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S1. Sample information
S1.1. BrC model compounds

To more accurately identify the chemical characteristics of fluorescent
components and answer the question that which and how much light-absorbing
species can be detected by the excitation-emission matrix (EEM) method, 35 organic
compounds with strong light absorption were tested. These organic compounds were
usually detected in ambient samples (e.g., aerosols, rain water, and cloud, and
combustion-derived particulate matter) and selected as the typical BrC model
compounds. According to the chemical composition and structures, these compounds
are classified into phenolic compounds, aromatic acids, nitroaromatic compounds,
protein-like compounds, N-heterocyclic compounds, and polycyclic aromatic
hydrocarbons (PAHSs) (Table S1). These organic compounds all contain aromatic 77z
conjugate structures and have the potential to produce fluorescence and make
contribution to atmospheric fluorophores. They include:

(i) Phenolic compounds: as reported in literatures, plenty of phenolic compounds
can be emitted from biomass burning and coal combustion and were also with high
concentration in atmospheric environment, such as in aerosol, cloud and fog water
(Sengupta et al., 2020; Smith et al., 2014; Yu et al., 2014; Yu et al., 2016). In the
present study, six phenol and their derivatives were selected, which are phenol,
catechol, hydroguinone, 2-methoxyphenol, vanillin and 4-hydroxyacetophenone.

(if) Aromatic acids: aromatic acids were mainly produced from biomass burning

and atmospheric photochemical reactions, which were usually detected in ambient



aerosol, cloud water and rainwater (Li et al., 2020; Santos et al., 2019; Sharp et al.,
2021). In this study, nine benzoic acids and its derivatives were tested, including
benzoic acid, phthalic acid, terephthalic acid, trimesic acid, 2-hydroxybenzoic acid,
4-hydroxybenzoic acid, 4-hydroxy-3,5-dimethoxybenzoic acid, 3,5-dihydroxybenzoic
acid and vanillic acid.

(iii) Nitroaromatic compounds (NACs): NACs refer to substances containing at
least one nitro (NO3) on the aromatic ring, such as nitrophenols and their derivatives
(Chow et al., 2016). Nitrophenols were believed to be mainly derived from biomass
combustion and secondary chemical reactions of phenols (such as the addition of NO3
radical), and they were the important chromophores in atmospheric BrC (Bai et al.,
2020; Huang et al., 2021; Lin et al., 2016; Wang et al., 2017; Yuan et al., 2020), which
accounted for 50-80% of total solvent extractable BrC absorption at more than 400
nm (Huang et al., 2021; Lin et al., 2017). In our study, six NACs compounds included
4-nitrophenol,  4-nitrocatechol,  3,4-dinitrophenol,  2-methoxy-5-nitrophenol,
2-nitrobenzaldehyde, and 2-nitronaphthol were chosen and tested by EEM.

(iv) Protein-like compounds: Amino acids were the basic structural constituent of
protein and peptides in organisms and also an important component in the fluorescent
chromophores of natural organic matter (Coble, 1996; Murphy et al., 2013). They
were usually identified in cloud water and aerosols, but with relative low
concentrations (Bianco et al., 2014; Bianco et al., 2016; Song et al., 2017; Zhang and
Anastasio, 2003). In this study, three amino acids with aromatic structures, tryptophan,

tyrosine, and phenylalanine were tested.



(v) N-heterocyclic compounds: These compounds can be produced from
combustion of biomass and fossil fuels and secondary atmospheric reactions with
NOy, which were usually identified in ambient aerosol and cloud/fog water (Jiang et
al., 2019; Kosyakov et al., 2020) (Ackendorf et al., 2017; Lian et al., 2022). In our
study, pyridine, pyrrole, imidazole, and imidazole-2-formaldehyde were selected as
the typical heterocyclic compounds and tested by EEM.

(vi) Polycyclic aromatic hydrocarbons (PAHSs): PAHSs, a class of compounds with
two or more aromatic rings in their structure, are also the important chromophores in
atmospheric aerosols because of their large conjugated structure (Huang et al., 2021;
Huang et al., 2020; Lin et al., 2017; Mahamuni et al., 2020). In the present study,
seven PAHs and its derivatives compounds are tested: naphthalene, phenanthrene,
pyrene, 9-fluorenone, anthraquinone, 1-Naphthol, and 2-naphthalenecarboxylic acid.

