMWF data products) used to drive the transport models are responsible for a small part of the
differences in CO2 estimates, but the largest impact seems to come from the transport model schemes. Although
a good convergence in the differences between the inversion systems was achieved by applying a strict protocol
of using identical prior fluxes and atmospheric datasets, there was a non-negligible impact arising from apply-
ing a different inversion system. Specifically, the choice of prior error structure accounted for a large part of
system-to-system differences.
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1 Introduction

Inverse modelling has been increasingly used to infer
surface–atmosphere fluxes of carbon dioxide (CO2) from
observations of dry mole fractions made at spatio-temporal
points across an observational network (Enting and Newsam,
1990; Bousquet et al., 1999). Reducing uncertainty in the flux
estimates is, therefore, essential to reliably quantify the car-
bon budget (Friedlingstein et al., 2022; Le Quéré et al., 2018)
as well as to improve our understanding about the variabil-
ity and trends of the carbon cycle over times at finer regional
scales, in particular in response to the climate perturbation
caused by the increase in anthropogenic emissions (Shi et
al., 2021). The estimates obtained from atmospheric tracer
inversions still demonstrate large deviations due to manifold
sources of uncertainty such as using different data, inver-
sion schemes, and atmospheric transport models (Baker et
al., 2006; Gurney et al., 2016), either at global scales or, to
a larger extent, at regional scales. Although the global inver-
sions can provide convergent estimations of the global car-
bon budgets, they are limited by the coarse resolution of at-
mospheric transport that may not allow for a realistic repre-
sentation of the observations at complex mesoscale terrains.
In turn, performing regional inversions with mesoscale trans-
port models has offered a better opportunity to represent and
make use of the dense measurements available at all the sites
across regional domains (Broquet et al., 2013; Kountouris et
al., 2018a; Lauvaux et al., 2016), specifically after the ex-
panding coverage of data over large areas in recent years as
has been established, for example, over Europe by the Inte-
grated Carbon Observation System (ICOS). Although CO2
fluxes constrained by atmospheric data in the Bayesian in-
version framework inherit a dominant spatial and temporal
pattern from the atmospheric signal, the a posteriori fluxes
still suffer from a large spread when using different global
and mesoscale transport models (Rivier et al., 2010).

As a first intercomparison between six regional inversions
covering a wide range of system characteristics (e.g. prior
fluxes, inversion approaches, and transport models), the EU-
ROCOM experiment (Monteil et al., 2020) suggested large
spreads in posterior estimates over Europe, particularly over
regions that are poorly constrained by atmospheric data.
This, on the one hand, partly indicates the sensitivity of the
a posteriori estimates to the observations and to the a pri-
ori models as explained in Munassar et al. (2022). On the
other hand, inaccuracies in atmospheric transport (Schuh et
al., 2019), far-field contributions, and the configurations of
inversions are responsible for part of that spread. A further
study suggests that uncertainties in both transport and CO2
fluxes contribute equally to the uncertainties in CO2 dry mole
fraction simulations, displaying similar temporal and spatial
patterns (Chen et al., 2019).

The atmospheric transport relates the measured tracer con-
centration to its possible sources and sinks, which are ad-
justed in order to fit the modelled concentrations to observed

data. However, inaccuracies in representing the real atmo-
spheric dynamics by transport models lead to uncertainties in
CO2 flux estimates. This kind of error can emerge from both
simplified parameterizations of real physics and model pa-
rameters themselves (Engelen et al., 2002). The atmospheric
transport models rely on a mesoscale representation of air
mass movements, which cannot completely reproduce the
observed fine-scale variability of tracer concentration, lead-
ing to the so-called representation error. As a result, inver-
sions cannot solve for fluxes at lower spatial and temporal
resolutions than that of their transport model, resulting in ag-
gregation errors (Kaminski et al., 2001). Additionally, atmo-
spheric transport models are typically driven by meteorolog-
ical data available from operational weather forecast models
or reanalysis data optimized against observations and dynam-
ical model forecasts. However, such meteorological fields
have uncertainties owing to errors and gaps in the observa-
tions and errors in the weather forecast models (Deng et al.,
2017; Liu et al., 2011; Tolk et al., 2008).

As the lateral boundaries are provided from a global model
run at lower resolution than the regional model (Davies,
2014), this leads to biases in CO2 lateral concentrations and
thus affects the inversion estimates (Chen et al., 2019). The
information of providing boundary conditions to regional
inversions is necessary to isolate the influence of far-field
contributions before performing the regional inversion. In
Bayesian inversion setups, a proper information on prior er-
ror structures is also essential to determine the spatial pattern
of the flux corrections based on the assumed error, especially
at high spatial resolution inversions (Chevallier et al., 2012;
Kountouris et al., 2015; Lauvaux et al., 2016). Therefore, the
spatial pattern of flux corrections is dependent on the way the
error covariance matrices are constructed, which can lead to
large spatial discrepancies between the estimates from differ-
ent inversion systems.

This study is dedicated to quantify the relative contribu-
tions of the differences in optimized fluxes resulting from
varying as follows: (1) atmospheric transport models, (2) lat-
eral boundary conditions, and (3) inversion configurations
on flux estimates, as the error contributions from each com-
ponent to the inversion’s spread remain unclear in regional
inversions, specifically at finer spatial scales over a conti-
nental domain such as Europe (Monteil et al., 2020; Pe-
trescu et al., 2021; Thompson et al., 2020). We analysed
results of a posteriori net ecosystem exchange (NEE) esti-
mated from the two inversion systems CarboScope-Regional
(CSR; Kountouris et al., 2018b; Munassar et al., 2022) and
LUMIA (Monteil and Scholze, 2021). Both inversions em-
ploy pre-computed sensitivities of atmospheric mole frac-
tions to surface fluxes, so-called source-weight functions or
“footprints”, via two Lagrangian transport models at regional
scales, and they make use of the two-step inversion approach
established by Rödenbeck et al. (2009) to provide the lat-
eral boundary conditions. The regional atmospheric transport
models were used at a horizontal resolution of 0.25◦. The im-
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pacts of both global and regional models were compared by
analysing the differences in space and time.

Section 2 presents detailed descriptions of the inversion
setups, the transport models, and the a priori fluxes used.
The observational stations that provide CO2 dry mole frac-
tion data are described within the Methods section as well.
We introduce the results obtained from eight inversions in
Sect. 3. The results are discussed and interpreted through a
spatial and temporal analysis of the differences between the
elements of inversions in Sect. 4. Finally, Sect. 5 highlights a
few concluding remarks on the impacts of regional transport,
boundary conditions, and inversion setups on CO2 estimates
in the inverse modelling.

