Atmos. Chem. Phys., 23, 23–39, 2023 https://doi.org/10.5194/acp-23-23-2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Composited analyses of the chemical and physical characteristics of co-polluted days by ozone and PM_{2.5} over 2013–2020 in the Beijing–Tianjin–Hebei region

Huibin Dai¹, Hong Liao¹, Ke Li¹, Xu Yue¹, Yang Yang¹, Jia Zhu¹, Jianbing Jin¹, Baojie Li¹, and Xingwen Jiang²

¹Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China ²Institute of Plateau Meteorology, China Meteorological Administration, Chengdu, Sichuan 610072, China

Correspondence: Hong Liao (hongliao@nuist.edu.cn)

Received: 8 August 2022 – Discussion started: 20 September 2022 Revised: 18 November 2022 – Accepted: 13 December 2022 – Published: 3 January 2023

Abstract. The co-polluted days by ozone (O_3) and $PM_{2.5}$ (particulate matter with an aerodynamic equivalent diameter of 2.5 µm or less) ($O_3-PM_{2.5}PDs$) were frequently observed in the Beijing–Tianjin–Hebei (BTH) region in warm seasons (April–October) of 2013–2020. We applied the 3-D global chemical transport model (GEOS-Chem) to investigate the chemical and physical characteristics of $O_3-PM_{2.5}PDs$ by composited analyses of such days that were captured by both the observations and the model. Model results showed that, when $O_3-PM_{2.5}PDs$ occurred, the concentrations of hydroxyl radical and total oxidant, sulfur oxidation ratio, and nitrogen oxidation ratio were all high, and the concentrations of sulfate at the surface were the highest among all pollution types. We also found unique features in vertical distributions of aerosols during $O_3-PM_{2.5}PDs$; concentrations of $PM_{2.5}$ decreased with altitude near the surface but remained stable at 975–819 hPa. Process analyses showed that secondary aerosols (nitrate, ammonium, and sulfate) had strong chemical productions at 913–819 hPa, which were then transported downward, resulting in the quite uniform vertical profiles at 975–819 hPa on $O_3-PM_{2.5}PDs$. The weather patterns for $O_3-PM_{2.5}PDs$ were characterized by anomalous high-pressure system at 500 hPa as well as strong southerlies and high RH at 850 hPa. The latter resulted in the strong chemical productions around 850 hPa on $O_3-PM_{2.5}PDs$. The physical and chemical characteristics of $O_3-PM_{2.5}PDs$ are quite different from those of polluted days by either O_3 alone or $PM_{2.5}$ alone and have important implications for air quality management.

1 Introduction

Surface ozone (O₃) and PM_{2.5} (particulate matter with an aerodynamic equivalent diameter of 2.5 µm or less) are important air pollutants in the atmosphere that have harmful effects on public health (Gao and Ji, 2018; Jiang et al., 2019), ecosystems (Ren et al., 2011; Yue et al., 2017), and crops (Wang et al., 2005, 2007). Surface O₃ is a secondary pollutant produced by photochemical oxidation of volatile organic compounds (VOCs) and nitrogen oxides (NO_x \equiv NO + NO₂) in the presence of intense ultraviolet light, and the major PM_{2.5} components (nitrate, NO₃⁻; am-

monium, NH_4^+ ; sulfate, SO_4^{2-} ; black carbon, BC; and organic carbon, OC) are mainly caused by anthropogenic emissions of aerosols and aerosol precursors. Although surface O₃ and PM_{2.5} have different formation mechanisms, they are coupled through the common precursors (NO_x and VOCs) and photochemical reactions (Chu et al., 2020). Since 2013, stringent clean air actions have been implemented to improve air quality in China (Chinese State Council, 2013, 2018). However, O₃ concentrations increased unexpectedly, while PM_{2.5} concentrations decreased drastically in the past years (M. Li et al., 2019). The co-polluted days by O₃ and PM_{2.5} (concentrations of both O₃ and PM_{2.5} exceed the national air quality standards on the same day, hereafter referred to as O_{3-} PM_{2.5}PDs) were also reported (Dai et al., 2021). Therefore, it is fundamental to examine the chemical and physical characteristics of O_{3} -PM_{2.5}PDs.

The Beijing-Tianjin-Hebei (BTH) region is the most populated region in northern China. In the past few years, concentrations of O₃ and PM_{2.5} in BTH were among the highest in China. The observations from China National Environmental Monitoring Center (CNEMC) showed that the mean and maximum MDA8 (daily maximum 8h average) O₃ in North China in summer of 2019 were 83 and 129 ppb, respectively, and the summer mean MDA8 O₃ increased with a trend of 3.3 ppb a^{-1} over 2013–2019 (Li et al., 2020). Gong et al. (2020) reported that O₃-polluted days (i.e., MDA8 O₃ concentration exceeds 80 ppb) in May-July in BTH increased from 35 d in the year 2014 to 56 d in 2018. As for observed PM_{2.5}, the concentration averaged over BTH had a decreasing trend of $10 \,\mu g \, m^{-3} \, yr^{-1}$ over 2013–2019, and the mean value was $79 \pm 17 \,\mu g \, m^{-3}$ over these years (Li et al., 2020). BTH also had the highest frequency and intensity of severe-haze-pollution days (i.e., days with daily mean PM2.5 concentration exceeding $150 \,\mu g \,m^{-3}$) in China from 2013 to 2017, with an observed mean frequency of $21.2 \,\mathrm{d}\,\mathrm{yr}^{-1}$ and an observed mean intensity of $231.6\,\mu g\,m^{-3}$ (Dang and Liao, 2019).

The interactions between O3 and PM2.5 have been reported in previous studies. Zhu et al. (2019) examined the spatiotemporal characteristics of the correlations between observed O₃ and PM_{2.5} at 1497 sites in China for 2016 and found that O₃-PM_{2.5} had the highest positive correlations (correlation coefficients > +0.7) in July in southern China and the largest negative correlations (r values < -0.5) during January in northern China. K. Li et al. (2019) used the GEOS-Chem model to analyze the O₃-PM_{2.5} relationship in northern China and found that O₃ production was suppressed under high-PM2.5 conditions (PM2.5 concentrations $> 60 \,\mu g \,m^{-3}$) because of the reactive uptake of hydrogen oxide radicals (HO_x) by aerosol particles. Chu et al. (2020) analyzed the observed daily PM2.5 and O3 concentrations in 114 cities in China during the years of 2013-2018 and found that the correlations between O3 and PM2.5 tended to change from negative in 2013 to positive in 2018 in China as air quality improved.