It is noted that imidazole-2-formaldehyde exhibit different light absorption ability
at different pH (Ackendorf et al., 2017). In order to straightly show that different
classified compounds contain this property or not as well as
imidazole-2-formaldehyde, different types of compounds (phenol, catechol,
4-hydroxyacetophenone, tryptophan and imidazole-2-formaldehyde) were also tested
at different pH (pH = 2, 5, 8). These five compounds exhibited similar fluorescence
peak location except for imidazole-2-formaldehyde (Figure S2). In addition, we also
measured the fluorescence spectra for organic compounds with different mixing ratios.
Results indicated that the fluorescence peak overlap with each other, but the

fluorescence peak position does not change (Figure S3), which are similar with the



results as reported by previous study (Andrade-Eiroa et al., 2013) and indicated that
the fluorescence peaks of target compounds were not significantly changed even it

mixed with other organic compounds.

S1.2. Primary combustion source samples

Thirteen primary combustion-derived particulate samples were selected in this
study, included six biomass burning (BB), five coal combustion (CC), and two vehicle
emission (VE) samples (Figure S3). The six BB samples include three crop straw
samples (rice straw, wheat straw and corn straw) and three wood samples (pine,
Chinese fir and White poplar). Five CC samples, were collected from the combustion
of four bituminous coal (C-1, C-2, C-3 and C-4) and one anthracite coal: (C-5). These
smoke samples are all collected in a laboratory furnace, and the details of the
experimental methods have been described elsewhere (Cao et al., 2021). Two VE
samples were collected from 2 types of vehicles, including emission samples of
medium-duty diesel trucks (China V diesel vehicles) and gasoline cars (China VI
gasoline vehicles) (Tang et al., 2020). All the samples were stored in a =20 <C

refrigerator before analysis.

S1.3. Soil and purified fulvic and humic acid samples
Soils are important contribution of fulvic and humic substance and also a
significant primary source of ambient aerosols. In this study, 5 soil samples were

taken from the agriculture areas of Guangdong province, China, include Soil 1-5.



After collection, these soil samples were air drying and sealed in dark environment.

In addition, fulvic acid (FA) and humic acid (HA) are usually considered as
important contribution to atmospheric WSOM (Chen et al., 2020). In our study, six FA
and HA samples were kindly provided by Professor Weilin Huang from Rutgers
university, include Suwannee river FA, Orchard FA and Pearl river FA; Chalsea HA,

Aldrich HA, and Pahokee peat HA, were also studied in this study.

S1.4. PM; 5 samples

The ambient PM, s samples were collected from Guangzhou (GZ) and Chuzhou
(CZ2) of China, respectively. The GZ site is located at the campus of Guangzhou
Institute of Geochemistry, CAS, which near the downtown of Guangzhou city and
represent urban area. The CZ site is situated in the campus of Anhui Science and
Technology University, which has emission sources from agricultural production,
biomass burning, and other anthropogenic activities and is a typical suburban area.
Daily aerosol samples were collected on quartz fiber filter membranes from April 6 to
22, 2021, totally 34 ambient aerosol samples were obtained. The sampling instrument
is high-flow PM, 5 sampler (JCH-1000H, Juchuang Environmental Protection Group
Co., Ltd., Shandong, China) with a sampling flow of 1.0 m®min. The quartz fiber
filter membranes are prebaked at 450 <€ for 5 hour to remove the impure organics.
The samples are collected and stored in a refrigerator at - 20 € for further analysis.

In addition, 43 sample of PM, s samples were also collected from February 1,

2018 to January 22, 2019 at GZ site. Each sample collection lasted for 24 h and time



interval was set as 7 days. These samples were grouped as wet (April to September)
and dry (October to March) season PM,s. The sampling instruments and work

condition were same as above.