2 Methods

An atmospheric tracer inversion framework is mainly made
up of transport model, data source for boundary conditions
(in case of regional inversions), datasets of atmospheric mole
fractions, and surface flux fields. In this study, several in-
version runs differing in atmospheric transport models are
conducted using two tracer inversion systems, CSR and LU-
MIA (see Table 2). The default CSR inversion system utilizes
pre-calculated footprints from the Stochastic Time-Inverted
Lagrangian Transport (STILT) model (Lin et al., 2003) at
the regional domain and the TM3 model at the global scale,
applying the two-step scheme inversion approach (Röden-
beck et al., 2009), to provide the far-field contributions to
the regional domain. In the default setup of the inversion
system LUMIA, the footprints are pre-calculated using the
Lagrangian particle dispersion model FLEXPART (Pisso et
al., 2019), and the far-field contributions are calculated us-
ing the global transport model TM5 in a separate global in-
version run, applying the two-step scheme inversion as well.
These default configurations in both systems constitute the
base cases. We strive to restrict the differences in the inver-
sion runs to the targeted components, i.e. regional transport,
boundary conditions, and the inversion systems, so as to out-
line the impact of each suite. That is, input data such as mea-
surements of CO2 dry mole fraction and the a priori fluxes,
used as constraints based on Bayesian inference, are identical
for all runs. We exchangeably make use of the four combina-
tions of transport model components, the regional and global
models, in the two inversion systems. The impacts were eval-
uated using forward model runs to quantify the differences
in CO2 concentrations (simulated with prior fluxes) and in-
version runs to quantify the magnitude of differences in the
flux space. The inversion setups and implementation are ex-
plained in the comparison protocol (Sect. 2.6).

2.1 Inversion framework

In the following description, we remind the reader about
the basic principles of the inversion schemes. For detailed
information about the mathematical schemes, the reader

is referred to Rödenbeck (2005) for CSR and to Monteil
and Scholze (2021) for LUMIA. Both systems rely on the
Bayesian inference that accounts for observations and a pri-
ori knowledge to regularize the solution of the ill-posed in-
verse problem where a unique solution does not exist due to
the spatial scarcity of observations. Therefore, the optimal
state vector (x) is searched for in the Bayesian formalism by
minimizing the cost function J (x) that is typically composed
of the observational constraint term Jc(x) and the a priori
flux constraint term Jb(x):

J (x)= Jc (x)+ Jb (x) , (1)

where

Jb (x)=
1
2

(x− xb)T B−1 (x− xb) , (2)

Jc (x)=
1
2

(H (x)− y)T Q−1 (H (x)− y) . (3)

The a priori flux uncertainty defined in the covariance matrix
B limits the departure of the control vector (x) to the a pri-
ori flux vector (xb). Similarly, the observational constraint is
weighted by the observational covariance matrix Q that con-
tains the so-called model–data mismatch error, including un-
certainty of measurement, representativeness, and transport.
This uncertainty is assigned to the diagonal of the matrix Q
for the respective sites based on the ability of the transport
model to represent the atmospheric circulation at such lo-
cations. H (x) represents the atmospheric transport operator
(i.e. calculated by STILT and FLEXPART in our inversions)
that determines the relation between fluxes and the modelled
tracer concentration, which corresponds spatially and tempo-
rally to a given vector of measurements y. Following the gra-
dient descent method, a variational algorithm is applied itera-
tively to reach the best convergence (global minimum) of the
cost function that satisfies the optimal solution of the control
vector. The default configurations for constructing the covari-
ance matrices of a priori uncertainty are slightly different in
CSR and LUMIA. A priori flux uncertainty is assumed to be
around 0.47 PgC yr−1 over the full domain of Europe derived
from the global uncertainty (2.80 PgC) assumed in the Car-
boScope global inversion for the annual biogenic fluxes (Rö-
denbeck et al., 2003). In CSR, this uncertainty is uniformly
distributed spatially and temporally in a way that the annual
uncertainty aggregated over the entire domain should arrive
at the same value. The uncertainty structure is fit to a hyper-
bolic decay function in space (Eq. 4) and to an exponential
function (Eq. 5) for the temporal decay as explained in Koun-
touris et al. (2015).

r (s)=
1

1+ s
ds

, (4)

r (t)= e
−t
dt . (5)

The correlation length scales ds and dt applied to flux un-
certainties are chosen to be 66.4 km spatially and 30 d tem-
porally, respectively, following Kountouris et al. (2018a) and
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Munassar et al. (2022). The spatial length in the zonal direc-
tion is set to be longer than that in the meridional direction
by a factor of 2 (anisotropic), owing to larger spatial climate
variability in the meridional as compared to zonal direction.

The spatio-temporal shape of the a priori uncertainty in
LUMIA is computed in a way that each control vector com-
prises weekly uncertainty calculated as the standard devia-
tion of NEE based on weekly flux variance; however, LU-
MIA agrees on the overall annually aggregated flux uncer-
tainty over the entire domain with CSR. A Gaussian function
of the spatial correlation decay (Eq. 6) is applied to the a pri-
ori uncertainty structure with a spatial length scale of 500 km,

r (s)= e−( s
ds )2

, (6)

whereas the effective temporal decay was set to 30 d (same
as in CSR). Given the difference in the spatial correlation de-
cay of the a priori uncertainty, LUMIA is set to draw larger
flux corrections in a broader radial area where stations ex-
ist following the Gaussian decay with a longer length scale
compared to the hyperbolic decay in CSR. In turn, the hy-
perbolic function has a larger impact in the further radial
distances than the Gaussian function does, regardless of the
longer spatial scale assumed with the Gaussian decay in a
factor of around 7.5 in comparison with the hyperbolic de-
caying function.

2.2 Atmospheric transport models

Surface sensitivities are calculated using the STILT (Lin et
al., 2003) and FLEXPART (Pisso et al., 2019) models at a
horizontal resolution of 0.25◦ and hourly temporal resolu-
tion. Both models simulate the transport of air masses via
releasing an ensemble of virtual particles at the locations
of stations. The virtual particles are transported backward
in time and driven by meteorological fields obtained from
the European Centre for Medium-Range Weather Forecasts
(ECMWF). STILT particles are transported 10 d backward
in time and forced by forecasting data obtained from the
high-resolution implementation of the Integrated Forecast-
ing System (IFS HRES). For the FLEXPART model in stan-
dard operation, particles are followed for 15 d backward in
time driven by ERA-5 reanalysis data. To keep the consis-
tency with STILT footprints, the backward time of FLEX-
PART footprints was limited to 10 d in the inversions. After
this backward time integration, the particles are assumed to
leave the domain, even though a large number of particles
are expected to escape after a few days. To better represent
air sampling in the mixed layer, day-time observations are
considered, except for mountain stations where night-time
observations are used instead (Geels et al., 2007). To ensure
best mixing conditions, temporal windows were considered
for simulating CO2 dry mole fractions over stations as ex-
plained in Sect. 2.4 (Table 1). In addition, release heights of
particles are taken as the highest sampling level above ground

at each measurement site. For high-altitude receptors, such as
mountains, a correction height is used in STILT in a way that
the actual elevation of the station can be represented in the
corresponding vertical model level (Munassar et al., 2022).
In FLEXPART, the elevation above sea level is taken as the
model sampling height.