Few previous studies have examined the co-occurrence of O_3 and $PM_{2.5}$ pollution (MDA8 $O_3 > 80$ ppb and $PM_{2.5} > 75 \,\mu g \,m^{-3}$). Zong et al. (2021) used the obliquely rotated principal component analysis in the T-mode (T-PCA) method to identify the synoptic weather pattern associated with O_3 – $PM_{2.5}$ PDs in eastern China during summer of 2015–2018 and found that O_3 – $PM_{2.5}$ PDs were associated with a stable western Pacific subtropical high ridge, which brought warm and moist airflow from the East China Sea to eastern China to promote hygroscopic growth of fine particulate matter in BTH and the northern Yangtze River Delta (YRD). Dai et al. (2021) analyzed O_3 – $PM_{2.5}$ PDs in the YRD for April–October of 2013–2019 by using observations and reported that the co-polluted days occurred mainly in April (29.6% of co-polluted days occurred in April), May (23.0%), June (19.5%), and October (10.8%) under meteorological conditions of higher relative humidity, higher surface air temperature, and lower wind speed relative to the days with O₃ pollution alone. Qin et al. (2021) investigated O₃-PM_{2.5}PDs by using the hourly observed concentrations of water-soluble ions, OC, and elemental carbon (EC) in 2019 in cities of Nanjing and Changzhou. They found that inorganic aerosols mainly existed as NH4NO3, and the correlation coefficients between the secondary components NO_3^- , NH_4^+ , and SO_4^{2-} were relatively high during O_3 -PM_{2.5}PDs in 2019, indicating a significant formation of secondary inorganic aerosols. Although these studies have discussed the meteorological conditions and some chemical characteristics of O₃-PM_{2.5}PDs, the understanding of O₃-PM_{2.5}PDs was quite limited because of the limited observations of chemical species involved.

In this work, we take advantage of the comprehensive chemical mechanism of the global chemical transport model to have better understanding of O₃-PM_{2.5}PDs. We apply the 3-D global chemical transport model (GEOS-Chem) to simulate O₃-PM_{2.5}PDs in BTH in the years of 2013-2020 and investigate the chemical and physical characteristics of O₃-PM_{2.5}PDs by composited analyses of such days that are captured by both the observations and the model. The objectives of this study are (1) to examine the underlying chemical mechanisms for O₃-PM_{2.5}PDs in BTH for warm seasons (April-October) of 2013-2020 by comparing O₃-PM_{2.5}PDs with polluted days by O₃ alone or by PM_{2.5} alone and (2) to identify the weather patterns that are associated with O₃-PM_{2.5}PDs in BTH. The observations, the reanalyzed meteorological data, the GEOS-Chem model, and the process analysis are described in Sect. 2. The observed O₃-PM_{2.5}PDs are presented in Sect. 3.1. The evaluation of simulated concentrations of O₃ and PM_{2.5} as well as the simulated pollution days by O₃ and/or PM_{2.5} are shown in Sect. 3.2. The underlying mechanisms of O₃–PM₂ ₅PDs are shown in Sect. 3.3. In Sect. 3.4, the meteorological conditions for the co-occurrence of O₃ and PM_{2.5} pollution are investigated. The conclusions are presented in Sect. 4.

2 Methods

2.1 Observed O₃ and PM_{2.5} concentrations

Hourly concentrations of $PM_{2.5}$ and O_3 in China over the years of 2013–2020 were taken from the public website of CNEMC (https://air.cnemc.cn:18007/, last access: 17 November 2022). To ensure data quality, the daily mean $PM_{2.5}$ concentration was calculated when there were valid data for more than 20 h during that day, and the MDA8 O_3 concentration was calculated when there were valid data for at least 6 h for each 8 h. For the calculation of monthly and annual mean concentrations, the number of days with valid concentrations had to be more than 15 in each month. The spatial distribution of the 79 valid sites within BTH (37-41° N, 114–118° E; the black rectangle) is shown in Fig. 1. For model evaluation, the observed concentrations were averaged over sites within each of the 0.5° latitude $\times 0.625^{\circ}$ longitude Modern-Era Retrospective analysis for Research and Applications (MERRA-2) grid cells. There are 18 model grids in BTH. Note that the observed O₃ concentrations from this network have a unit of micrograms per cubic meter. For the consistency of observed and simulated O₃ concentrations, $1 \mu g m^{-3}$ of O₃ is approximately 0.5 ppb under the conditions of 298 K and 1013 hPa. The observed O3 concentrations reported by the CNEMC were under standard conditions of 273 K and 1013 hPa before 31 August 2018 and were under standard conditions of 298 K and 1013 hPa afterwards (http://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/ 201808/t20180815 629602.html, last access: 17 November 2022), which were accounted for as O₃ concentrations were converted to parts per billion.

According to the National Ambient Air Quality Standard of China (GB3095-2012), O₃ (PM_{2.5}) concentration exceeds the national air quality standard if the MDA8 O₃ (daily mean PM_{2.5}) concentration is higher than 160 µg m⁻³ (75 µg m⁻³). In this study, we define O₃ polluted days (hereafter called "O₃PDs") for days with MDA8 O₃ concentration > 160 µg m⁻³, PM_{2.5} polluted days (hereafter called "PM_{2.5}PDs") as days with daily mean PM_{2.5} concentration > 75 µg m⁻³, and the co-pollution days by O₃ and PM_{2.5} (O₃-PM_{2.5}PDs) as days with daily MDA8 O₃ concentration > 160 µg m⁻³ as well as a daily mean PM_{2.5} concentration > 75 µg m⁻³.

2.2 Reanalyzed meteorological fields

Meteorological fields were obtained from MERRA-2, which were generated by the NASA Global Modeling and Assimilation Office (GMAO). The MERRA-2 data have a horizontal resolution of 0.5° latitude × 0.625° longitude and 72 vertical layers (Molod et al., 2015). To analyze the meteorological conditions for O₃–PM_{2.5}PDs, vertical pressure velocity (OMEGA), planetary boundary layer height (PBLH), temperature (*T*), relative humidity (RH), and surface incoming shortwave flux (SWGDN) are used. Note that the temporal resolution for PBLH, *T*, and SWGDN is 1 h, and that for OMEGA and RH is 3 h. Daily mean geopotential heights at 850 and 500 hPa from the National Center for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) global reanalysis with a resolution of 2.5° latitude by 2.5° longitude are also utilized in this study.

2.3 Observed aerosol optical depth

We obtained the version 3 datasets of observed daily aerosol optical depth (AOD) of level 2 (improved cloud screening and quality-assured) from the Aerosol Robotic Network (AERONET; https://aeronet.gsfc.nasa.gov/new_web/ index.html, last access: 17 November 2022) established by NASA and LOA-PHOTONS (Giles et al., 2019). Three sites in the BTH region have observations available over 2013–2020, including Beijing (39.97° N, 116.38° E), Beijing-CAMS (39.93° N, 116.31° E), and Xianghe (39.75° N, 116.96° E). The AOD values at 440 and 675 nm at these three sites are analyzed in this study.

2.4 GEOS-Chem model

We simulated O₃ and PM_{2.5} using the nested version of the 3-D global chemical transport model (GEOS-Chem, version 11-01) driven by the MERRA-2 meteorological data. The nested domain was set over Asia (11° S–55° N, 60– 150° E) with a horizontal resolution of 0.5° latitude \times 0.625° longitude, and the chemical boundary conditions were provided by the global GEOS-Chem simulation with 2.5° latitude \times 2.5° longitude horizontal resolution.

