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Abstract. In this study, we developed an approach that integrated multiple patterns of timescale for box mod-
eling (MCMv3.3.1) to better understand the O3–precursor relationship at multiple sites and through continuous
observations. A 5-month field campaign was conducted in the summer of 2019 to investigate the ozone forma-
tion chemistry at three sites in a major prefecture-level city (Zibo) in Shandong Province of northern China. It
was found that the relative incremental reactivity (RIR) of major precursor groups (e.g., anthropogenic volatile
organic compounds (AVOCs), NOx) was overall consistent in terms of timescales changed from wider to nar-
rower (four patterns: 5-month, monthly, weekly, and daily) at each site, though the magnitudes of RIR varied at
different sites. The time series of the photochemical regime (using RIRNOx / RIRAVOC as an indicator) in weekly
or daily patterns further showed a synchronous temporal trend among the three sites, while the magnitude of
RIRNOx / RIRAVOC was site-to-site dependent. The derived RIR ranking (top 10) of individual AVOC species
showed consistency between three patterns (i.e., 5-month, monthly, and weekly). It was further found that the
campaign-averaging photochemical regimes showed overall consistency in the sign but non-negligible variabil-
ity among the four patterns of timescale, which was mainly due to the embedded uncertainty in the model input
dataset when averaging individual daily patterns into different timescales. This implies that utilizing narrower
timescales (i.e., daily pattern) is useful for deriving reliable and robust O3–precursor relationships. Our results
highlight the importance of quantifying the impact of different timescales to constrain the photochemical regime,
which can formulate more accurate policy-relevant guidance for O3 pollution control.
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1 Introduction

Since 2013, the ambient PM2.5 concentration in China has
dramatically declined following the implementation of the
Clean Air Action (Lu et al., 2018; Y. Wang et al., 2020;
Zhang et al., 2019). However, national ground surface ozone
concentrations increased over the same period (Xue et al.,
2020) and became a major air quality problem that needed
to be addressed in China (Li et al., 2019; Wang et al., 2019).
It is well-known that ground surface ozone is formed mainly
by complex nonlinear photochemical oxidation of volatile or-
ganic compounds (VOCs) in the presence of nitrogen oxides
(NOx =NO+NO2) and sunlight (Blanchard, 2000; Hidy,
2000; Kleinman, 2000), which adversely influences human
health, vegetation, and crops (Brunekreef and Holgate, 2002;
Vingarzan, 2004).

Given the complex non-linear relationship between O3 for-
mation and its precursors (VOCs and NOx), challenges in
mitigating its severity lie primarily in comprehensively un-
derstanding the O3–precursor relationship (Su et al., 2018a;
Tan et al., 2018a). It is commonly recognized that regional-
scale air quality models and the 0-D box model are two
mainstream approaches to investigate the increasingly severe
ozone problem (Blanchard, 2000; Cardelino and Chameides,
1995; Hidy, 2000; Liu et al., 2019). Unlike the complicated
3-D air quality models, the 0-D box model is an observation-
based model that is implemented with a gas-phase chemi-
cal mechanism; it has been widely used to diagnose O3–
precursor relationships in various locations (Liu et al., 2021a;
Sun et al., 2016; Tan et al., 2019; Xue et al., 2014a; Yu et
al., 2020a). Some previous studies (Li et al., 2021; Lu et al.,
2010a; Sicard et al., 2020; Yu et al., 2020b) have reported
large variability in O3–precursor relationships on spatiotem-
poral scales in many cities of China, which indicates great
challenges for current O3 pollution control (Y. Wang et al.,
2017; Xue et al., 2014b).

Table 1 summarizes the published studies of O3–precursor
relationships using the 0-D box model (implemented with
different gas-phase chemical mechanisms) with diversified
patterns of timescale in many places in China. The observa-
tional period in most previous studies was short term (i.e.,
less than one month), while medium-term (i.e., from one to
several months), and long-term (i.e., multiple years) periods
were limited. As shown in Table 1, we find that model in-
put datasets with different timescales have been employed in
previous studies to identify the campaign-averaging O3 for-
mation regime, but there is a lack of comparison among these
different timescales. We also find that more than half of the
studies use the averaged diurnal patterns as box model input,
which is particularly common for medium- and long-term
measurements. For example, a 10-year long-term observa-
tional study by Y. Wang et al. (2017) adopted a monthly pat-
tern of timescale for model simulation for the reason of sav-
ing computing resources; it also revealed a substantial tem-
poral variability in the O3–precursor relationship. In addi-

tion, it is believed that long-term (measurements of at least
several months) and multiple-site continuous online mea-
surements can provide an opportunity to develop O3 control
strategies more comprehensively over a wider spatiotempo-
ral scale (Li et al., 2021; Y. Wang et al., 2017; T. Wang et al.,
2017). However, such measurements have been quite rare in
China, limiting the present understanding of O3–precursor
relationships (Lu et al., 2019; T. Wang et al., 2017).

In this study, a 5-month field campaign was conducted in
the summer of 2019 to investigate the ozone formation chem-
istry at three sites in Zibo, a major prefecture-level Chinese
city in Shandong Province. According to our measurements
at the three sites in Zibo, the averaged O3 concentration
during the whole observational period was around 50 ppbv,
while the daily maximum of O3 concentrations for some ex-
tremely polluted periods were nearly 120–150 ppbv (see de-
tails in Sect. 3.1). Here, we developed an approach that in-
tegrated multiple patterns of timescale for box model sim-
ulation, which aimed to illustrate the non-linearity of O3–
precursor relationships driven by their actual daily, weekly,
and monthly variability. Our results can be conducive to in-
terpreting variations of O3–precursor relationships over a
wider spatiotemporal scale, and they provide implications for
developing more precise and constrained O3 control strate-
gies in other regions.