2.3 A priori and prescribed fluxes

Three components of prior and prescribed surface-to-
atmosphere fluxes of CO2 are obtained from (1) biogenic ter-
restrial fluxes, (2) ocean fluxes, and (3) anthropogenic emis-
sions and kept identical in both systems. Prior net terrestrial
CO2 exchange fluxes, net ecosystem exchange (NEE), are
calculated using the diagnostic biogenic model Vegetation
Photosynthesis and Respiration Model (VPRM) (Mahade-
van et al., 2008). VPRM calculates NEE at hourly temporal
and 0.25◦ spatial resolutions, and it provides a partitioning
of the net flux into gross ecosystem exchange (GEE) and
ecosystem respiration. Data obtained from remote sensing
provided through the MODIS instrument and meteorological
parameters from ECMWF drive both quantities of the light-
dependent GEE and the light-independent ecosystem respi-
ration. The model parameters were also optimized against
eddy covariance data selected within the global FLUXNET
site network across Europe in 2007 (Kountouris et al., 2015).
For more details on the VPRM model, the reader is referred
to Mahadevan et al. (2008).

Ocean fluxes are taken from Fletcher et al. (2007), who
provide climatological fluxes at a spatial resolution of 5◦×4◦,
remapped to 0.25◦ to be compatible with the biosphere model
fluxes. In addition, anthropogenic emissions are taken from
the EDGAR_v4.3 inventory and are updated to recent years
according to British Petroleum (BP) statistics of fossil fuel
consumption, and they are distributed spatially and tempo-
rally based on fuel type, category, and country-specific emis-
sions, using the COFFEE approach (Steinbach et al., 2011).
The emissions are remapped to a 0.25◦ spatial grid and to an
hourly temporal resolution.

Biogenic terrestrial fluxes are optimized in the inversions,
while the ocean fluxes and anthropogenic emissions are pre-
scribed, given the better knowledge about their spatial and
temporal distribution in comparison with the heterogeneity,
variability, and uncertainty of the biogenic fluxes. Moreover,
in the absence of observational constraints that help discrim-
inate the contributions from the three categories, we chose
to prescribe the ocean fluxes and anthropogenic CO2 emis-
sions. This is also justified by the fact that the observation
sites are located in areas where the biospheric flux influence
is expected to dominate the variability of CO2 concentration,
but it means that errors in the fossil fuel or ocean fluxes might
be compensated by the inversions, resulting in changes in the
posterior NEE.
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Table 1. Atmospheric sites used in the inversions.

Site code Site name Coordinates STILT release FLEXPART release Time window Uncertainty
(lat, long)◦ height (m a.g.l.) height (m a.g.l.) (UTC) (ppm)

SM3 Hyytiälä 61.85, 24.29 125 125 10:00–14:00 1.5
BI5 Białystok 53.23, 23.03 300 300 10:00–14:00 1.5
FKL Finokalia 35.34, 25.67 15 15 10:00–14:00 1.5
PAL Pallas 67.97, 24.12 12 12 10:00–14:00 2.5
PUI Puijo 62.91, 27.65 84 84 10:00–14:00 1.5
UTO Utö, Baltic Sea 59.78, 21.37 57 57 10:00–14:00 1.5
BIR Birkenes Observatory 58.389, 8.25 3 3 11:00–15:00 2.5
BR5 Beromünster 47.19, 8.17 212 212 11:00–15:00 1.5
DEC Delta de l’Ebre 40.74, 0.79 10 10 11:00–15:00 1.5
EEC El Estrecho 36.0586, −5.664 20 20 11:00–15:00 1.5
GIC Sierra de Gredos 40.3457, −5.1755 20 20 11:00–15:00 2.5
HEI Heidelberg 49.417, 8.674 30 30 11:00–15:00 4
HP4 Hohenpeissenberg 47.8011, 11.0246 300 131 11:00–15:00 1.5
ER2 Ersa 42.9692, 9.3801 40 40 11:00–15:00 1.5
HT3 Hyltemossa 56.0969, 13.4189 150 150 11:00–15:00 1.5
HU4 Hegyhátsál 46.95, 16.65 115 115 11:00–15:00 1.5
IP3 Ispra 45.8147, 8.636 100 100 11:00–15:00 1.5
KR3 Křešín u Pacova 49.572, 15.08 250 250 11:00–15:00 1.5
LMU La Muela 41.5941, −1.1003 80 79 11:00–15:00 1.5
LMP Lampedusa 35.53, 12.62 10 10 11:00–15:00 1.5
LUT Lutjewad 53.4036, 6.3528 60 60 11:00–15:00 2.5
NO3 Norunda 60.0864, 17.4794 100 100 11:00–15:00 1.5
SV3 Svartberget 64.256, 19.775 150 150 11:00–15:00 1.5
TR4 Trainou 47.9647, 2.1125 180 180 11:00–15:00 1.5
OHP Observatoire de Haute Provence 43.931, 5.712 100 100 11:00–15:00 1.5
SA3 Saclay 48.7227, 2.142 100 100 11:00–15:00 1.5
LHW Laegern-Hochwacht 47.4822, 8.3973 400 32 11:00–15:00 2.5
BS3 Bilsdale 54.359, −1.15 248 248 12:00–16:00 1.5
RG2 Ridge Hill 51.9976, −2.54 90 90 12:00–16:00 1.5
TA3 Tacolneston 52.5177, 1.1386 185 185 12:00–16:00 1.5
WAO Weybourne, Norfolk 52.9502, 1.1219 10 10 12:00–16:00 1.5
OP3 Observatoire pérenne de l’environnement 48.5619, 5.5036 120 120 14:00–17:00 1.5
GA5 Gartow 53.0657, 11.4429 341 341 14:00–18:00 1.5
LIN Lindenberg 52.1663, 14.1226 98 98 14:00–18:00 1.5
BIS Biscarrosse 44.3781, −1.2311 47 47 14:00–18:00 2.5
CRP Carnsore Point 52.18, −6.37 14 14 14:00–18:00 1.5
MHD Mace Head 53.3261, −9.9036 24 24 14:00–18:00 1.5
MLH Malin Head 55.355, −7.333 47 47 14:00–18:00 1.5
JFJ Jungfraujoch 46.5475, 7.9851 720 3570 (m a.s.l.) 23:00–03:00 1.5
KAS Kasprowy Wierch 49.2325, 19.9818 480 1989 (m a.s.l.) 23:00–03:00 1.5
PUY Puy de Dôme 45.7719, 2.9658 400 1465 (m a.s.l.) 23:00–03:00 1.5
SI2 Schauinsland 47.91, 7.91 450 1205 (m a.s.l.) 23:00–03:00 1.5
PTR Plateau Rosa 45.94, 7.71 500 3480 (m a.s.l.) 23:00–03:00 1.5
PD2 Pic du Midi 42.9372, 0.1411 1458 2877 (m a.s.l.) 23:00–03:00 1.5
CMN Monte Cimone 44.1963, 10.6999 670 2165 (m a.s.l.) 23:00–03:00 1.5