The GEOS-Chem model includes fully coupled O₃-NO_xhydrocarbon and an aerosol chemistry mechanism (Bey et al., 2001; Pye et al., 2009) to simulate aerosols including SO_4^{2-} (Park et al., 2004), NO_3^{-} (Pye et al., 2009), NH_4^{+} , BC and OC (Park et al., 2003), mineral dust (Fairlie et al., 2007), and sea salt (Alexander et al., 2005) as well as the gas-phase pollutants such as NO_x and O_3 . Over the Asian domain, the anthropogenic emissions of OC, BC, carbon monoxide (CO), sulfur dioxide (SO₂), NO_x, ammonia (NH₃), and VOCs were obtained from the Multi-resolution Emission Inventory for China (MEIC), which includes emissions from the industry, power, residential, and transportation sectors for the years of 2014–2017 (Li et al., 2017; Zheng et al., 2018), 2019, and 2020 (Zheng et al., 2021). Emissions in 2018 were obtained by the interpolation of those in 2017 and 2019 for each grid due to the lack of publicly accessible emission inventories for that year. The biogenic emissions in GEOS-Chem are simulated using MEGAN v2.1 (Guenther et al., 2012).

The hourly O_3 and $PM_{2.5}$ concentrations for the years of 2013–2020 were simulated by the GEOS-Chem model and were driven by MERRA-2 meteorological fields. The model was spun up for 6 months before the integration over the studied time period.

2.5 Process analysis

Process analysis (PA) was applied to identify the relative importance of atmospheric processes on O_3 – $PM_{2.5}PDs$. PA has been widely used in previous studies to examine the key processes contributing to air pollution episodes (Gonçalves et al., 2009; Dang and Liao, 2019; Gong and Liao, 2019) as well as the interannual and decadal variations in air pollutants

Figure 1. (a) Spatial distributions of observed numbers of O_3PDs , $PM_{2.5}PDs$, and $O_3-PM_{2.5}PDs$ summed over April–October of 2013–2020. The solid black rectangle indicates the BTH region. (b) The observed numbers of NPDs (non-polluted days, green), O_3PDs (blue and purple with slashes), $O_3-PM_{2.5}PDs$ (purple with slashes), and $PM_{2.5}PDs$ (pink and purple with slashes) averaged over all sites in BTH from April to October in 2013 to 2020.

(Mu and Liao, 2014; Lou et al., 2015). Five major processes that influence O₃ and PM_{2.5} concentrations were diagnosed at every time step, including net chemical production, dry deposition, horizontal advection, vertical advection, and diffusion, for the regional pollution days (days with more than half of the sites in BTH experiencing pollution). We carried out PA for O₃SPDs (excluding O₃–PM_{2.5}PDs from O₃PDs), PM_{2.5}SPDs (excluding O₃–PM_{2.5}PDs from PM_{2.5}PDs), and O₃–PM_{2.5}PDs over BTH.

3 Results

3.1 Observed polluted days by O₃ and PM_{2.5}

Figure 1a shows the spatial distributions of observed numbers of O₃PDs, PM_{2.5}PDs, and O₃–PM_{2.5}PDs summed over the warm seasons (April–October) of 2013–2020. The spatial distributions of polluted days in each year are shown in Fig. S1 in the Supplement. The numbers of O₃PDs, PM_{2.5}PDs, and O₃–PM_{2.5}PDs were high in BTH, which were, respectively, 524.3 344.6, and 128.1 d from observations, as the values were averaged over all sites in BTH. The high numbers of O₃PDs, PM_{2.5}PDs, and O₃–PM_{2.5}PDs, and O₃–PM_{2.5}PDs in BTH were associated with the highest anthropogenic emissions (NO_x and non-methane volatile organic compounds, NMVOCs) in this region (Dang et al., 2021).

Figure 1b shows the numbers of days averaged over all sites in BTH for non-polluted days (NPDs; MDA8 $O_3 < 80$ ppb and $PM_{2.5} < 75 \,\mu g \,m^{-3}$), O_3PDs , O_3 – $PM_{2.5}PDs$, and $PM_{2.5}PDs$ in each month of warm seasons

from 2013 to 2020. O_3PDs and $O_3-PM_{2.5}PDs$ mainly occurred in May, June, and July, while $PM_{2.5}PDs$ mainly appeared in April and October. The monthly numbers of $O_3-PM_{2.5}PDs$ ($PM_{2.5}PDs$) declined from 2013 to 2020, with the fastest drop in June, from 7.5 (17.1) d in June 2013 to 1.8 (1.8) d in June 2020. In contrast, the numbers of O_3PDs kept increasing, especially in June, from 10.9 d in June 2013 to 23.6 d in June 2020. The reductions in $O_3-PM_{2.5}PDs$ were associated with the large reductions in $PM_{2.5}$ since the implementation of the Clean Air Action in 2013.

Figure 2a shows the linear trends of observed O_3PDs , $PM_{2.5}PDs$, and $O_3-PM_{2.5}PDs$ in warm seasons of 2013–2020 averaged over BTH. O_3PDs showed an upward trend of 7.9 d yr⁻¹ from 2013 to 2020. However, the numbers of $PM_{2.5}PDs$ and $O_3-PM_{2.5}PDs$ decreased over 2013–2020, with linear trends of -11.2 and -3.4 d yr⁻¹, respectively. Figure 2b shows the changes in percentage of $O_3-PM_{2.5}PDs$ on $PM_{2.5}PDs$ from 2013 to 2020 for each month. It should be noted that, when $PM_{2.5}PDs$ occurred, the proportions of $O_3-PM_{2.5}PDs$ had an upward trend from 2013 to 2020. In May, June, August, and September of 2020, the proportions of $O_3-PM_{2.5}PDs$ on $PM_{2.5}PDs$ reached 100%, indicating that $PM_{2.5}$ pollution was accompanied by O_3 pollution in recent years.

Figure 2. (a) The trends of observed O_3PDs , $PM_{2.5}PDs$, and $O_3-PM_{2.5}PDs$ in warm seasons from 2013 to 2020 averaged over all sites in BTH. The blue, yellow, and purple solid lines (dashed lines) represent the numbers (liner trend) of O_3PDs , $PM_{2.5}PDs$, and $O_3-PM_{2.5}PDs$, respectively. (b) The percentage of $O_3-PM_{2.5}PDs$ on $PM_{2.5}PDs$ for April to October in 2013 to 2020. The polluted days were averaged over all sites in BTH.

3.2 Simulated polluted days and model evaluation

3.2.1 Simulated surface-layer MDA8 O₃ and PM_{2.5} concentrations

Figure 3a and b show, respectively, the spatial distributions of simulated and observed surface-layer concentrations of MDA8 O_3 and $PM_{2.5}$ in China, as the concentrations are averaged over the warm seasons (April-October) of 2013-2020. The concentrations of MDA8 O₃ and PM_{2.5} were both high in BTH. Averaged over BTH and the studied time period, the observed concentrations of MDA8 O₃ and PM_{2.5} were 58.1 ppb and 60.3 μ g m⁻³, respectively, while the simulated values were 68.0 ppb and $61.1 \,\mu g \, m^{-3}$, respectively. Figure 3c and d compare the time series of observed and simulated daily MDA8 O₃ and PM_{2.5} concentrations averaged over BTH. The simulated daily concentrations of MDA8 O₃ (PM_{2.5}) in eight warm seasons have a normalized mean bias (NMB) of 7.9% (10.6%). The model generally captures the daily variations (peaks and troughs) in the observed MDA8 O_3 and $PM_{2.5}$ concentrations, with R values of 0.80 and 0.72, respectively. It should be noted that mineral dust and sea-salt aerosols were not considered in this study because they are not the major aerosol components in China, and the concentrations are generally low based on previous measurements (Xuan et al., 2000; Ye et al., 2003; Duan et al., 2006; Zhao et al., 2013). However, excluding dust and sea salt may lead to low biases in simulated PM_{2.5} concentrations.