2 Methods

2.1 Study sites and measurements

Field measurements were conducted in a major prefecture-
level city (Zibo), which is in the middle of Shandong
Province, northern China, from 1 May to 30 September 2019.
Figure S1 in the Supplement shows the surrounding environ-
ment and geographical locations at the three sampling sites;
a detailed description of the Tianzhen (TZ), Beijiao (BJ),
and Xindian (XD) sites can be found in our previous study
(Li et al., 2021). Briefly, TZ contains a mixture of crude oil
processing and operation stations and farming areas and is
classified as a suburban area; XD contains a mixture of res-
idential and heavy industrial zones and is considered to be a
suburban area; BJ is in the urban area of Zibo.

Typical inorganic gases of O3, NO, NO2, CO, and
SO2 were measured using online commercial gas analyz-
ers (Thermo Scientific 49i, 42i, 48i, and 43i, USA) at the
three sites. Following the Chinese meteorological monitoring
regulation (GB/T 35221-2017), we continuously monitored
the meteorological parameters (i.e., temperature, relative hu-
midity, UV-A solar radiation, precipitation, wind speed, and
wind direction) at the three sites (Li et al., 2021). Two on-
line GC systems (gas chromatography–flame ionization de-
tector, GC–FID, Thermo Scientific GC5900) were deployed
at TZ and BJ respectively to measure VOC species. For C2-
C5 VOCs, desorption and separation were performed us-
ing a GC with pre-concentration on a combination of two
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Table 1. Summary of relevant published 0-D box model studies in China.

City Site or type Period Patterns of timescalea Mechanism Reference

Beijing PKUb Urban 10 Aug–10 Sep 2006 Day to day (25 d) CB-IV Lu et al. (2010a)
YUFA Suburban

PKU Urban 13–29 Apr 2015, 11–29
Aug 2015, 22 Feb–12
Mar 2016

Entire period RACM2 Qin et al. (2018)

Beijing Urban 2–19 Jul 2014 Entire period RACM2 Tan et al. (2019)

Dezhou Yucheng Rural 1 Jun–6 Jul 2013 Day to day (2 d) MCMv3.3.1 Zong et al. (2018)

Shenzhen SYYc Urban 28 Sep–31 Oct 2018 Entire period RACM2 Yu et al. (2020b)
Fucheng Urban

Hong Kong TC Suburban 10 Aug–21 Oct 2013 Entire period MCMv3.2 Zeng et al. (2018)
Wan Shan Island

Tung Chung Urban Sep–Nov 2002, 2007,
2012

Year to year (3 years) MCMv3.2 Xue et al. (2014b)

Qing Sha Urban 23 Oct–1 Nov 2007 Day to day (10 d) CB-IV Cheng et al. (2010)
Tai O

Tung Chung Urban Jan 2005–Dec 2014 Month to month
(5 months)

CB05 Whalley et al. (2021)

Chengdu Pengzhou Suburban 3 Sep–2 Oct 2016 Entire period RACM2 Tan et al. (2018b)
Pixian Suburban
Shuangliu Suburban
Chengzhong Urban

Zhuhai Qi’ao Mountain 25 Sep–28 Oct 2016 Entire period MCMv3.2 Liu et al. (2021b)

Wuhan HPEMCd Urban Feb 2013–Oct 2014 Month to month
(21 months)

MCMv3.2 Lyu et al. (2016)

Guangzhou GZ Urban 5–17 Jul 2006 Day to day (16 d) CB-IV Lu et al. (2010b)
BZ Suburban

Guangzhou Urban 4 Oct–5 Nov 2004 Entire period SAPRC Zhang et al. (2008b)
Xinken Nonurban

Hangzhou Zhaohui Urban 17 May, 26 Jun 20, Jul
24, Aug and 26 Sep

Entire period (5 d) MCMv3.3.1 Zhao et al. (2020)

Xiasha Suburban
Huapu Urban

Nanjing NUISTe Suburban 3 Jul–1 Aug 2018 Entire period CB-IV Fan et al. (2021)

SORPES Suburban 22 Sep–7 Oct 2014 Day to day (8 d) MCMv3.3.1 Xu et al. (2017)

Yulin EMBf Urban 7 Jul–10 Aug 2019 Day to day (13 d) MCMv3.3.1 Yin et al. (2021)

Lanzhou Renshoushan Park Urban 19 Jun–16 Jul 2006 Day to day (3 d) MCMv3.2 Xue et al. (2014c)

Baoding EPBg Urban 10–30 Sep 2015 Day to day (5 d) MCMv3.3.1 M. Wang et al.
(2020)

Chongqing Nan Quan Suburban 24 Aug–22 Sep 2015 Day to day (7 d) MCMv3.2 Li et al. (2018)
Chao Zhan Urban
Jin Yun Shan Urban

Shanghai Pudong Urban 1–31 Jul 2017 Day to day (16 d) CB-IV Lin et al. (2020)
Dianshanhu Suburban

South China
Sea

Wanshan Island 11 Sep–21 Nov 2013 Entire period MCMv3.2 Wang et al. (2018)

a Number of days for modeling the patterns of timescale denotes that which was simulated by the box model. b Peking University. c Shenzhen Yanjiusheng Yuan. d Hubei Provincial Environmental
Monitoring Center. e Nanjing University of Information Science & Technology. f Environmental Monitoring Building. g Environmental Protection Bureau.
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columns, followed by an FID detector. For C6-C12 VOCs, the
air sample was pre-concentrated on Tenax GR cartridges and
subsequently separated by chromatographic column, then it
was detected by another FID detector. Similarly, one on-
line system (gas chromatography–flame ionization detector–
photoionization detector, GC–FID–PID, Syntech Spectras
GC 955-615/815) was deployed at the XD site. For C2-C6
VOCs, the hydrocarbons were concentrated on a Tenax GR
carrier then thermally desorbed and separated on a DB-1 col-
umn before finally being detected by the FID and PID. For
C6-C12 VOCs, the air sample was concentrated on a Car-
bosieve SIII carrier at 5◦ then thermally desorbed and sepa-
rated on a combination of two columns; the FID and PID de-
tectors were employed for subsequent detection. These sys-
tems measured 55 VOC species at a 1 h resolution; more
detailed descriptions can be found elsewhere (Chien, 2007;
Jiang et al., 2018; Xie et al., 2008).