2.4 Observations

Measurements of CO2 dry mole fractions are collected
through ICOS, NOAA, and pre-ICOS stations across the do-
main of Europe provided by Drought 2018 Team and ICOS
Atmosphere Thematic Centre (2020). In total, datasets from
44 stations are used covering the domain of Europe in 2018,
in which a maximum number of stations is present compared
to the other years. Regarding model–data mismatch errors, in
LUMIA a weekly value of 1.5 ppm is assumed for all sites,
except for the Heidelberg site where 4 ppm was assumed due

to the anthropogenic influence from the neighbourhood. Ta-
ble 1 denotes the weekly values of uncertainty used in CSR
for the corresponding sites. The uncertainty for the surface
sites is inflated to 2.5 ppm as a slight difference to LUMIA.
The inflation of uncertainty from weekly to hourly values is
basically calculated by multiplying weekly errors by

√
7× n

(where n refers to the number of hours in the daily measure-
ments used in the inversion). The observations are mostly as-
similated as hourly continuous measurements and are taken
from the highest level, avoiding large vertical gradients near
the surface that are hard to represent in the transport mod-
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Table 2. List of the inversion setups.

Inversion system Transport model Global boundary condition Identifier code Flux uncertainty

Shape Decay

LUMIA FLEXPART TM5 LF5 Variable Gaussian
LUMIA FLEXPART TM3 LF3 Variable Gaussian
LUMIA STILT TM5 LS5 Variable Gaussian
LUMIA STILT TM3 LS3 Variable Gaussian
CSR STILT TM3 CS3 Flat Hyperbolic
CSR STILT TM5 CS5 Flat Hyperbolic
CSR FLEXPART TM3 CF3 Flat Hyperbolic
CSR FLEXPART TM5 CF5 Flat Hyperbolic

els. Model error in representing observations in the plane-
tary boundary layer (PBL) is expected to be largest when
the PBL is shallow. Therefore, for most sites, we considered
data only when the PBL was expected to be well developed,
i.e. during the afternoon, local time (LT). The exception is at
high-altitude sites, which tend to sample the free troposphere
during night (Kountouris et al., 2018b). The assimilated win-
dows are reported in Table 1.

2.5 Boundary conditions

Far-field contributions of CO2 concentrations (originating
from sources outside of the regional domain) are taken from
global inversions. As default setups of the global runs, the
Eulerian transport model TM3 is used in the CarboScope
global inversion at 5◦ (long)× 4◦ (lat), while TM5-4DVAR
(Transport Model 5 – Four Dimensional Variational model)
is used to provide boundary conditions to LUMIA using the
global transport model TM5 at 6◦ (long)× 4◦ (lat) (Baben-
hauserheide et al., 2015; Monteil and Scholze, 2021). Both
inversion systems apply the two-step scheme inversion, ex-
plained in Rödenbeck et al. (2009), in which a global inver-
sion is first used to estimate CO2 fluxes globally (based on
observations inside and outside Europe). In a second step,
the global transport model is used to estimate the influence
of European CO2 fluxes on European CO2 observations. That
regional influence is then subtracted from the total concen-
tration to obtain a time series of the far-field influence di-
rectly at the locations of the observation sites. This prevents
introducing biases by passing concentration fields from one
model to another. For detailed information about the ap-
proach methodology, the reader is referred to Rödenbeck et
al. (2009).

2.6 Comparison protocol

The results of the study are based on eight variants of in-
versions differing in global and regional transport models, as
well as in inversion systems, as explained in Table 2. This im-
plies that the two inversion systems (CSR and LUMIA) make
use of two regional transport models (STILT and FLEX-

PART) and two global transport models (TM3 and TM5),
which represent the boundary conditions (background) cal-
culated from two global inversions. Hereafter, the identifier
codes (see corresponding column in Table 2) will be used
to refer to the individual runs within the inversion ensem-
ble. For instance, to highlight the impact of regional trans-
port models, we compare the inversions that only differ in
regional transport models, regardless of the inversion system
or boundary conditions used, such as CS3 and CF3 or LS5
and LF5. Similarly, we use the same specifications of trans-
port models (indicated through the identifier codes) for the
forward runs to outline the differences in CO2 concentrations
simulated using prior fluxes with different transport models.
In this case, using a different system should not result in dis-
crepancies as long as prior fluxes remain identical. In terms
of system-to-system comparison, the impact of flux uncer-
tainty should be taken into account as the prior error struc-
ture is specific for each inversion system. With that said, this
has been investigated by conducting additional tests in CSR
and LUMIA using identical uncertainties with flat shape and
Gaussian correlation decay.

3 Results

Estimates of the regional biosphere–atmosphere fluxes over
the domain of Europe are calculated using CSR and LU-
MIA for 2018 from an ensemble of eight inversions as listed
in Table 2. Generally, all the inversions showed that the
estimates of NEE are constrained by the atmospheric data
as can be seen from the positive flux corrections made by
the inversions in comparison with the a priori fluxes calcu-
lated from the biosphere flux model VPRM, which obviously
overestimates CO2 uptake, specifically during the growing
season (Fig. 1a). This is also obvious in the ensemble-
averaged annual estimates of posterior fluxes−0.29 PgC ver-
sus −1.49 PgC in the a priori fluxes (Fig. 1b). However,
the spread among posterior estimates is still relatively large,
ranging between −0.72 and 0.20 PgC yr−1 for the annual
estimates, which is larger than the a priori uncertainty of
0.47 PgC yr−1. Likewise, the mean standard deviations of
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the monthly estimates over the ensemble of inversions is
0.72 PgC yr−1. The largest deviations occur between inver-
sions that differ by the regional transport models (e.g. CS3
versus CF3 or LS5 versus LF5). In addition, the seasonal
amplitude was found to be different between the STILT and
FLEXPART inversions. The STILT-based inversions led to
a larger amplitude of posterior NEE than the FLEXPART-
based inversions.