Due to the lack of publicly accessible long-term observations of PM_{2.5} components in China, we compared the simulated SO₂ and NO₂ (precursors for SO₄²⁻ and NO₃⁻) with observations from CNEMC in Fig. S2. The simulated daily mean concentrations of NO₂ (SO₂) agree well with the observations from CNEMC, with *R* of 0.82 (0.78) and NMB of -14.9 % (9.3 %).

3.2.2 Simulated O₃PDs, PM_{2.5}PDs, and O₃-PM_{2.5}PDs

Figure S3 shows the capability of the model in capturing the polluted days. Although the GEOS-Chem model well reproduces the spatial distributions of observed MDA8 O₃ and PM2.5 concentrations, it underestimates the numbers of O₃PDs, PM_{2.5}PDs, and O₃-PM_{2.5}PDs because of the model's deficiency in capturing the peak concentrations of air pollutants. Such deficiency was also reported in previous studies that used the GEOS-Chem model or the weather Research and Forecasting with Chemistry (WFR-chem) model (Zhang and Wang, 2016; Ni et al., 2018; Gong and Liao, 2019; Dang and Liao, 2019). Therefore, to identify O₃PDs, PM_{2.5}PDs, and O₃–PM_{2.5}PDs using model results, we utilized lower thresholds by considering the NMBs of simulated MDA8 O₃ and PM_{2.5} concentrations in each of the 18 grids of BTH. Taking the grid of Beijing as an example, simulated MDA8 O₃ and PM_{2.5} had NMBs of -22.0% and -26.9%, respectively, as the simulated concentrations were compared with observations for days with observed concentrations higher than the national air quality standards over the warm seasons of 2013–2020. We then adjusted the threshold of O_3PDs in this grid to be 62.4 ppb (80 ppb \times 78 %) and that of PM_{2.5}PDs to be 54.8 μ g m⁻³ (75 μ g m⁻³ × 73.1 %). These adjusted thresholds were also used to identify O₃-PM₂ ₅PDs. Such an approach was also used in previous studies to better capture the pollution events based on the simulations (Dang and Liao, 2019; Gong and Liao, 2019). With the adjusted thresholds, 56 %–93 % of the observed O₃PDs, PM_{2.5}PDs, and O₃–PM_{2.5}PDs can be captured by the model (Fig. S3e).

3.2.3 Simulated O₃SPDs, PM_{2.5}SPDs, and O₃-PM_{2.5}PDs

Since O_3PDs or $PM_{2.5}PDs$ encompasses $O_3-PM_{2.5}PDs$, we further define O_3 single pollution days (hereafter called "O₃SPDs", which exclude $O_3-PM_{2.5}PDs$ from O_3PDs) and $PM_{2.5}$ single pollution days (hereafter called "PM_{2.5}SPDs", which exclude $O_3-PM_{2.5}PDs$ from $PM_{2.5}PDs$) for the pur-

Figure 3. Spatial distributions of simulated (shades) and observed (CNEMC, dots) surface-layer concentrations of (**a**) MDA8 O₃ (ppb) and (**b**) PM_{2.5} (μ g m⁻³) averaged over the eight warm seasons (April to October, 2013–2020). The solid black rectangle in (**a**) and (**b**) indicates the BTH region. Simulated and observed daily concentrations of surface-layer (**c**) MDA8 O₃ and (**d**) PM_{2.5} averaged over BTH. The correlation coefficient (*R*) and normalized mean bias (NMB) are also shown for (**c**) and (**d**). NMB = $\left(\sum_{i=1}^{N} (M_i - O_i) / \sum_{i=1}^{N} (O_i)\right) \times 100\%$, where O_i and M_i are the observed and simulated concentrations, respectively; *i* refers to the *i*th day, and *N* is the total number of days.

pose of obtaining the characteristics of different polluted days. Figure 4a and b show, respectively, the spatial distributions of numbers of O_3 SPDs, $PM_{2.5}$ SPDs, and $O_3-PM_{2.5}$ PDs from observations and from the GEOS-Chem model using the adjusted thresholds. Considering the total of polluted days in 18 grids in BTH, observed O_3 SPDs, $PM_{2.5}$ SPDs, and $O_3-PM_{2.5}$ PDs were, respectively, 3937, 3698, and 2024 d, in which 75.0 % (2954/3937), 58.1 % (2148/3698), and 79.7 % (1614/2024) were captured by observation and simulation simultaneously (Fig. 4c). In addition, the numbers of observed and captured O_3 SPDs, $PM_{2.5}$ SPDs, and $O_3-PM_{2.5}$ PDs in each month are shown in Fig. S4. The model has a fairly good capability of capturing the observed polluted days in each month.

3.3 Chemical characteristics of polluted days by O_3 and $\text{PM}_{2.5}$

In this section, to investigate the chemical characteristics of O_3SPDs , $PM_{2.5}SPDs$, and $O_3-PM_{2.5}PDs$, we present first the simulated atmospheric oxidants in Sect. 3.3.1 and then show the simulated surface concentrations and vertical profiles of $PM_{2.5}$ and $MDA8 O_3$ in Sect. 3.3.2 and 3.3.3, respectively, followed by the process analysis in Sect. 3.3.4. The observed AOD values to verify the model results are presented in Sect. 3.3.5.

3.3.1 Atmospheric oxidants of O₃SPDs, PM_{2.5}SPDs, and O₃–PM_{2.5}PDs

Figure 5 shows the boxplots of daily concentrations of hydroxyl radical (OH) and total oxidant $(O_x = O_3 + NO_2)$ from the model for days of O3SPDs, PM2.5SPDs, and O3-PM2.5PDs that were observed and also captured by the model (samples in Fig. 4b) in the warm seasons of 2013-2020 in 18 grids of BTH. The levels of OH and O_x characterize the atmospheric oxidation capacity, following Liu et al. (2020) and Nan et al. (2017). The concentrations of OH were the highest on O₃SPDs, with an averaged value of 2.8×10^6 molec. cm⁻³, followed by that on O_3 -PM_{2.5}PDs (2.0 × 10⁶ molec. cm⁻³) and on PM_{2.5}SPDs $(1.0 \times 10^6 \text{ molec. cm}^{-3})$. Due to the lack of publicly accessible observations of OH in BTH, we compare the simulated OH concentrations with observations reported in the literature (Table S1). The simulated OH concentrations agree closely with the observed values. In Wangdu of BTH, while the observed daily maximum OH concentrations in summer of 2014 were in the range of $5-15 \times 10^6$ molec. cm⁻³ (Tan et al., 2017), the simulated OH concentrations in the same time period in this work were $3.7-9.5 \times 10^6$ molec. cm⁻³. In Beijing in summer of 2017, the observed daily mean OH concentration was 5.8×10^6 molec. cm⁻³ (Woodward-Massey et al., 2020), and our simulated value was 2.4×10^6 molec. cm⁻³.