Table S1 summarized the limit of detection, accuracy, and
precision of the instruments at the three sites, and all the
measurement instruments were regularly subjected to service
checking and maintenance during the whole campaign. Un-
fortunately, we did not conduct the inter-comparison between
the GC–FID and GC–FID–PID instruments at the same site
due to practical reasons, as these VOC instruments were sep-
arately deployed at the three different sites for continuous
routine operation. To ensure the quality assurance and quan-
tity control (QA–QC) of online VOC measurement, two five-
point calibrations (i.e., 2, 4, 6, 8, 10 ppbv, dilution from one
cylinder) for standard gases with 55 VOC species (Linde Co.,
Ltd, USA) were carried out in May and August of 2019 at
the three sites. Table S2 showed that the calibration linearity
(R2) of all measured VOCs was nearly 0.9990. Additionally,
a single-point calibration (i.e., 6 ppbv) was regularly per-
formed every month during the whole campaign. As shown
in Fig. S2 (a case from TZ), the retention time, peak fitting,
and baseline of the chromatogram were manually checked
and adjusted on a daily basis.

2.2 0-D box model and design of four patterns of
timescale

The 0-D box model integrated with the latest Master Chemi-
cal Mechanism MCMv3.3.1 (http://mcm.york.ac.uk, last ac-
cess: 27 January 2023) has been widely utilized in many re-
gions (He et al., 2019; Jenkin et al., 2015; Liu et al., 2019;
Whalley et al., 2021). Unlike the lumped chemical mecha-
nisms such as CB05 (Y. Wang et al., 2017; Yarwood et al.,
2005), CB6 (Yarwood et al., 2010), RACM and RACM2
(Goliff et al., 2013; Stockwell et al., 1997, 2020), and
SAPRC-07 (Carter, 2010), the MCMv3.3.1 is a near-explicit
chemical mechanism consisting of over 5800 species and
17 000 reactions (Jenkin et al., 2015; Saunders et al., 2003),
which can be used to describe the gas-phase chemistry (i.e.,
in situ photochemistry). In this study, the box model (based
on the Framework for 0-D Atmospheric Modeling, F0AM;

Wolfe et al., 2016) was applied and constrained by the mean
diurnal profiles of meteorological data (i.e., temperature,
relative humidity, and photolysis rates), 4 inorganic gases
(i.e., SO2, CO, NO, and NO2), and 45 speciated VOCs (in
MCMv3.3.1 species list; see Table S3). Since measured pho-
tolysis rates (J values) were not available, the measured UV-
A solar radiation was used to scale the photolysis rates cal-
culated from the Tropospheric Ultraviolet and Visible Radi-
ation model (TUVv5.2; https://www.acom.ucar.edu/Models/
TUV/Interactive_TUV; last access: 27 January 2023) fol-
lowing the approach of recent studies (Lyu et al., 2019,
2016). Specifically, the geographical coordinates, date, and
time were initialized into the TUV model to derive photol-
ysis rates and solar radiation. We obtained the scaling fac-
tor by comparing the observed with modeled solar radiation
and used this scaling factor to scale the TUV-model-derived
photolysis rates. A dilution rate of 3/86400 s−1 was applied
for all non-constraint species and simulation days through
a stepwise sensitivity test by adjusting it from 1/86400 to
5/86400 s−1 (see details in Sect. S1) for the best reproduc-
tion of O3. For each model run (i.e., each daily model simula-
tion), it was performed on a daily basis with intervals of 24 h
spanning from 00:00 to 23:00 LT (local time), and each in-
dividual model simulation was run to reach one-day diurnal
steady state. The detailed descriptions of box model opera-
tion were provided in our previous study (Li et al., 2021).

Since the box model simulations are conducted with in-
tervals of 24 h spanning from 00:00 to 23:00 LT (Wang et
al., 2018), the entire campaign’s observations were classi-
fied into four patterns of timescale (i.e., 5-month, monthly,
weekly, and daily) as diurnal-average formats for model in-
put (Fig. 1). Note that some days or weeks were not modeled
due to some missing data in the measurements. Neverthe-
less, the total simulation number at the daily (i.e., 100, 81,
and 114 d for TZ, BJ, and XD respectively) or weekly (i.e.,
21, 20, and 19 weeks for TZ, BJ, and XD respectively) scale
was representative of the 5-month campaign. Specifically, the
entire campaign data classified as four patterns of timescale
were modeled as base runs. Then we performed the sensitiv-
ity modeling to calculate the relative incremental reactivity
(RIR) of precursors by adjusting the input concentrations in
the base runs (see next section) (Lu et al., 2010a).

2.3 Calculation of net Ox production rate P (Ox) and
relative incremental reactivity (RIR)

Considering the rapid chemical titration of NO to NO2
in the presence of O3, the concept of “total oxidant”
(Ox =O3+NO2) has been widely used to represent the ac-
tual photochemical production of O3 (Lu et al., 2010a). Sim-
ilar to those described in previous studies using the 0-D box
model (He et al., 2019; Lyu et al., 2016), the net or in situ Ox

production rate (P (Ox)) is defined as the difference between
the Ox gross production rate (G(Ox)) and the Ox destruc-
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Figure 1. Schematic diagram of the dataset treatment to derive four patterns of timescale for 0-D box model input. Note that the four
patterns (i.e., 5-month, monthly, weekly, and daily) were the diurnal average of the initial dataset. This diagram takes one site and several
input measurements (temperature, toluene, and NO2) as examples.

tion rate (D(Ox)), which is formulated in accordance with
Eq. (1):

P (Ox)=G(Ox)−D(Ox). (1)

The Ox gross production rate (G(Ox)), or the total chemical
production of Ox , is calculated by summing the rates of ox-
idation of NO by HO2 and RO2 radicals in accordance with
Eq. (2):

G(Ox)= kHO2+NO [HO2] [NO]

+

∑
kRO2,i+NO[RO2,i][NO], (2)

The Ox destruction rate (D(Ox)), or total chemical loss of
Ox , is calculated by summing O3 photolysis, the reaction of
O3 with OH, HO2, and alkenes, and the reaction between
NO2 and OH, as described by Eq. (3):

D(Ox)= kO1D+H2O

[
O1D][H2O

]
+ kOH+O3 [OH][O3]

+ kHO2+O3 [HO2] [O3]+ kalkenes+O3 [alkenes] [O3]
+ kOH+NO2 [OH][NO2] . (3)

Concentrations of radicals and intermediates are obtained
from the outputs of the 0-D box model. The k values in
Eqs. (2) and (3) represent the rate constants of the corre-
sponding reactions, respectively. The subscript “i” in Eq. (2)
represents the individual RO2 species.