In terms of spatial distributions, the base cases of CSR
and LUMIA inversions, i.e. CS3 and LF5 (default configu-
rations of both systems), exhibit good agreement in predict-
ing smaller uptake of CO2 compared to the a priori fluxes
(Fig. 2a–c). The magnitude of flux corrections suggests addi-
tional sources inferred from the atmospheric signal, as shown
in the innovations of fluxes (Fig. 2d, e). Major corrections
are obtained over western and southern Europe where the
inversions point to an overestimation of the CO2 uptake by
the prior biogenic fluxes. The weak annual uptake of CO2 in
2018 was exceptional and caused by the drought episode in
Europe (Bastos et al., 2020; Rödenbeck et al., 2020; Thomp-
son et al., 2020), which even turned some areas in central,
northern, and western Europe into a net source of CO2. The
discrepancies between CS3 and LF3 noticed in the innova-
tions, e.g. in northern France, the Netherlands, and south-
eastern UK, are attributable to the combination of differences
in regional transport models, lateral boundaries, and system
configurations.

In the following, we will focus on separating and quan-
tifying the contributions of such differences caused by each
driver.

3.1 Impact of mesoscale transport

Inversions that differ in the regional transport models (STILT
and FLEXPART) demonstrate the largest differences in pos-
terior fluxes, resulting in a relative contribution of about
61 % of the total differences compared to the boundary con-
ditions and inversion systems. The differences in monthly
estimates of NEE calculated with CS3 and CF3 inversion
setups that vary in regional transport models are shown in
Fig. 3a (“transport”). Additionally, the discrepancies caused
by transport have an obvious seasonal pattern. The differ-
ences between CS3 and CF3 peak in November and June,
reaching 2.11 and −1.82 PgC yr−1, respectively. The best
agreement between both inversions is obtained during the
transitional months (August and April) with differences of
−0.10 and −0.18 PgC yr−1, respectively. This might be at-
tributed to the decline of the net flux magnitude during these
months.

Furthermore, we assessed the impact of atmospheric trans-
port in the simulations of CO2 concentrations, because this
directly translates into differences in the optimized fluxes.
These simulations were calculated using the total compo-
nents of prior fluxes (biosphere, ocean, and fossil fuel emis-
sions) with STILT and FLEXPART in forward model runs to

sample the atmospheric concentrations at hourly time steps
at the station locations across the site network. Note that
since all runs use identical prior fluxes, it does not mat-
ter for the differences whether the prior fluxes were precise
enough to reproduce the true concentration or not. Figure 3b
(“transport”) illustrates the monthly differences in the for-
ward simulations between STILT and FLEXPART averaged
over all observational stations. Similarly to the discrepancies
in the optimized fluxes, the differences in the forward simu-
lations demonstrate a dominant impact of the regional trans-
port model, preserving the same temporal pattern as seen in
the flux differences but with opposite signs. The absolute dif-
ference ranges from 0.39 to 4.37 ppm when computed for the
monthly means throughout all the sites. Geels et al. (2007)
even found a larger spread up to 10 ppm when calculated
with five transport models over 10 stations distributed across
Europe. The notably large difference reported in that study
is likely attributed to the large discrepancies in the model
configurations, especially regarding the horizontal resolution
and vertical levels used. The harmonized configurations used
in STILT and FLEXPART lead to a reasonably consistent
representation of the atmospheric variability at synoptic and
diurnal timescales. The largest differences are observed dur-
ing November and May with −4.37 and 3.60 ppm, respec-
tively. On the other hand, the smallest differences were found
to be −0.39, −0.42, and 0.56 ppm during September, April,
and August, respectively. These results suggest a maximum
impact of the mesoscale transport during the growing season
and winter, while the impact converges to the minimum dur-
ing transitional months such as May and September. Over-
all, the differences in posterior fluxes are consistent in the
timing with the differences in the simulated concentrations
computed using the prior fluxes.

Further diagnostics of model–data mismatches are pro-
vided in the Supplement, indicating the performances of
STILT and FLEXPART with respect to the observations us-
ing prior and posterior fluxes across the site network at
hourly, weekly, and yearly time steps (see Fig. 1S and Ta-
ble 1S).

In terms of the spatial discrepancies in annual flux esti-
mates, using STILT generally leads to predicting a larger
sources of CO2 in the regional inversions, in particular over
central Europe and the UK compared to using FLEXPART
(Fig. 4, “diff: transport”). In turn, inversions using FLEX-
PART suggest less uptake over northern Italy, Switzerland,
and south-eastern France. However, this impact refers to a
spatial pattern of transport differences that might be caused
either by meteorological data or by problematic sites that are
hard to represent by transport models. Some areas such as
north-western Italy exhibit a persistent impact over time as
shown in Fig. 4 (“SD: transport”), which shows the stan-
dard deviation of monthly differences calculated for the CS3
and CF3 inversions. In terms of temporal variations, the in-
versions performed with different regional transport models
indicate larger monthly flux variations in comparison with
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Figure 1. Panel (a) refers to a posteriori monthly NEE estimated using eight inversions, including a priori NEE shown in black, with
CSR (solid lines) and LUMIA (dashed lines), and panels (b) denotes the corresponding annually aggregated fluxes. Orange and red colours
correspond to TM3, and dark or light blue correspond to TM5. Orange and light blue colours refer to STILT, and red and dark blue refer to
FLEXPART.

Figure 2. Panels (a)–(c) show the spatial distributions of annual
NEE estimated with the base inversions CS3 and LF5, as well as
their prior. Panels (d) and (e) depict the innovations of fluxes cal-
culated for the inversions CS3 and LF5. Green circles denote the
locations of observational sites.

those differing in global models and inversion systems (see
Fig. 4, “SD: background” and “SD: system”).

Figure 5 shows the spatial flux differences together with
differences in prior concentrations simulated using STILT
and FLEXPART during June and December. Note that the
differences in NEE, to a large extent, agree in their spatial
patterns with the differences in prior concentrations calcu-
lated over the station network. In addition, there are notably
particular areas that exhibit opposite signs of the spatial im-
pact in the differences in posterior fluxes and prior concen-
trations such as western Europe during June and northern
Europe during December. One important difference between
STILT and FLEXPART is that the STILT model has higher
sensitivities during summer than FLEXPART, while the op-
posite holds true during winter. However, there are excep-

Figure 3. Differences in optimized fluxes (a) and prior concentra-
tions (b) calculated with the regional transport models STILT and
FLEXPART (CS3-CF3) and background provided through TM3
and TM5 (CS3-CS5). “system” refers to the differences between
CSR and LUMIA inversion for optimized fluxes (CS5-LS5).

tions at individual sites such as Weybourne (WAO) in the
UK and Ispra (IPR) in Italy, indicating either difficult terrains
that cannot be well represented by the models or real synop-
tic features that are resolved by one model but not by the
other. The differences in forward simulations are inversely
manifested in the posterior flux differences as large surface
sensitivities result in smaller posterior flux corrections and
vice versa. In this case, STILT computes higher surface sen-
sitivities than FLEXPART in June; therefore, the CS3 inver-
sion needs to adjust the prior fluxes less to fit the observa-
tions. On the contrary, a weaker uptake is suggested by the
STILT inversion during December over Europe, except for
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Figure 4. Panels (a)–(c) indicate differences in annual posterior
NEE estimated with STILT and FLEXPART models, referred to
as “transport” (CS3-CF3); TM3 and TM5 are referred to as “back-
ground” (CS3-CS5); and CSR and LUMIA are referred to as “sys-
tem” (CF3-LF3). Panels (d)–(f) demonstrate the standard deviations
of the corresponding monthly differences.