Figure 4. Spatial distributions of (**a**) observed numbers of O_3 SPDs, $PM_{2.5}$ SPDs, and O_3 – $PM_{2.5}$ PDs; (**b**) numbers of polluted days that were observed and also captured by the GEOS-Chem model with adjusted thresholds; and (**c**) percentages of observed polluted days that were captured by the model with adjusted thresholds. The values were calculated for the warm months (April to October) of 2013–2020.

Figure 5. The boxplots of surface-layer hydroxyl radical (OH, molec. cm⁻³), total oxidant (O_x , $\mu g m^{-3}$), sulfur oxidation ratio (SOR, %), and nitrogen oxidation ratio (NOR, %) for model-captured O_3 SPDs, $PM_{2.5}$ SPDs, and O_3 -PM_{2.5}PDs in 18 grids of BTH in the months of April to October from 2013 to 2020. The whiskers represent the standard deviation, and the black line represents the mean value of the samples.

29

The mean values of O_x were, respectively, 178.7, 118.1, and 184.1 μ g m⁻³ on O₃SPDs, PM_{2.5}SPDs, and O₃-PM_{2.5}PDs, indicating that the atmospheric oxidation capacity was strong on O3-PM2.5PDs, which favored the production of secondary components of PM2.5. Figure 5 also shows sulfur oxidation ratio (SOR; $n-SO_4^{2-}/(n-SO_4^{2-}+n SO_2)\text{, where }n\text{-}SO_4^{2-}$ and $n\text{-}SO_2$ are the concentrations of SO_4^{2-} and SO_2 , respectively) and nitrogen oxidation ratio (NOR; $n-NO_3^- / (n-NO_3^- + n-NO_2)$), where $n-NO_3^-$ and $n-NO_3^- + n-NO_3^ NO_2$ are the concentrations of NO_3^- and NO_2 , respectively). SOR and NOR are measures of the conversion degrees of sulfur and nitrogen, respectively (Zhu et al., 2019). On O₃SPDs, PM_{2.5}SPDs, and O₃–PM_{2.5}PDs, the averaged values of SOR were 50.0%, 36.7%, and 49.7%, and those of NOR were 55.4 %, 70.0 %, and 70.2 %, respectively. The high SOR and NOR on O₃-PM_{2.5}PDs indicated the strong formation of SO_4^{2-} and NO_3^{-} that was promoted by high atmospheric oxidation capacity. The monthly variations in OH, O_x , and SOR were similar (Fig. 5), with the highest values in summer, owing to the high temperature that promoted high concentrations of oxidants and SOR. It is interesting that SOR and O_x values were higher on O_3 -PM_{2.5}PDs than on O_3 SPDs or on PM2.5SPDs during May-August. Similarly, NOR values were higher on O₃-PM_{2.5}PDs than on O₃SPDs or on PM_{2.5}SPDs in May and July–September. Overall, the O₃– PM₂ ₅PDs occurred with high levels of atmospheric oxidants, SOR, and NOR, leading to combined increases in O₃ and PM_{2.5} concentrations.

3.3.2 Surface-layer concentrations of $PM_{2.5}$ components on O_3SPDs , $PM_{2.5}SPDs$, and $O_3-PM_{2.5}PDs$

The simulated concentrations of PM_{2.5} components (NO₃⁻, NH₄⁺, SO₄²⁻, BC, and OC, averaged over 18 grids of BTH, are shown in Fig. 6 for O₃SPDs, PM_{2.5}SPDs, and O₃– PM_{2.5}PDs in the warm seasons of 2013–2020 that were observed and also captured by the model. While the mean concentrations of NO₃⁻, NH₄⁺, BC, and OC were all the highest on PM_{2.5}SPDs, SO₄²⁻ concentration was the highest on O₃–PM_{2.5}PDs. On O₃SPDs, PM_{2.5}SPDs, and O₃– PM_{2.5}PDs, the mean concentrations of SO₄²⁻ were 6.2, 9.4, and 11.97 μ g m⁻³, respectively, and the percentages of SO₄²⁻ in PM_{2.5} PDs were 14.9 %, 9.0 %, and 15.0 %, respectively. In July and August, the concentrations of SO₄²⁻ and MDA8 O₃ on O₃–PM_{2.5}PDs were the highest compared with those on O₃SPDs and PM_{2.5}SPDs (Fig. S5).

Figure 7 presents the hourly concentrations of NO_3^- , NH_4^+ , SO_4^{2-} , BC, OC, and O₃ for model-captured O₃SPDs, PM_{2.5}SPDs, and O₃-PM_{2.5}PDs over all 18 grids of BTH in the warm seasons from 2013–2020. Concentrations of NO_3^- and NH_4^+ had similarities in diurnal variations, all of which reached the highest values in the early morning (05:00 local time, LT, on O₃SPDs and O₃-PM_{2.5}PDs, 07:00–08:00 LT

Figure 6. The concentrations of $PM_{2.5}$ components ($\mu g m^{-3}$) and percentages of $PM_{2.5}$ components (%) at the surface for NO_3^- , NH_4^+ , SO_4^{2-} , BC, and OC. The values were averaged over the model-captured O₃SPDs, $PM_{2.5}SPDs$, and O₃-PM_{2.5}PDs in the months of April to October of 2013–2020 in BTH.

on PM_{2.5}SPDs) and had the lowest values in the late afternoon (18:00 LT on O₃SPDs and O₃–PM_{2.5}PDs, 16:00 LT on PM_{2.5}SPDs). Concentrations of BC and OC peaked at the same time as those of NO_3^- and NH_4^+ and had the lowest values at 15:00 LT on O₃SPDs, PM_{2.5}SPDs, and O₃– PM_{2.5}PDs. The diurnal variations in NO_3^- , NH_4^+ , BC, and OC, which generally reached their highest concentrations before the sudden uplift of PBLH in the early morning (times for uplift of PBLH: 06:00 LT on O₃SPDs and O₃–PM_{2.5}PDs, 07:00 LT on PM_{2.5}SPDs), reflected the diurnal variations in PBLH (shown in Fig. S6). Compared to O₃SPDs and O₃– PM_{2.5}PDs, the PBLH of PM_{2.5}SPDs was lower and uplifted 1 h later, which was more favorable for the accumulation of aerosols. During the daytime, PBLH on O₃–PM_{2.5}PDs was between O₃SPDs and PM_{2.5}SPDs.