S2. Standard solution preparation and extraction methods for WSOM

Solutions of the BrC model organic compounds were prepared by dissolving a
certain amount of dried solids or liquids in Milli-Q water or methanol. Ultrasonic
agitation is used for both preparations in order to get a complete dissolution.
Naphthalene, phenanthrene, pyrene, 2-naphthalenecarboxylic acid and anthraquinone
were difficult dissolved in water, so methanol was used as solvent (Chen et al., 2020).

The ambient aerosol, combustion-derived particle, and soil samples were treated
as follow: certain amounts of sample were ultrasonic extracted with ultrapure water in
a 50 mL glass tube for three times. Then the supernatant was filtered with 0.22 um
PTFE syringe filter (CNW, ANPEL Laboratory Technologies (Shanghai) Inc., China)

to obtain water-soluble organic matter extracts.

S3. Carbon contents, UV spectra, and chemical analysis

The concentration of water-soluble organic carbon (WSOC) in water extracts
were determined by a total organic carbon (TOC) analyzer (TOC-VCPH analyzer,
Shimadzu, Kyoto, Japan). The UV-visible absorption spectra of all samples were
recorded between the wavelengths of 200 to 700 nm using a UV-2600i
spectrophotometer (Shimadzu, Kyoto, Japan). The sample solution was placed in a

1-cm quartz cuvette and analyzed at 1 nm intervals. Ultrapure water (or methanol)
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was used as a blank reference for the samples and the spectra are corrected by the
instrument and operating blanks.

Then the optical parameters, such as absorption Angstrém exponent (AAE,
330-400nm) and mass absorption efficiency at 365 nm (MAEsgs), were calculated
based on previous studies (Cao et al., 2021; Fan et al., 2020). The calculation equation
of AAE and MAE3gs were described as follows:

Al — KA—AAE

where A, is the absorbance at wavelength A (330-400nm), and K is a constant.

Ay

MAE, = — x In(10)

c-l
where A; is the absorbance at A nm (365nm used here), ¢ is the organic carbon
concentration of targets in solution (ngC mL™), and | is the absorbing path length
(0.01 m).

In addition, the water soluble inorganic species (NO3", SO.%, CI', NH,", K*, Na",
Ca®*, Mg®") in ambient aerosols were measured with a Dionex 1CS-900 ion

chromatography system (Thermo Fisher Scientific, USA) as described previously

(Huang et al., 2020).

S4. EEM and PARAFAC analysis

The EEM fluorescence spectra of the solution samples in a 1 cm quartz cuvettes
were recorded by a three-dimensional fluorescence spectrophotometer (Aqualog,
HORIBA Scientific, USA) at room temperature. The scanning ranges for excitation

(Ex) and emission (Em) was 200-500 nm and 250-550 nm, respectively. The



wavelength increments of the excitation and emission scans were both 5 nm. The
ultrapure water was used as blank references and calculated Raman peak area. In
addition, absorbance measurements were used to correct the EEM for inner-filter
effects (IFEs) according to the previous studies if the absorbance was higher than 0.05
at 250 nm (Fu et al., 2015; Murphy et al., 2013). Raman and Rayleigh scattering was
removed by subtracting Milli-Q water spectra and insert zero value to the Raman and
Rayleigh scattering region (Stedmon and Bro, 2008; Murphy et al.,, 2013).
Background samples were also analyzed, and the background values were subtracted
from all sample result. To avoid concentration effects, the fluorescence spectra were
normalized by the Raman peak of water and the OC concentration of WSOC; and the
specific fluorescence intensities (RU/(mgC/L)) are shown (Yang et al., 2022).

The PARAFAC modeling procedure was conducted in MATLAB by the drEEM
toolkit (Murphy et al., 2013; Murphy et al., 2018). The PARAFAC was computed
using two to nine component models, with non-negativity constraints and a residual
analysis; and split half analysis was used to validate the number of fluorescence
components. According to the results of the split-half and core consistency analysis,
three component models were chosen for further analysis. The identified individual
fluorophores were compared with online database OpenFluor (based on the identified
fluorophores in nature organic matter and the similarity of results for both excitation
and emission wavelength were set at 98%, Murphy 2013). The relative contribution of
individual chromophores was estimated by calculating the maximum fluorescence
intensities (Fmax: maximum fluorescence intensity of identified fluorescence

10



components, relative content % = Fna/EZFmax) (Cao et al., 2021; Chen et al., 2020;
Matos et al., 2015).