Figure 5. Spatial differences of posterior NEE estimated from the
inversions CS3 and CF3 with STILT and FLEXPART transport
models during June and December; filled circles indicate the dif-
ferences in prior concentrations at the locations of sites (horizontal
legend explains the magnitude of differences).

the abovementioned areas around northern Italy and south-
eastern France. The differences appeared to be larger during
the months of growing season and winter, following the sea-
sonal amplitude of CO2.

3.2 Impact of lateral boundary conditions

The differences in lateral boundary conditions were found
to account for about 27 % of the total differences resulting
from the regional transport, lateral boundaries, and systems.
This is a non-negligible contribution, albeit smaller than the
regional transport contribution. The impact of using differ-
ent far-field contributions was analysed by assessing the dif-
ferences in the posterior NEE estimated with CS3 and CS5
inversions, which use boundary conditions from the global
inversions CarboScope and TM5-4DVAR, respectively. Fig-
ure 3 (“background”) shows consistent differences over time

between these inversion estimates aggregated over the en-
tire domain of Europe. Larger flux corrections are suggested
by CS5 than by CS3. This is because the global TM3-based
inversion predicts higher influence at the lateral boundaries
than the global TM5-based inversion does. Discrepancies in
the monthly posterior fluxes between CS3 and CS5 inver-
sions amount to a range of 0.11 to 0.64 PgC yr−1 and ab-
solute differences with a mean of 0.40 PgC yr−1. Monthly-
mean differences in CO2 concentrations throughout all sites
simulated using TM3 and TM5 boundary conditions were
found to range from 0.17 to 0.93 ppm with a mean of
0.55 ppm.

The distributions of spatial differences of posterior fluxes
indicate a homogeneous impact across the full domain of
Europe (Fig. 4, “diff: background”). Likewise, the standard
deviations of the monthly posterior fluxes obtained from
CS3-CS5 (”SD: background”) denote flat temporal variations
throughout all the grid cells. These findings confirm the re-
sults obtained in Fig. 3 (“background”). This impact is con-
sistent in space and time, with coherent deviation over all
months, and is therefore expected to not affect the seasonal
and interannual variability.

3.3 Impact of inversion systems

CS3 and LF5 differ by more than their regional transport and
boundary conditions. In particular, the uncertainties are, by
default, set up differently in CSR and LUMIA. The two sys-
tems optimize a different set of variables (weekly NEE off-
sets in LUMIA and 3-hourly NEE in CSR). Here we compare
CS5 and LS5, which differ by their inversion systems but not
by their transport model and boundary conditions. The dif-
ferences in flux estimates between CS5 and LS5 inversions
amount to 12 % relative to the total differences, including
that caused by the mesoscale transport and lateral bound-
aries. This impact is, however, dependent upon system con-
figurations, in particular the way the prior flux uncertainty is
prescribed. The absolute monthly differences between CS5
and LS5 range between 0.06 and 0.56 PgC yr−1 with a mean
of 0.15 PgC yr−1 (Fig. 3, “system”). This demonstrates the
smallest differences amid inversions in comparison with the
transport and lateral boundary differences, which yielded ab-
solute monthly means of 1.27 and 0.40 PgC yr−1, respec-
tively. The differences peaked during May, June, and Novem-
ber, while the differences remained rather small during the
rest of the year. LS5 infers −6.42 and 2.39 PgC yr−1 during
June and December, respectively, which is higher than CS5
estimates by 0.33 and 0.07 PgC yr−1. Generally, LS5 predicts
slightly larger CO2 releases compared to CS5, which is par-
tially due to differences in how uncertainties are assumed in
both systems.

The impact of uncertainty definition is quantitatively as-
sessed by using identical uncertainties for model–data mis-
match as well as for prior fluxes in both CSR and LUMIA.
The spatial flux corrections (innovation of fluxes) shown in
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Fig. 8 denote quite good agreement between CSR and LU-
MIA estimates. In this experiment, the differences in June
and December decreased to 0.23 and 0.04 PgC yr−1, respec-
tively, in comparison with the corresponding differences ob-
tained from the default configurations of both systems. That
is to say, the impact of uncertainty definition alone amounts
to 0.09 and 0.03 PgC yr−1 in June and December, respec-
tively, leading to approximately 30 % and 50 % of the over-
all system-to-system differences. The rest of the differences
may be attributed to differences in the convergence of the
cost function to reach the minimum values.

The spatial differences shown in Fig. 4 “diff: system” al-
ternate between positive and negative differences over the
domain (but these tend to compensate when aggregating the
flux estimates over the full domain). It should be noted that
the inversion systems mainly differ in the definition of the
shape and structure of the prior uncertainty. Therefore, ap-
plying different structure and magnitude of prior flux uncer-
tainty in the inversions may inflate the error in CO2 flux es-
timates over the underlying regions in the domain, in partic-
ular if the spatial differences do not cancel out. In addition,
the corresponding standard deviations of monthly estimates
(“SD: system”) show large temporal variations, specifically
over areas that have large spatial differences. The spatial re-
sults indicate that the impact of inversion systems should not
be neglected, especially at national and subnational scales.