It is worth noting that the diurnal variations in SO_4^{2-} were different from those of other aerosol species, with the highest values at 20:00, 09:00, and 16:00 LT on O₃SPDs, PM_{2.5}SPDs, and O₃-PM_{2.5}PDs, respectively, and the lowest values in early morning and night (05:00 LT on O₃SPDs and O₃-PM_{2.5}PDs, 23:00 LT on PM_{2.5}SPDs). For the diurnal variation in O₃, the highest values occurred during the daytime (16:00 LT on O₃SPDs and O₃-PM_{2.5}PDs, and the lowest values appeared at 05:00 LT on PM_{2.5}SPDs), and the lowest values appeared at 05:00 LT in all cases. Therefore, on O₃-PM_{2.5}PDs, the time of the highest value of SO_4^{2-} was the same as that of O₃, indicating that SO_4^{2-} and O₃ were produced synergistically during the daytime with strong atmospheric oxidation.

Figure 7. The hourly concentrations of NO₃⁻, NH₄⁺, SO₄²⁻, BC, OC, and O₃ averaged over the model-captured O₃SPDs, PM_{2.5}SPDs, and O₃ -PM_{2.5}PDs in BTH in the months of April to October of 2013-2020.

Vertical distributions of O₃ and PM_{2.5} on O₃SPDs, 3.3.3 PM_{2.5}SPDs, and O₃-PM_{2.5}PDs

The simulated vertical distributions of O3 and PM2.5 averaged over the 18 grids of BTH and the O₃SPDs, PM_{2.5}SPDs, and O₃-PM_{2.5}PDs in warm seasons of 2013-2020 are shown in Fig. 8. The vertical distribution of O₃ on O₃SPDs was similar to that on O₃-PM₂ ₅PDs (Fig. 8a). In these two cases, concentrations of O₃ increased from the surface to about 975 hPa, remained high between 975 and 819 hPa and decreased with altitude between 819 and 663 hPa. Although the magnitudes of O_3 were close at the surface (61.9 ppb on O_3 -PM_{2.5}PDs and 58.1 ppb on O₃SPDs), the concentration of O₃ averaged over 975 and 819 hPa was 10.4 % higher on O₃-PM_{2.5}PDs than on O₃SPDs, which was a very unique feature of O₃-PM_{2.5}PDs. For the case of PM_{2.5}SPDs, the concentrations of O3 were the lowest among the three cases and increased gently with altitude above 975 hPa.

Figure 8b shows the vertical distributions of PM_{2.5} components. In all the cases, PM2.5 concentrations were the highest at the surface, and decreased with altitude from the surface to 975 hPa. However, concentrations of PM_{2.5} were quite stable between 975 and 819 hPa for O₃SPDs (about 36.4 μ g m⁻³) and O_3 –PM_{2.5}PDs (about 58.1 µg m⁻³), corresponding to the stable O₃ levels at these altitudes in these two cases (Fig. 8a). For PM_{2.5}SPDs, while PM_{2.5} concentration at the surface was the highest among the three cases, it decreased rapidly

between 975 and 819 hPa. The averaged PM2.5 concentration between 975 and 819 hPa was 52.4 μ g m⁻³ on PM_{2.5}SPDs, which was lower than that on O₃–PM_{2.5}PDs.

To further investigate the differences in vertical profiles of NO_3^- , NH_4^+ , SO_4^{2-} , BC, OC, and $PM_{2.5}$ on O_3SPDs , PM_{2.5}SPDs, and O₃–PM_{2.5}PDs, the ratios of concentration at 975 hPa to that at the surface as well as the concentration at 819 hPa to that at 975 hPa are shown in Table 1. The concentration of PM2.5 decreased largely, with the ratio of PM_{2.5(975 hPa)} / PM_{2.5(1005 hPa)} of 0.78 on O₃-PM_{2.5}PDs and of 0.74 on PM_{2.5}SPDs. For each of the PM_{2.5} components, the ratios near the surface (from 1005 to 975 hPa, shaded gray area in Fig. 8) were close in the three types of pollution. While the ratios of NO_3^- , NH_4^+ , BC, and OC were in the range of 0.65–0.80, the ratios of SO_4^{2-} were about 0.93– 0.98, indicating that SO_4^{2-} concentrations were quite uniform from the surface to 975 hPa in all three types of pollution.

In the upper layers (975-819 hPa, red rectangle in Fig. 8), the changes in concentrations of pollutants with altitude on PM2.5SPDs were quite different from those on O_3 -PM_{2.5}PDs and O_3 SPDs. The decline in PM_{2.5} from 975 to 819 hPa was slow on O₃-PM_{2.5}PDs $(PM_{2.5(819 \text{ hPa})} / PM_{2.5(975 \text{ hPa})} = 0.89)$ and O₃SPDs (0.86) and fast on PM2.5SPDs (0.67). Considering that the variation in BC with altitude was mainly driven by meteorology (Sun et al., 2020), the vertical variations in other components

Figure 8. The vertical distributions of (a) concentrations of O_3 (ppb) and (b) $PM_{2.5}$ components ($\mu g m^{-3}$) of NO_3^- , NH_4^+ , SO_4^{2-} , BC, OC averaged over the model-captured O_3SPDs , $PM_{2.5}SPDs$, and $O_3-PM_{2.5}PDs$ in BTH in the months of April to October of 2013–2020.

Table 1. The ratios at 975 and 1005 hPa (shaded gray area in Fig. 8) and at 819 and 975 hPa (red frame in Fig. 8) of NO_3^- , NH_4^+ , SO_4^{2-} , BC, OC, and PM_{2.5} on O₃SPDs, PM_{2.5}SPDs, and O₃-PM_{2.5}PDs in BTH region.

		NO_3^-	NH_4^+	SO_{4}^{2-}	BC	OC	PM _{2.5}
Conc _{819 hPa} / Conc _{975 hPa}	O ₃ SPDs	0.95	0.90	0.85	0.73	0.73	0.86
	PM _{2.5} SPDs	0.64	0.68	0.81	0.64	0.63	0.67
	O ₃ -PM _{2.5} PDs	0.94	0.91	0.87	0.79	0.77	0.89
Conc _{975 hPa} / Conc _{1005 hPa}	O ₃ SPDs	0.65	0.77	0.96	0.69	0.70	0.74
	PM _{2.5} SPDs	0.72	0.76	0.93	0.67	0.65	0.73
	O ₃ -PM _{2.5} PDs	0.72	0.80	0.98	0.76	0.73	0.78

that differed significantly from BC indicated the influences of chemical processes. On PM_{2.5}SPDs, NO₃⁻, NH₄⁺, and OC had about the same ratio as BC (0.64) (with large decreases with height), except for SO₄²⁻ concentration, which had a ratio of 0.81. On O₃–PM_{2.5}PDs, the ratios of NO₃⁻, NH₄⁺, and SO₄²⁻ were 0.94, 0.91, and 0.87, respectively, which were much higher than the value of BC (0.79), indicating NO₃⁻, NH₄⁺, and SO₄²⁻ were quite uniform in the layers of 975–819 hPa with the influence of chemical processes, which is discussed further in Sect. 3.3.4 below.