Additionally, relative incremental reactivity (RIR) has
been widely used as a metric to quantify the O3–precursor
relationship, and it can be derived from the 0-D box model
(MCMv3.3.1) by changing the input mixing ratios of its pre-
cursors (Sillman, 2010; Xue et al., 2014a). The RIR is de-
fined as the ratio of percentage change in net Ox (Ox =O3+

NO2) production rate P (Ox) (Li et al., 2021) to the percent-
age change of the concentration of precursor X. The RIR of
a specific precursor X is described in Eq. (4):

RIR(X)=
[P Ox(CX)−P Ox(CX−1CX)]/P Ox (CX)

1CX/CX
. (4)

Here, X is a specific precursor (i.e., NOx , CO, or grouped or
individual VOC species), CX is the measured concentration
of precursor X, and 1CX is the hypothetical concentration
change (1CX / CX= 10 % in this study in accordance with
the previous studies (Lyu et al., 2016; Wang et al., 2018)).
P Ox(CX) represents the simulated Ox production rate in a
base run, whereas P Ox(CX–1CX) is the simulated Ox pro-
duction in a second run with a hypothetical concentration
change of species X. Obviously, a higher positive value of
RIR(X) suggests a more effective way of reducing the am-
bient O3 production rate by reducing X (Ling et al., 2011;
Zhang et al., 2008a).

In this study, the O3 precursors were divided into four ma-
jor categories, including anthropogenic VOCs (AVOCs), bio-
genic VOCs (BVOCs, only isoprene in this study), CO, and
NOx (Tan et al., 2019). AVOCs were further divided into
three subcategories: alkanes, aromatics, and alkenes∗ (the
asterisk denotes anthropogenic alkenes, excluding isoprene
in this study; Yu et al., 2020a). As mentioned, RIR method
was applied mainly to evaluate the O3–NOx–VOC sensitiv-
ity and to determine the photochemical regimes among four
patterns of timescale. Thus, we calculated the RIR values
of major precursor groups (i.e., AVOCs, BVOCs, CO, NOx ,
alkanes, alkenes*, and aromatics) to further quantify the O3–
precursor relationship.

In general, O3 formation chemistry is usually classified
into three regimes (i.e., VOC-limited, transitional, and NOx-
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limited; He et al., 2019; Wang et al., 2018). In this study,
RIRNOx / RIRAVOC (the ratio of two RIR values) was used
as a metric to classify the photochemical regimes (Li et al.,
2021). Specifically, a RIRNOx / RIRAVOC value of less than
0.5 was defined as a VOC-limited regime; a value greater
than 2 was defined as a NOx-limited regime; and a value from
0.5 to 2 was defined as a transitional regime (see Sect. S2 and
Table S4) (Li et al., 2021).

3 Results and discussion

3.1 Overview of the field campaign

Figure 2 shows the time series of measured meteorological
parameters and O3, as well as its precursors at the three sites
during the whole campaign. In general, the temperature (T )
and relative humidity (RH) were basically consistent at the
three sites, while the wind speeds were different, which sug-
gests that the three sites had an overall consistent meteoro-
logical condition. In addition, the time series of UV-A radia-
tion was shown in Fig. 2d, which was only available from one
urban site of Zibo but was expected to represent the whole
Zibo city in this study. Following the protocol of the pre-
vious studies (Lyu et al., 2019; Y. Wang et al., 2017; Xue
et al., 2014c), the time series of photolysis rates (e.g., JNO2

(Fig. 2e) and JO1D (Fig. 2f)) were calculated from TUVv5.2
model and further scaled from UV-A radiation measurement.

As shown in Fig. 2g, we found that severe O3 pollution
was observed at the three sites throughout the whole cam-
paign. According to our measurements at the three sites in
Zibo, the averaged O3 concentration during the whole obser-
vational period was around 50 ppbv, while the daily maxi-
mum of O3 concentrations for some extremely polluted pe-
riods were nearly 120–150 ppbv (Fig. 2g). Interestingly, the
O3 concentrations at the three sites were generally consistent,
while the levels of its precursors (e.g., VOCs, NOx) were ob-
viously different (Fig. 2h–k), which implies the site-to-site
variation of O3 formation chemistry for the whole city of
Zibo.

Generally, OH reactivity (or OH loss rate, kOH) is widely
applied to quantify the capacity of OH consumption by
VOCs (Tan et al., 2019). According to Table S3, the BVOC
reactivity (kBVOC, 3.5± 4.1 s−1) in TZ was highest among
the three sites. As BJ was mainly influenced by the emission
from urban region, it showed the highest AVOC reactivity
(kAVOC, 6.8± 6.3 s−1) and NOx level (31.1± 28.6 ppbv). In
addition, XD showed the highest level of alkenes* reactivity
of 4.0± 3.2 s−1 within the three sites, and the local petro-
chemical industry nearby the XD area may explain such a
characteristic (Li et al., 2021).