Moreover, the EEM parameter, humification index (HIX) was also calculated
and compared in this study. The humification index (HIX). HIX were described as the
ratio of integral area of Em wavelength from 435-480 nm and 300-345 nm where EX
=254 nm. (Qin et al., 2018; Yang et al., 2022). The fluorescence volumes (FVs) of the
WSOC samples were calculated based on the EEM matrix in the excitation
wavelength of 230-450 nm and emission wavelength of 250-550 nm. The FVs was
then normalized by the OC concentration of these samples, yielding the normalized

fluorescence volumes (NFV)(RU-nm?-[mg/L] *OC) (Chen et al., 2020).
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Table S1. Chemical and optical properties of the selected BC model compounds

Compounds

Molecular
formula

Structure

The normalized UV-vis
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Aromatic acid
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Nitroaromatic
compounds
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N-heterocyclic
compounds
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Table S2. Detail information of absorption and fluorescence properties of model BrC compounds

Fluorescent

The normalized

Log (NFV)

Ambient concentration

Compounds . Fluorescence intensity 2. -1 References
location (EX/Em) (R.U.(mgC/L)) (RU-nm“-[mg/L] = OC) (aerosols)
+* -6
Phenol 270/295 0.48 4.65 5-100*10°M (cloudand | (g ik ot a1 2014)
fog water)
Catechol 275/310 0.12 4.34
Hydroquinone 270/320 0.34 6.43
* -6
2-methoxyphenol 275/310 0.21 4.62 5-100*10" M (cloud and (Smith et al., 2014)
fog water)
Vanillin 0.1-100 ng/m? (Vione et al., 2019)
4-hydroxyacetophenone
Benzoic acid 270/300 0.08 3.68 5*10°° M (rain water) (Santos et al., 2019)
Phthalic acid 4.77 ng/m®
— 3 (Shen et al., 2018)
Terephthalic acid 46.84 ng/m
Trimesic acid 9.45ng/m? (Kitanovski et al., 2014)
2-Hydroxybenzoic acid 230, 290/400 0.88 5.33 0.6pg/m® (Lietal., 2020)
4-Hydroxybenzoic acid 255/320 0.03 341 1.1 ng/m® (Teich etal., 2019)
4-Hydroxy—3.,5—d|_methoxyb 260/330 0.25 4.44
enzoic acid
3,5-Dihydroxybenzoic acid 230/355 0.14 4.13
Vanillic acid 250,280/320 0.29 5.76 0.1-100 ng/m? (Vione et al., 2019)
4-Nitrophenol 7.0 ng/m® _
- 3 (Ikemori et al., 2019)
4-Nitrocatechol 240/330 0.02 341 6.8 ng/m
3,4-Dinitrophenol 4*10° ng/m® (Teich etal., 2017)

2-Methoxy-5-nitrophenol
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Table S2 Continued

Compounds

Fluorescent
location (EX/Em)

The normalized
Fluorescence intensity
(R.U./(mgC/L))

(RU-nm*[mg/L] * OC)

Log(NFV)

Ambient concentration
(aerosols)

References

2-Nitrobenzaldehyde

2-Nitronaphthol

26 pmol/m® (aerosol);

Tryptophan 275/350 0.77 4.96 5.63*10" M (cloud
water )
. 31 pmol/m®(aerosol); | (Bianco et al., 2016; Zhang
Tyrosine 270/300 0.82 4.44 4.5*10"° M (cloud water) and Anastasio, 2003)
29 pmol/m®(aerosol);
Phenylalanine 255/280 0.19 3.67 3.37*107 M (cloud
water)
Pyridine
Pyrrole
Imidazole
Imidazole-2-formaldehyde 310/460 0.36 5.25 4 ng/m? (Ackendorf et al., 2017)
Naphthalene 275/330 9.1 4.83 3.09-11 ng/m? (Yang et al., 2006)
Phenanthrene 250/350,365 1.95 4.36 1.97-5.72 ng/m®
Pyrene 240'2625030/ 370, 0.33 4.49 1-6 ng/m?® (Zhang et al., 2021)
9-Fluorenone 280/340 0.06 3.26 ng/m’ (Lee etal., 2012)
Anthraquinone 3.62 143 pg/m® (Castells et al., 2003)
1-Naphthol 230,290/460 1.47 5.32 3-9 pg/m® (Ma et al., 2016)
2'Naphthagiri‘3°arboxy"° 230,280/370 6.3 5.84
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Table S3. Comparison results of four independent fluorophores identified by PARAFAC analysis