3.3.4 Process analyses for O₃SPDs, PM_{2.5}SPDs, and O₃–PM_{2.5}PDs

The process analysis (PA) is applied to identify the relative importance of atmospheric processes in the three types of pollution. Figure 9 shows the net changes in O_3 , NO_3^- , NH_4^+ , and SO_4^{2-} by the processes of chemical production (Chem), horizontal advection (Horizontal_adv), vertical advection (Vertical_avd), and diffusion (Diff; vertical PBL mixing process) in the GEOS-Chem model, as well as the total of all these processes (i.e., Chem + Diff + Horizontal_avd + Vertical_avd) on O₃SPDs, PM_{2.5}SPDs, and O₃-PM_{2.5}PDs.

For O_3 , the net changes in O_3 by all processes were positive at altitudes of 975–819 hPa on O_3 –PM_{2.5}PDs and O₃SPDs, in which Chem had the largest positive contribution (about 1.5 Gg d^{-1}), indicating O₃ is chemically produced at these layers. For NO_3^- and NH_4^+ , the nets of all processes increased mass concentrations at 913-819 hPa on O₃-PM_{2.5}PDs and O₃SPDs, in which Chem and Vertical avd were positive, and Chem had the largest positive contribution. The vertical profiles of Chem were similar for NO_3^- and NH_4^+ , both of which had the largest positive values at 913– $819 \text{ hPa} (2.83 \text{ Gg d}^{-1} \text{ for } \text{NO}_3^- \text{ and } 0.88 \text{ Gg d}^{-1} \text{ for } \text{NH}_4^+),$ leading to higher concentrations of NO_3^- and NH_4^+ on O_3^- PM_{2.5}PDs than on O₃SPDs and PM_{2.5}SPDs. Chem and Diff of SO_4^{2-} were different from those of NO_3^{-} and NH_4^{+} . For SO_4^{2-} , Chem was positive from the surface to 510 hPa, with a peak around 819 hPa, and Diff was positive at 819-771 hPa but negative from 819 hPa to the surface, which resulted in the uniform SO_4^{2-} profile as shown in Fig. 8. Chem for SO_4^{2-} was the highest around 819 hPa on O₃-PM_{2.5}PDs, which was related to the strong liquid-phase chemical formation of SO_4^{2-} (Fig. S7). In addition to Chem, Vertical_avd also had positive contributions to the net changes in O_3 , NO_3^- , NH_4^+ , and SO_4^{2-} at 944–819 hPa. Vertical_avd was negative at 819 hPa and positive between 944 and 819 hPa, implying that the pollutants were transported from 819 to 944 hPa on O₃-PM_{2.5}PDs.

Overall, NO_3^- , NH_4^+ , and SO_4^{2-} all had larger chemical productions at 913–819 hPa on O₃–PM_{2.5}PDs compared to those on O₃SPDs and PM_{2.5}SPDs, accompanied by strong

Figure 9. The vertical profiles of net changes in O_3 , NO_3^- , NH_4^+ , and SO_4^{2-} (Gg d⁻¹) over BTH by each process and the total processes. The values were averaged over the model-captured regional O_3 SPDs, $PM_{2.5}$ SPDs, and $O_3-PM_{2.5}$ PDs in April–October of 2013–2020.

vertical transport from 819 hPa to near the surface, resulting in the quite uniform vertical profiles at 975–819 hPa on O₃– PM_{2.5}PDs. In addition, the vertical profiles of net changes in PM_{2.5} over BTH are shown in Fig. S8 for these three cases. Since NO₃⁻, NH₄⁺, and SO₄^{2–} were the major components of PM_{2.5}, the PA of PM_{2.5} is similar to that of each component.

3.3.5 Observed AOD on O_3 SPDs, PM_{2.5}SPDs, and O_3 -PM_{2.5}PDs

To try to support the model result that $O_3-PM_{2.5}PDs$ had a more uniform vertical profile than $PM_{2.5}SPDs$ from the surface to 819 hPa altitude, we present the scatterplots of observed AOD (at 440 and 675 nm) versus observed $PM_{2.5}$ concentrations on O_3SPDs , $PM_{2.5}SPDs$, and $O_3-PM_{2.5}PDs$ in Fig. 10. AERONET observations of AOD from 2013 to 2020 are available at three sites in BTH (Beijing: 39.97° N, 116.38° E; Beijing-CAMS: 39.93° N, 116.31° E; Xianghe:

Figure 10. The scatterplots of (a) AOD (440 nm) and (b) AOD (675 nm) versus observed $PM_{2.5}$ concentrations on O_3SPDs , $PM_{2.5}SPDs$, and $O_3-PM_{2.5}PDs$ in Beijing (39.97° N, 116.38° E) in April–October of 2013–2020.

39.75° N, 116.96° E). At Beijing (39.97° N, 116.38° E), AOD (440 and 675 nm) increased with $PM_{2.5}$ concentration in all three types of pollution. However, under the same levels of surface $PM_{2.5}$ concentration, AOD values on O₃-PM_{2.5}PDs were higher than on PM_{2.5}SPDs, implying that the column burdens of aerosols were generally higher on O₃-PM_{2.5}PDs than on PM_{2.5}SPDs, which may support the unique vertical distribution of PM_{2.5} on O₃-PM_{2.5}PDs shown in Fig. 8b. The scatterplots at Beijing-CAMS and Xianghe sites are similar and are shown in Fig. S9.

3.4 Meteorological conditions for O₃SPDs, PM_{2.5}SPDs, and O₃–PM_{2.5}PDs over BTH

Figure 11 shows the vertical profiles of RH, T, and OMEGA for O₃SPDs, PM_{2.5}SPDs, and O₃-PM_{2.5}PDs captured by the model over BTH in the months of April to October from 2013–2020. It should be noted that O₃–PM_{2.5}PDs had an unique vertical distribution of RH. Near the surface, the values of RH on O₃-PM_{2.5}PDs were between those on O₃SPDs and PM_{2.5}SPDs. However, in the upper layers (883-771 hPa), O₃–PM_{2.5}PDs had the highest RH among the three cases, with a peak value of 58.2 %. As a result, the strongest aqueous chemical production of SO_4^{2-} (aqueous oxidation of SO₂ by H₂O₂) occurred on O₃-PM_{2.5}PDs around 819 to 771 hPa (Fig. S7). The vertical profiles of temperature were similar in the three types of pollution, with the lowest temperature on PM2.5SPDs. The vertical profiles of OMEGA were different in the three cases. On O₃SPDs and O₃-PM₂ ₅PDs, OMEGA had positive values around 819 hPa, indicating a strong sinking airflow, leading to a downward transport of pollutants. Under O₃-PM_{2.5}PDs, the average values of PBLH and SWGDN were 946.1 m and 257.2 W m^{-2} , respectively, which were higher (lower) than those on $PM_{2.5}SPDs$ (O₃SPDs) (Fig. S10).