3.2 Evaluation of box model performance

The measured O3 concentrations were not constrained in our
MCMv3.3.1 box model calculation; thus the model perfor-
mance could be quantitatively assessed by comparing the
modeled O3 (from base runs) with the measured O3. Fig-
ures S3–S8 show the time series of simulated and observed
O3 concentrations at four patterns of timescale. In most
cases, the box model simulation could accurately capture the
level and variation trend of the observed O3. However, on
some days, the modeling results underestimated or overes-
timated the O3 concentrations – in particular, nocturnal O3
concentrations were underestimated. Such discrepancies be-
tween the simulated and observed O3 were likely due to lim-
itations in the explicit representations of atmospheric and
transport processes (i.e., the horizontal and vertical transport
processes of ground ozone) by the 0-D modeling approach
(Lyu et al., 2019; Yu et al., 2020b). Specifically, ozone simu-
lated by the 0-D box model is considered in the same way as
in situ photochemical processes from its precursors. Unlike
the 3-D air quality model, 0-D box modeling usually simpli-
fies the representation of the physical processes (i.e., depo-
sition and advection; Lu et al., 2010a; Sillman, 2010). Note
that some adjustable parameters (e.g., radiation scheme, di-
lution rate) remained consistent in all of our model calcula-
tions, which ensured the comparability of model results to
the greatest extent.

The index of agreement (IOA; Li et al., 2021; Lyu et al.,
2016), Pearson’s correlation coefficient (r), and root-mean-
square error (RMSE) were jointly used as statistical metrics
to quantify the goodness of fit between the simulated and
observed O3 concentrations. Table S5 summarizes these sta-
tistical metrics for each site at various patterns of timescale.
Because any single statistical metric has its own limitations,
using these three indicators conjointly provided a more com-
prehensive evaluation of the model performance (Su et al.,
2018b). Generally, higher IOA and r and lower RMSE indi-
cate better agreement between the simulated and observed
values (Wang et al., 2018; Willmott, 1982). As shown in
Table S5, slightly reduced correlation was observed as the
timescale changed from the wider (i.e., 5-month scale) to the
narrower (i.e., daily scale) pattern, which is understandable
because of the enlarged statistical samples in the narrower
pattern of timescale.

In summary, TZ showed the best performance in terms
of the box model simulation, followed by XD and then BJ,
regardless of any statistical metrics or different patterns of
timescale, which may be associated with the optimized dilu-
tion rate for non-constraint species in model configuration.
The overall model performance in this study (i.e., a day-
to-day IOA of approximately 0.90 for TZ) was close to or
slightly better than those reported in previous studies, such
as IOA= 0.74 in Hong Kong (Liu et al., 2019), IOA= 0.74
in Wuhan (Lyu et al., 2016), and IOA= 0.90 in Jiangmen
(He et al., 2019). According to the above evaluation of base
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Figure 2. Time series of meteorological parameters, O3, and its precursors (i.e., CO, NOx , VOCs) throughout the whole campaign at the
three sites in Zibo.

runs, our modeled results were acceptable for the subsequent
O3–precursor relationship analysis described in the follow-
ing sections.

3.3 Month to month

Figure 3a–b presents the monthly RIR values of the major
precursor groups at each site, and the large variability of the
O3–precursor relationship at a spatiotemporal scale (i.e., site
to site and month to month) was observed. Specifically, in
most months, XD generally showed the highest RIRAVOC
among the three sites, followed by BJ and then TZ. In ad-
dition, RIRBVOC showed a similar level to RIRAVOC in TZ
but much less than RIRAVOC in BJ and XD, which can be ex-
plained by the observed higher BVOC reactivity in TZ than
in the other two sites (see Fig. S9 and Table S3). Also, al-
most all the precursor groups showed positive RIR values,

except for the negative RIRNOx that appeared in BJ and XD
in September. In addition, the RIRCO values at the three
sites suggested its limited role in O3 formation at the three
sites compared with other major categories of O3 precursors.
Among the three subcategories of AVOCs, alkenes* always
had the highest RIR values, followed by aromatics, while the
contribution of alkanes to O3 formation can be ignored due
to their near-zero RIR values. That sequence of O3–AVOC
sensitivity (alkenes∗> aromatics > alkanes) indicated by the
RIR analysis was consistent with previous studies in some
other Chinese cities (Su et al., 2018b; Tan et al., 2019). Sig-
nificant monthly variations of O3, NOx , CO, VOC reactivity,
and TVOC / NOx ratios (in ppbC ppbv−1 as a widely used
simple metric to determine the photochemical regime; Na-
tional Research Council, 1991) were also observed from May
to September (see Fig. S9 and Table S3) at the three sites.
For example, the BVOC reactivity in TZ showed the highest
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Figure 3. Time series of month-to-month RIR values of ma-
jor precursor groups and RIRNOx

/ RIRAVOC at three sites
(TZ, BJ, and XD) in Zibo. The dashed green line indicates
RIRNOx

/ RIRAVOC = 0.5 and 2.

level among the three sites during the whole campaign, and
the AVOC reactivity in BJ showed more considerable varia-
tions in different months, which indicated spatial and tempo-
ral variations of local primary emissions for O3 precursors in
the city of Zibo.

Figure 3c shows monthly RIRNOx / RIRAVOC at each site,
which clearly reveals the spatial and temporal variations
in photochemical regimes. For instance, the photochemi-
cal regime at the TZ site was considered to be a transi-
tional regime in May, a NOx-limited regime in June and
July, and a VOC-limited regime in August and September;
on the other hand, for a specific month like June, NOx-
limited, VOC-limited, and transitional regimes were gener-
ally identified for TZ, BJ, and XD, respectively. Figure 5b
shows good consistency between monthly TVOC / NOx and
RIRNOx / RIRAVOC, suggesting that the changes of local
emissions for O3 precursors may partially explain the con-
siderable variation of O3 formation chemistry in different
months.

3.4 Week to week

Figure 4 shows the time series of week-to-week RIR val-
ues of major precursor groups and RIRNOx / RIRAVOC at
three sites in Zibo. Compared with month-to-month results,
Fig. 4 further reveals the O3–precursor relationship with
more information on temporal trends. The temporal varia-
tions in weekly RIRAVOC at the three sites generally de-
creased and then increased, whereas weekly RIRNOx rep-
resented an opposite temporal variation during the entire
campaign. Additionally, weekly RIRBVOC showed a trend of
first decreasing and then increasing at TZ, while it did not
show clear temporal variations at BJ and XD due to low

values (Fig. 4a–c). In general, RIRalkanes, RIRalkenes∗ , and
RIRaromatics showed a tendency consistent with that of the
RIRAVOC at the three sites (Fig. 4d–f). Overall, these phe-
nomena were consistent among the three sites, though the
magnitude of RIR values varied site to site. In parallel, the
temporal changing of O3 precursors (e.g., AVOCs, NOx) was
also observed at the three sites during the entire campaign
(see Fig. S10). For example, the weekly NOx concentration
showed an overall trend of first decreasing and then increas-
ing, while the AVOC reactivity showed a different temporal
variation. Given the moderate correlation between weekly
TVOC / NOx and RIRAVOC / RIRNOx (Fig. 5c), the tempo-
ral variations of RIR values and O3 formation chemistry at
the three sites may be partially elucidated by the emission
changes of O3 precursors.