4 Discussion

The regional inversions computed over Europe showed that
posterior NEE is largely derived from the atmospheric sig-
nal. The seasonality of posterior NEE, inferred from the at-
mospheric signal, is strongly impacted by differences in the
representation of atmospheric transport. Given the identical
priors and observational datasets used in the inversions, us-
ing different mesoscale transport models leads to 61 % of
the differences in posterior fluxes in comparison with 27 %
and 12 % of the differences caused by the use of different
boundary conditions and different inversion systems, respec-
tively. In agreement with these results, Schuh et al. (2019)
also found a large impact of mesoscale transport on estimat-
ing CO2 fluxes. Hence, any error in the atmospheric trans-
port is translated into posterior fluxes as flux corrections. For
instance, CS3 and LS3 suggest annual CO2 flux budgets of
−0.20 and −0.72 PgC, respectively, indicating a difference
of 0.51 PgC in the annual flux budget. This difference is even
larger than the prior flux uncertainty (0.47 PgC). The trans-
port also showed a large impact on flux seasonality, lead-
ing to a difference of 49 % relative to the mean seasonal
cycle. However, Schuh et al. (2019) found smaller differ-
ences, amounting to about 10 %–15 % of the mean seasonal
cycle. Unlike the regional transport model error, the impact
of boundary conditions does not show any striking seasonal-
ity and thus can be thought of as a bias in dry mole fractions.

The consistency of the lateral boundary impact over time and
space is in agreement with results of lateral boundary un-
certainties assessed by Chen et al. (2019) using four differ-
ent global transport models, albeit over a different domain.
Therefore, such an impact may be dealt with as a constant
correction in mixing ratios before performing the regional in-
versions, which are potentially site-specific corrections. But
there should be a reference for these corrections, e.g. taking
the most robust model that has been validated against obser-
vations or simply a factor of the relative mean of the relevant
models/approaches. Although the inversion systems showed
the smallest differences in CO2 flux estimates, the specifica-
tion of the control vector (regarding the construction of co-
variance matrices) that devises the flux correction can result
in larger differences, specifically in the spatial flux patterns.

The large number of stations within central and western
Europe leads to a strong observational constraint that is re-
flected in the spatially optimized fluxes over that area. There-
fore, large spatial differences between the inversions are pro-
nounced around areas where stations exist, precisely for grid
cells that have non-zero footprints. The large temporal varia-
tions indicate a systematic error that possibly arises from the
transport models themselves as well as from meteorological
forcing data. Additionally, systematic differences between
transport models occur due to discrepancies in representing
vertical mixing and horizontal and vertical resolution of the
models (Peylin et al., 2002). Gerbig et al. (2008) found large
discrepancies in derived mixing heights between meteoro-
logical analysis from ECMWF and radiosonde data, which
reached about 40 % for the day-time and about 100 % for the
nocturnal boundary layer. The vertical mixing in tracer dis-
persion models was found to result in a significant variability
in methane emission estimations (up to a factor of 3) given
the same meteorology as investigated by Karion et al. (2019).

Drivers of STILT–FLEXPART differences

Although STILT and FLEXPART are run at the same
spatio-temporal resolution, employing similar schemes to
parametrize the atmospheric motion unresolved by meteoro-
logical forcing data such as turbulence, and similar diagnos-
tics to determine mixing heights, they still exhibit large spa-
tial and temporal differences. A first assumption was that the
differences between STILT and FLEXPART could be caused
by differences in the calculation of mixing height. However,
we did not find a correlation between the differences in mix-
ing heights, calculated with the two models, and the differ-
ences in prior concentrations (Fig. 6). This finding concludes
that the discrepancies in representing mixed layer heights do
not explain the major differences in simulated CO2 concen-
trations nor the differences in footprints.

The second assumption was that differences in the forcing
data of meteorological products might lead to the discrep-
ancies in both models, given that STILT uses meteorologi-
cal parameters from IFS HRES, while FLEXPART uses the
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Figure 6. Scatter plot of differences of prior concentrations and mixing heights calculated with STILT and FLEXPART models (i.e. STILT-
FLEXPART on the x and y axes). Red lines indicate the slopes.

ERA-5 reanalysis. Results in Fig. 7, “meteo”, indicate that
using different meteorological data results in pronounced dif-
ferences when the FLEXPART model was forced by opera-
tional forecast data instead of the ERA-5 reanalysis. These
differences notably occur during the time of net CO2 re-
lease, corresponding to quite small differences during the
time of growing season. This, however, only explains a small
part of the overall differences (shown in Fig. 7, “base”) that
dominate all the months except August and September. In a
previous study, Liu et al. (2011) concluded that uncertain-
ties in meteorological fields lead to a significant contribu-
tion to the total transport error, as well as to an underesti-
mation of the vertical turbulent mixing even when the same
circulation model and mixing parameterizations were used
to reconstruct vertical mixing from a single meteorological
analysis. Tolk et al. (2008) also found meteorology to be a
key driver of representation error, which varies spatially and
temporally. They indicated that a large contribution to rep-
resentation error is caused by unresolved model topography
at coarse spatial resolution during night, while convective
structures, mesoscale circulations, and the variability of CO2
fluxes dominate during day-time. Deng et al. (2017) found

that assimilating meteorological observations such as wind
speed and wind direction in transport models significantly
improved the model performances, achieving an uncertainty
reduction of about 50 % in wind speed and direction, espe-
cially when measurements in the mixed layer were assim-
ilated. Nonetheless, they concluded that the differences in
CO2 emissions reached up to 15 % at local-scale corrections
after inversion and were limited to 5 % for the total emis-
sions integrated across the regional domain of interest. These
results refer to the limited impact of meteorological data.
Note however that the main aim of this experiment was to
test whether differences in driving meteorological data could
explain the differences between STILT and FLEXPART, but
we are not assessing the overall impact of meteorological un-
certainties. Doing so would in particular require testing non-
ECMWF meteorological products.

Furthermore, we tested the possible impact of surface
layer heights (the height up to which particles are sensitive
to the fluxes) that may affect the particle dispersion, pro-
vided that STILT relies on the assumption of defining the
surface layer as a half of the mixed layer height, while in
FLEXPART it is defined as a fixed height of 100 m (these
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Figure 7. Differences in prior concentration simulated at LIN with
STILT and FLEXPART using different configurations. “s_layer”,
yellow line, refers to the difference calculated with STILT using
two assumptions of defining the surface layer height, once with the
default as 0.5 of the mixed layer and once with 100 m as used in
FLEXPART; “meteo”, red line, indicates the differences calculated
with FLEXPART using two different types of meteorological data,
IFS (the STILT default) and ERA-5; “model”, blue line, denotes the
differences calculated with STILT and FLEXPART, given identical
meteorological data (IFS) and surface layer height (100 m); “base”,
black line, refers to the base configurations of STILT and FLEX-
PART encompassing all possible differences between models – i.e.
(1) STILT with IFS forecasting data and a surface layer height as
0.5 times that of the mixed layer height and (2) FLEXPART with
ERA-5 reanalysis and the surface layer height of 100 m.

are default configurations of the models). In this experiment,
STILT was run with a surface layer height of 100 m, so the
impact of the surface layer on CO2 simulations is outlined by
the comparison with another run using the default configura-
tions of STILT. The differences in simulated CO2 concentra-
tions due to differences in the surface layer were found to be
quite small (Fig. 7, “s_layer”) and, therefore, can be negligi-
ble in both magnitude and temporal pattern compared to the
overall differences. However, varying the models STILT and
FLEXPART with identical meteorological data and identi-
cal surface layer leads to the largest differences, in particular
during the growing season months and winter months (Fig. 7,
“model”). As a result, model-to-model differences largely
affect the simulations of CO2 concentrations and are likely
originating from the transport model schemes. It is clearly
noticeable that the overall differences combine the underly-
ing differences of “model”, “meteo”, and “s_layer” and are
yielded as the arithmetic summation of this partitioning.