Component 1

Component 2

Component 3

EX=235/270 nm, EM=330nm

EX=235/320nm, EM=390nm

EX=250/355nm, EM=455nm

Sources of component

References

Protein-like and non-N-containing
species

Less oxygenated species

Highly oxygenated species

Ambient aerosol

Chen et al 2016; 2021

Small molecular size compounds;
SVOCs; naphthalene-like

SOA from biogenic and
anthropogenic VOCs

High molecular weight from
biomass burning,

Ambient aerosol

Wang et al., 2020

Peak B and T; protein-like

Peak A and M; Marine humic-like
or humic-like

Peak C; Humic-like

ambient aerosol / Marine water

Fu et al., 2015; Coble et al., 1996

Polyphenols or low molecular
PAHs;

Secondary formation from burning
(oxidized phenols) or high
molecular PAHs

Aromatic compounds/ Fulvic acid

Ambient aerosol

This study
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(a) Phenolic compounds
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- 0.13

01

Em (nm)

- 0.08

- 0.05

300 350

Ex (nm)

550

4-Hydroxyacetophenone

r0.01

r 0.01

- 0.01

Ex (nm)

19



(b) Aromatic acid

550

0.08

r 0.06

Benzoic acid
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Em (nm)
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- 0.02

250 300 350
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400
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Terephthalic acid
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- 0.01

- 0.01

250 300 350

Ex (nm)

400

550

2-Hydroxybenzoic acid

r 0.66
r 0.55
- 0.44

- 0.33

- 0.22

Ex (nm)

550

0.25

4-Hydroxy-3,5-dimethoxybenzoic acid '

0.22
r 0.19
- 0.16
- 0.13

- 0.09

- 0.06

Ex (nm)

550

0.01
Phthalic acid .
r 0.01
r 0.01

- 0.01

Em (nm)

r0.01

Ex (nm)

550

Trimesic acid

r 0.01
r0.01

- 0.01

Em (nm)

~0.01

350
Ex (nm)

400

550

4-Hydroxybenzoic acid

Em (nm)

Ex (nm)

550

0.14

3,5-Dihydroxybenzoic acid N

0.1
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~ 0.09

- 0.07

Em (nm)

- 0.05

- 0.03

Ex (nm)

20



550 — -
) Vanillic acid

Em (hm)

Ex (nm)

0.29

0.25

(c) Nitroaromatic compounds

4-Nitrophenol

550

3,4-Dinitrophenol

Em (hm)

300 350
Ex (nm)

550

2-Nitrobenzaldehyde

Em (hm)

Ex (nm)

0.06
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550
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500 0.02
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450
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r0.01
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550

2-Methoxy-5-nitrophenol

300 350
Ex (nm)

550
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250 300 350 400
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(d) Protein-like compounds

N..
0.67

r 0.58

. Tryptophan

r 0.48
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Em (nm)

r 0.29
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Ex (nm)

550

Phenylalanine
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450
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Ex (nm)

(e) N-heterocyclic compounds
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(f) Polycyclic aromatic hydrocarbons
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Figure S1. The 3D-EEM spectra of BrC model compounds
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Figure S2. The normalized absorption spectra and 3D-EEM spectra of phenol,
catechol, tryptophan and imidazole-2-formaldehyde measured at pH = 2, 5, and 8.
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(a) biomass burning
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Figure S4. The 3D-EEM spectra of WSOM extracted from (a) biomass burning, (b)
coal combustion, and (c) vehicle emission-derived particles.
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(a) soil-derived DOM
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Figure S5. The 3D-EEM spectra of (a) soil DOM and (b) purified fulvic acid (FA)
and humic acid (HA)
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