As shown in Fig. 4g–i, all three sites showed similar
temporal trends in terms of RIRNOx / RIRAVOC, as it in-
creased first and then decreased, though the magnitude of
RIRNOx / RIRAVOC varied largely at each site. Such site-to-
site variability of RIRNOx / RIRAVOC suggests that the pho-
tochemical regime at a local scale was mainly influenced by
local emissions. By contrast, the site-to-site synchronization
in the temporal trend of RIRNOx / RIRAVOC suggests that the
photochemical regime at a local scale may also be influenced
by the emissions in a regional area. Therefore, the long-term,
week-to-week RIRNOx / RIRAVOC of multiple sites can fur-
ther reflect the variability of the ozone formation regime at a
large geographic scale.

3.5 Day to day

In this section, O3–precursor relationship at the narrowest
pattern of timescale was identified in detail. Figures S11–
S12 show the time series of daily RIR values at three sites
in Zibo, where the temporal trend of RIR values was con-
sistent with that at a weekly scale (Fig. 4). Additionally, the
time series of daily RIRNOx / RIRAVOC (Fig. S13) showed
more irregular variations in temporal trends during the entire
campaign, though such temporal trends were overall consis-
tent with that of the weekly scale in Fig. 4g–i. In summary,
the time series of RIR values from the daily scale can pro-
vide more informative variations and characteristics of the
O3–precursor relationship in terms of temporal trends.

Table 2 summarizes the number of days and propor-
tions that were classified into the three photochemical
regimes across each site and each pattern of timescale.
Near-consistent proportions of O3 formation regimes (using
RIRNOx / RIRAVOC as a metric) were shown among multi-
ple patterns of timescale, whereas a variability of proportion
occurred among the three sites. The proportions of photo-
chemical regimes changed according to the timescale that
was varied from wider to narrower patterns. Taking TZ as
an example, 20 % (monthly) and 26 % (daily) of the time
was considered to be a VOC-limited regime. The number of
days and proportions for the photochemical regimes summa-
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Figure 4. Time series of week-to-week RIR values of major precursor groups and RIRNOx
/ RIRAVOC at three sites (TZ, BJ, and XD) in

Zibo. The blue lines in (g)–(i) are the three-points moving average of RIRNOx
/ RIRAVOC values.

Figure 5. The correlations of TVOC / NOx with
RIRNOx

/ RIRAVOC at multiple patterns of timescale at the
three sites in Zibo.

rized at four patterns of timescale can reveal a more plausi-
ble and comprehensive variation in ozone formation chem-
istry. Compared with patterns of monthly and weekly scales,
the results derived at a daily scale can reveal the tempo-
ral variability of photochemical regimes more comprehen-
sively. Note that the photochemical regime proportion ob-

tained from the day-to-day scale has an advantage due to the
large number of statistical samples.

3.6 Comparison among different patterns of timescale

This section gives a more comprehensive understanding of
the campaign-averaging O3–precursor relationship by com-
paring the similarities and differences of the results from
various patterns of timescale. The overall O3–precursor re-
lationship for the entire campaign can be quantified by av-
eraging the RIR values from the individual simulation runs
depending on the chosen timescale (e.g., five simulation runs
for monthly scale in this study). Therefore, four sets of log-
ical and comparable results can be derived to represent the
campaign-averaging O3–precursor relationship, as four pat-
terns of timescale (i.e., 5-month, monthly, weekly, and daily)
were treated in this study.

Figure 6 shows the averaged RIR values of the major
precursor groups at different patterns of timescale. As the
timescale changed from a wider (i.e., 5-month scale) to nar-
rower (i.e., daily scale) pattern, all three sites showed in-
creases in the means of RIRAVOC and RIRalkenes∗ , as well as
decreases in averaged RIRNOx , whereas the averaged RIR of
other precursors (i.e., BVOCs, CO, alkanes, and aromatics)
did not vary obviously (see Table S6). Comparing with the
O3–VOCs–NOx sensitivity at the daily scale, the results ob-
tained at the 5-month scale underestimated O3–AVOCs sen-
sitivity (indicated by averaged RIR values) by 48 % (TZ),
66 % (BJ), and 49 % (XD) and overestimated O3–NOx sen-
sitivity by 37 % (TZ), 142 % (BJ), and 144 % (XD). We per-
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Table 2. Summary of the number of days (for model calculation) and proportions that were classified into the three photochemical regimes
across each site and multiple patterns of timescale.

Patterns of timescale Site Photochemical regime: RIRNOx
/ RIRAVOC

NOx -limited: >2 Transition: 0.5–2 VOC-limited: <0.5

No. of days Proportion No. of days Proportion No. of days Proportion

Month to month TZ 2 40 % 2 40 % 1 20 %
BJ 0 0 % 3 60 % 2 40 %
XD 0 0 % 2 40 % 3 60 %

Week to week TZ 7 33 % 8 38 % 6 29 %
BJ 0 0 % 10 50 % 10 50 %
XD 3 16 % 6 32 % 10 53 %

Day to day TZ 29 29 % 45 45 % 26 26 %
BJ 0 0 % 21 26 % 60 74 %
XD 20 18 % 23 20 % 71 62 %

Figure 6. Distribution of RIR values of major precursor groups in multiple patterns of timescale at three sites (TZ, BJ, and XD) in Zibo.

formed comprehensive uncertainty analysis for model input
and output results, which was assessed through statistical
methods (see details in Sect. 3.7). We found that the model-
derived RIR values may become more uncertain when the
input dataset was averaged into a wider diurnal pattern (i.e.,
5-month scale), which may explain the discrepancy in RIR
values between the 5-month scale and daily scale. We ex-
pect that such discrepancies derived from different patterns
of timescale could widely exist in many other world areas.
Note that the mean RIR values were generally consistent
among the four patterns of timescale within a reasonable
range (within the 25–75th quantile and standard deviation;
see Fig. 6 and Table S4), suggesting that any selected pattern

of timescale could reasonably derive the campaign-averaging
O3–precursor relationship.