How do our results explain the range of uncertainties
reported in scientific literature?

To shed more light on the drivers of differences in opti-
mized CO2 fluxes, we analyse the spread in our inversions
in line with the spreads in other inversion estimates that were
reported in two previous studies over the same domain of
Europe. Figure 9 shows the spreads amid the three studies:

Figure 8. Innovation of fluxes calculated from CSR and LUMIA
using identical uncertainties of prior flux and measurements. The
uncertainty flux shape was flat and the decaying spatial correlation
was fit to a Gaussian function with 500 km scale. FLEXPART and
TM5 models were used in this experiment.

(1) eight inversions conducted in our results denoted as “En-
semble”, (2) six inversions of the EUROCOM experiment
(denoted as “EUROCOM”) done by Monteil et al. (2020),
and (3) five inversions of the drought study by Thompson et
al. (2020), focusing on analysing the 2018 drought impact
on NEE, denoted as “Drought”. Note that in “EUROCOM”
and “Drought”, the tracer inversions differed in the atmo-
spheric regional transport models, the definition of bound-
ary conditions, the definition of control vector, the selection
of atmospheric datasets, and the a priori fluxes. These dif-
ferences are expected to span a large range of uncertainty
sources in the posterior NEE. The climatological monthly es-
timates of NEE were averaged over “EUROCOM” inversion
members for the respective years 2006–2015, except for one
inversion (NAME), which was limited to 2011–2015. “En-
semble” and “Drought” were confined to the analysis year
of 2018. The monthly NEE estimates were calculated for
all ensembles as the average over their respective inversion
members. The annual mean of NEE estimated with “EU-
ROCOM”, “Ensemble”, and “Drought” amounts to −0.19,
−0.29, and −0.05 PgC with standard deviations of 0.34,
0.29, and 0.46 PgC, respectively.

The spreads amid each ensemble of inversions are illus-
trated by the min and max values bounded around the mean
on the error bars (Fig. 9). The monthly mean of NEE esti-
mates shows a good consistency in all the ensembles. The
spreads are also relatively comparable, albeit variable over
months. For instance, “EUROCOM” and “Drought” exhibit
larger spreads during the growing season (April–August),
while “Ensemble” has a larger spread in the rest of the
months – i.e. during winter. Note that all ensembles experi-
ence large spreads during June and May. Although the partic-
ipating inversions to “EUROCOM” and “Drought” had dif-
ferent configurations, the spreads were not largely different
from our inversion spreads. This implies that the use of dif-
ferent atmospheric transport models could account for a large
fraction of differences in posterior fluxes, although differ-
ences in the definition of uncertainty covariance matrices and
lateral boundary conditions likely contribute as well. More-
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Figure 9. Comparison of monthly NEE estimates calculated as the
mean of six inversions taken from Monteil et al. (2020), denoted as
“EUROCOM”; eight inversion members conducted in our study (se-
tups listed in Table 2), denoted as “Ensemble”; and five inversions
used in Thompson et al. (2020) for the 2018 drought study, denoted
as “Drought”. The error bars refer to the spreads (min/max) over the
respective members amid each ensemble of inversions.

over, the discrepancies in “EUROCOM” and “Drought” es-
timates are expected to be partially caused by using different
atmospheric datasets in the inversion systems. Munassar et
al. (2022) found that posterior fluxes can be more sensitive
to changing the number of stations than changing the prior
flux models.

5 Conclusions

Estimating atmospheric tracer fluxes through inverse mod-
elling systems has been widely used, in particular for target-
ing the major greenhouse gases (GHGs) to improve the quan-
tification of natural (both terrestrial and oceanic) sources and
sinks. Here, an analysis of differences in posterior fluxes
of CO2 was carried out using inversion systems deploy-
ing different regional transport models. The difference be-
tween minimum and maximum spreads for annually inte-
grated fluxes was found to be 0.92 PgC yr−1 for the ensemble
range of 0.20 and −0.72 PgC yr−1, with a mean estimate of
−0.29 PgC yr−1 calculated over the full domain of Europe in
2018. We tested the regional transport, the boundary condi-
tions, and the inversion systems. The regional transport ac-
counts for the largest part of the discrepancies in the opti-
mized fluxes as well as in the estimation of CO2 concentra-
tion. Temporal and spatial differences in posterior fluxes are
consistent with the differences in simulated CO2 concentra-
tion sampled with STILT and FLEXPART over the station
network. They demonstrate a spatial pattern over certain ar-
eas during June and December, suggesting rather systematic
differences between STILT and FLEXPART. The differences
in the regional transport are mainly caused by the transport
schemes, while meteorological forcing data partially con-
tribute to these differences, especially during the months in
which net release of CO2 occurs. However, the differences in
CO2 simulations did not show large sensitivities to other pa-

rameters such as the way the surface layer height (maximum
altitude considered sensitive to the fluxes in Lagrangian mod-
els) and the mixing height are defined. In addition, the global
transport models used in the global inversions that provide
the far-field contributions to the regional domain are respon-
sible for small but non-negligible differences in the inversion
estimates. These differences appeared to be homogeneous
spatially and temporally, which can be considered as bias-
like. The differences arising from using different inversion
systems integrated over the entire domain of Europe were on
the contrary rather small, once differences such as the trans-
port model and the uncertainties are controlled for. However,
such an impact is partially a result of applying different struc-
ture and shape in the prior flux uncertainty, while the rest
may be attributed to differences in the cost function conver-
gence to reach the minimum. This reflects the importance of
the way the uncertainty is prescribed in the tracer inversion
systems.

The divergence in CO2 flux estimates resulting from swap-
ping the regional transport model emphasizes the need for
further evaluation of atmospheric transport models in order
to improve the performance of the models. At the same time,
it is important to realistically account for the transport errors
in the tracer inversions. Errors in meteorology parameters
assimilated in transport models as forcing data should also
be accounted for explicitly, potentially through making use
of an ensemble of meteorology data to estimate such errors.
Despite the non-negligible difference between inversion sys-
tems, this study indicates the importance of following a com-
mon inversion protocol when reporting flux estimates from
different inversion frameworks.

Code and data availability. The simulations of the ensemble
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