Figure 7 further shows the variations in photochemical
regimes (defined by RIRNOx / RIRAVOC; see Sect. S2 and Ta-
ble S4 for details) for each pattern of timescale. Specifically,
TZ was mainly considered to be a transitional regime for the
entire campaign period, whereas its variations covered three
photochemical regimes, which was consistent with the re-
sults from Table S6. BJ was generally identified as a VOC-
limited regime, whereas some days were also grouped into a
transitional regime. XD was considered to be primarily be-
tween a VOC-limited and transitional regime, and its varia-
tions also spanned three photochemical regimes. Compared
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Figure 7. Distribution of RIRNOx
/ RIRAVOC (indicator of photo-

chemical regime) in multiple patterns of timescale at three sites (TZ,
BJ, and XD) in Zibo.

with the 5-month pattern, it was further found that the aver-
aged RIRNOx / RIRAVOC from other timescale patterns (i.e.,
monthly, weekly, and daily) was higher (12 % to 20 % for TZ;
38 % to 153 % for XD) or lower (21 % to 65 % for BJ) than
that from the 5-month scale. Note that the above discrepan-
cies in photochemical regime derived from multiple patterns
of timescale may influence the development of targeted O3
control strategies. In summary, the photochemical regime de-
rived by averaging RIRNOx / RIRAVOC from the daily scale
(see Table S6) suggests that the three sites mainly followed
the sequence of TZ (1.34± 1.39) > XD (0.67± 1.49) > BJ
(0.16± 0.65).

In addition, the temporal variations of TVOC / NOx at
different timescales were identified during the whole cam-
paign, and good correlations between observed TVOC / NOx

and model-derived RIRNOx / RIRAVOC at four patterns of
timescale were also found (see Fig. 5). Such consistency sug-
gests that both metrics can reasonably reflect the variation of
photochemical regimes, which can also improve the reliabil-
ity of our box model simulation.

The consistency and difference of model output (summa-
rized in Table S7) are quantified by the statistical methods of
Pearson’s correlation coefficient (Hu et al., 2018) and paired-
samples t-test analysis (Wang et al., 2016). In particular, we
assess and compare the degree of significance of the differ-
ences among multiple patterns of timescale by means of the
p values (a statistical significance assuming that p<0.05)
through paired-samples t-tests and Wilcoxon matched-pairs
signed-rank tests (non-parametric statistics; Chiclana et al.,
2013). Figure 8a shows that high Pearson’s correlation co-
efficients (with values all above 0.85, p<0.01) were found
among four patterns of timescale and that the higher corre-
lation coefficient was identified between the two closer pat-
terns. Figure 8b–c shows that the differences among multi-
ple patterns of timescale were non-significant using paired-
samples t-test analysis and Wilcoxon matched-pair signed-
rank tests, respectively. Furthermore, their results indicate
that a more significant difference was recognized between

the two distant patterns (e.g., daily and 5-month), which is
consistent with the results of Pearson’s correlation analysis.
It is noted that the discrepancy between the two distant pat-
terns was not significant but non-negligible (e.g., p = 0.092
of the Wilcoxon matched-pairs signed-rank test between 5-
month and daily patterns).

The influence of different patterns of timescale on deriving
RIR values from individual AVOC species was further inves-
tigated. Briefly, quantifying the relative contribution of indi-
vidual AVOCs to O3 formation based on RIR calculation is
beneficial to the development of cost-effective AVOC control
strategies (Zhang et al., 2021). Figure 9 shows the averaged
RIR values of individual AVOC species (i.e., top 10) at dif-
ferent patterns of timescale (i.e., 5-month, month to month,
week to week) at three sites in Zibo. As shown in Fig. 9, the
10 individual AVOC species at the three sites were selected
according to the top 10 highest RIR from the 5-month pat-
tern. All three sites showed that the RIR of individual AVOC
species increased gradually as the timescale changed from
the wider (i.e., 5-month) to narrower (i.e., weekly) pattern,
which was consistent with the earlier discussion (see Fig. 6
and Table S6) of O3–AVOC sensitivity derived from four pat-
terns of timescale. The results also indicate that the choice
of timescale pattern has a limited effect on deriving high-
ranking AVOC species (i.e., top 10) based on RIR calcula-
tions.

3.7 Uncertainty analysis

The uncertainty of model input, which is embedded in a
pre-processed dataset with multiple patterns of timescale,
was quantified in this section. As shown in Fig. 1, the daily
simulation used the individual daily pattern to constrain the
model, while the input dataset of averaged diurnal patterns
(i.e., weekly, monthly, and 5-month) is treated by averaging
the individual daily pattern into different timescales. This
averaging approach will conceal the temporal variations of
O3 precursors and meteorological factors, particularly for a
long-term observational campaign. Figure S14 shows the dis-
tributions of the standard deviations for OH reactivity (kOH)
or the concentration of O3 precursor groups at three aver-
aged patterns of timescale at the three sites. As the timescale
changed from a wider (i.e., 5-month scale) to narrower (i.e.,
weekly scale) pattern, the uncertainty (indicated by the av-
erage, median, and 25 %–75 % quantile) decreased accord-
ingly. In addition, meteorological factors such as temperature
and irradiation also play an important role in O3 formation,
and it is specifically noted that these meteorological parame-
ters can vary greatly over a long observational period (Boleti
et al., 2020; Liu et al., 2019; Weng et al., 2022). Therefore,
the masked temporal variation of these meteorological fac-
tors behind the averaged input dataset would also result in
model uncertainty.

Moreover, it has been widely recognized that the uncer-
tainty for 0-D box model simulation mainly arises from
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Figure 8. The statistical analysis results of RIR values (from Table S6) at multiple patterns of timescale: (a) Pearson’s r correlation analysis
(all the results have passed statistical significance, assumed to be p<0.01); (b) paired-samples t-test analysis (∗p values refer to differences
with a statistical significance assumed to be p<0.05); (c) Wilcoxon matched-pairs signed-rank test (∗p values refer to differences with a
statistical significance, assumed to be p<0.05).

Figure 9. Averaged RIR values of individual AVOC species (top 10) at different patterns of timescale at three sites (TZ, BJ, and XD) in
Zibo. The error bars represent the standard deviations of the mean.

the constraint of observation datasets and the configuration
of model schemes. Note that constraints with more species
from measurements (or including as many species as pos-
sible) would lower its uncertainty from the chemical box
model simulation (Wolfe et al., 2011, 2016). Nevertheless,
due to the measurement limitation in our field campaign, we
are unable to measure some important atmospheric species
(i.e., HONO and oxygenated VOCs (OVOCs)), and these
may raise uncertainty in the box model simulation. For in-
stance, Xue et al. (2021) performed a sensitivity test for
HONO constraint in their box model simulation, and they
showed that no HONO constraint would lead to the O3 photo-
chemical production rate decreasing by 42 %. More recently,
Wang et al. (2022) obtained a comprehensive VOC dataset at
Guangzhou, and their results showed that box model simula-
tion without OVOC constraints would underestimate the pro-
ductions of ROx and O3. Besides, both gaseous HNO3 and
organic nitrates can result in interferences to NOx measure-
ments by means of the chemiluminescence technique, which
may raise uncertainty in our box modeling (Ge et al., 2022;
Uno et al., 2017; Xu et al., 2013). Since the accurate NOx

measurement is essential in determining the photochemical
regime, more in-depth studies on NOx measurement uncer-
tainty in box model simulations are required in the future.
In addition, the parameter configuration of model schemes
is essential to derive a reliable and valid model output, such
as dilution rate as an important technical model parameter.
We performed a stepwise sensitivity test for this parame-
ter to obtain an optimized dilution rate and assigned it to
all non-constraint species, which can reduce uncertainty in
box model simulation (see details in Sect. S1). Also, the
dry and/or wet deposition of pollutants is an important at-
mospheric physical process, which has been mostly parame-
terized in emission-based chemical transport modeling but is
very limited in box modeling, as most of the primarily emit-
ted species are already constrained from measurements. Xue
et al. (2014c) considered O3 deposition in box model simu-
lations, and their results showed a negligible contribution of
O3 deposition to total O3 destruction rates. As for this work,
we are unable to consider the deposition due to the diffi-
culty in representing and parameterizing this term in the 0-D
box model. Nevertheless, deposition of O3 and other species
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may be one of the uncertainties during box model simulation,
which is worth further study in the future.

4 Summary and implications

Our present results suggest that comprehensively under-
standing multiple patterns of timescale is conductive to
formulating a more accurate and robust O3 control strat-
egy. Specifically, as identified from the narrower patterns of
timescale (i.e., weekly and daily), the site-to-site photochem-
ical regime indicated by RIRNOx / RIRAVOC showed vari-
ous magnitudes but a synchronous temporal trend. This in-
dicates that the O3 formation regime in a city area can be
influenced by local and regional emissions jointly. The rea-
son behind this phenomenon is not clear at present, and we
believe that further investigation on the synergetic effect of
local and regional emission reduction for O3 control would
help elucidate this observation. It was also found that the
campaign-averaging photochemical regimes showed overall
consistency but non-negligible variability among the four
patterns of timescale, which was mainly due to the embedded
uncertainty in the model input dataset with averaged diurnal
patterns. This implies that comparison among multiple pat-
terns of timescale based on RIR analysis is useful to derive
the O3–precursor relationship more accurately and reliably.

Moreover, the high-ranking AVOC species (i.e., top 10)
based on RIR calculations were overall consistent between
the narrow to wide patterns of timescale. Table S8 summa-
rizes the total run number of box models for different patterns
of timescale. It is known that large-scale computing capacity
and computational efficiency were required in the narrower
pattern of timescale (e.g., 2760 simulation runs at the weekly
scale in this study). Considering the difficulties of perform-
ing long-term and continuous online measurements in some
environments, it is also advisable to identify the high-ranking
VOC species from the campaign-averaging diurnal pattern in
box model simulation.

In this study, we explored the non-linearity of the O3–
precursor relationship in a way driven by the actual daily,
weekly, and monthly variability around the distribution. Our
results highlight the importance of quantitatively testing the
impact of different timescales on photochemical regime de-
termination, as there is uncertainty embedded in the model
input dataset when averaging individual daily pattern into
different timescales. Such understanding would be comple-
mentary in developing more accurate O3 pollution control
strategies, particularly as the long-term O3–precursor ob-
servations (e.g., from several months to years) are becom-
ing more available than before in many places throughout
China. In addition, site-to-site differences of model-derived
photochemical regimes also underline the importance of
developing targeted O3 control strategies for different ar-
eas on a city scale. Specifically, according to the averaged
RIRNOx / RIRAVOC of the daily pattern, the derived photo-

chemical regime was transitional for TZ (suburban) and XD
(suburban), while it was VOC-limited for BJ (urban). This
implies that, for mitigating ozone pollution in the city of
Zibo, more endeavors should be devoted to the anthropogenic
VOC reduction in urban areas while strengthening the syn-
ergetic mitigation of VOC and NOx emissions at the same
time in other suburban areas. Although the above implica-
tions for O3 control were derived from a case study in a major
prefecture-level city (Zibo) of northern China, the approach
of integrating multiple patterns of timescale developed in
the present work can be used in other regions, particularly
in relation to the ongoing “One City One Policy” campaign
(2021–2023) for O3 control in many cities in China.
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