Figure 12 shows the composited weather patterns for regional O₃SPDs, PM₂ ₅SPDs, and O₃-PM₂ ₅PDs (over 50%) of the cities in BTH experienced the pollution) that were captured by the model in April-October of 2013-2020. The weather patterns of O₃-PM_{2.5}PDs were similar to some extent to those of O₃SPDs but were quite different from those of PM2.5SPDs. On O3-PM2.5PDs, the BTH region was controlled by westerlies and an anomalous high-pressure system at 500 hPa (Fig. S11). At 850 hPa, BTH was at the western boundary of an anomalous anticyclone, and the associated strong anomalous southerlies at 850 hPa brought moist air to BTH (Figs. S12 and S13), resulting in a high RH that was beneficial to the aqueous chemical production of SO_4^{2-} on O₃–PM_{2.5}PDs. On O₃SPDs, BTH was under the influence of the high-pressure ridge of the western Pacific subtropical high (WPSH) at 850 hPa. Additionally, the northeast cold vortex was located to the southwest of BTH at 850 hPa on O₃SPDs, leading to dry and warm conditions, which was favorable for the formation of O₃. On PM_{2.5}SPDs, the BTH region was under the influence of both the continental high and the WPSH at 850 hPa. At the surface, BTH was under the influence of a uniform high pressure with very weak winds and hence stagnate atmosphere, which was conducive to the accumulation of PM_{2.5}.

4 Conclusions

We used the observed hourly concentrations of O_3 and $PM_{2.5}$ from CNEMC and the model results from the nested-grid version of the GEOS-Chem model to examine the chemical and physical characteristics of the co-polluted days by

Figure 11. The vertical profiles of RH (%), T (°C), and OMEGA (Pa s⁻¹) averaged over BTH and over the model-captured regional O₃SPDs, PM_{2.5}SPDs, and O₃–PM_{2.5}PDs in April–October of 2013–2020.

5500 5540 5580 5620 5660 5700 5740 5780 5820 5860 5900 5940

Figure 12. Composites of wind field $(m s^{-1})$ with SLP (sea level pressure) and with geopotential height at 850 and 500 hPa for regional O₃SPDs, PM_{2.5}SPDs, and O₃-PM_{2.5}PDs that were captured by the model in April–October of 2013–2020. The solid black rectangle indicates BTH region.

Figure 13. A schematic diagram of chemical and physical and characteristics on O₃SPDs, PM_{2.5}SPDs, and O₃-PM_{2.5}PDs in BTH region.

O₃ and PM_{2.5} (O₃–PM_{2.5}PDs) over the BTH region for eight warm seasons (April–October) from 2013 to 2020. The characteristics of O₃–PM_{2.5}PDs were compared with those of the polluted days by O₃ alone (O₃SPDs) and by PM_{2.5} alone (PM_{2.5}SPDs). In April–October of 2013–2020, the observed O₃SPDs, PM_{2.5}SPDs, and O₃–PM_{2.5}PDs were 2954, 2148, and 1614 d, respectively, in which 75.0 % (2954/3937), 58.1 % (2148/3698), and 79.7 % (1614/2024) were captured by the GEOS-Chem model, respectively. We carried out composited analyses of the chemical and physical characteristics for O₃SPDs, PM_{2.5}SPDs, and O₃–PM_{2.5}PDs by using the samples (days) captured by both the observations and the model.

The chemical characteristics of O_3 –PM_{2.5}PDs were found to be different from those of O_3 SPDs and PM_{2.5}SPDs at the surface. O_3 –PM_{2.5}PDs occurred with high levels of atmospheric oxidants (high OH and O_x), with higher SOR and NOR compared to those on O_3 SPDs and PM_{2.5}SPDs, leading to high concentrations of both O_3 and PM_{2.5}. At the surface, the composited concentrations of NO₃⁻, NH₄⁺, BC, and OC were the highest on PM_{2.5}SPDs, while the composited concentration of SO₄²⁻ was the highest on O_3 –PM_{2.5}PDs. There was a strong formation of SO₄²⁻ during the daytime on O_3 – PM_{2.5}PDs in the oxidative atmosphere.

We also found unique features of the vertical distributions of O₃ and PM_{2.5} on O₃–PM_{2.5}PDs. Concentrations of PM_{2.5} were stable and high between 975 and 819 hPa on O₃–PM_{2.5}PDs, unlike those on PM_{2.5}SPDs that decreased rapidly with the altitude. On O₃–PM_{2.5}PDs, the vertical profiles of NO₃⁻, NH₄⁺, and SO₄²⁻ were quite uniform at 975– 819 hPa, corresponding to the stable O₃ concentrations at these altitudes. The process analysis (PA) showed that NO₃⁻, NH₄⁺, and SO₄²⁻ all had larger chemical productions at altitudes of 913–819 hPa on O₃–PM_{2.5}PDs compared to those on O₃SPDs and PM_{2.5}SPDs. The chemical production of SO_4^{2-} had large positive values from the surface to about 500 hPa. The Vertical_avd also had positive contributions to the net changes in O₃, NO₃⁻, NH₄⁺, and SO₄²⁻ at 944–819 hPa on O₃–PM_{2.5}PDs. Therefore, the strong chemical productions at 913–819 hPa accompanied by the downward transport resulted in the quite uniform vertical profiles at 975–819 hPa on O₃–PM_{2.5}PDs.

Figure 13 summarizes the chemical and physical characteristics on O₃-PM_{2.5}PDs, O₃SPDs, and PM_{2.5}SPDs in the BTH region. On O₃-PM_{2.5}PDs, the strong chemical productions of O_3 , NO_3^- , NH_4^+ , and SO_4^{2-} occurred at high altitudes of 913-819 hPa, where RH was high, and the accompanied downward airflow caused the stable concentrations at 944-819 hPa. The composited PBLH on O₃-PM_{2.5}PDs was about 946.1 m, and the strong mixed diffusion underneath the PBLH led to high concentrations of pollutants at the ground level. In contrast, O₃SPDs occurred in a hot and dry atmosphere with composited PBLH of 1073.5 m. Strong O₃ chemical production occurred around 819 hPa, and O3 was then transported to the surface by downward airflow. The atmosphere was stable and stagnate when PM2.5SPDs occurred, with the lowest PBLH of 681.8 m. High RH (high chemical formation of PM2.5) and the accumulation of aerosols led to the highest surface-layer PM_{2.5} on PM_{2.5}SPDs.

To summarize, O_3 –PM_{2.5}PDs were characterized by high O_x , SOR, and NOR; uniform vertical profiles at 975– 819 hPa, which were caused by an anomalous high-pressure system at 500 hPa; strong southerlies; and high RH at 850 hPa. Meteorological parameters around 850 hPa promoted strong chemical production of secondary aerosols and downward transport, resulting in the unique vertical profiles and high surface concentrations on O_3 –PM_{2.5}PDs. Data availability. The GEOS-Chem model is available at http: //acmg.seas.harvard.edu (last access: 17 November 2022; Atmospheric Chemistry Modeling group, 2022). The observed hourly surface concentrations of air pollutants are derived from the China National Environmental Monitoring Center (http://www.cnemc. cn, last access: 24 December 2022; CNEMC, 2022). The version 3 datasets of observed daily aerosol optical depth (AOD) of level 2 (improved cloud screening and quality-assured) are from the Aerosol Robotic Network (AERONET; https://aeronet.gsfc. nasa.gov/new_web/index.html, last access: 17 November 2022; AERONET, 2022). The simulation results are available upon request from the corresponding author (hongliao@nuist.edu.cn).

Supplement. The supplement related to this article is available online at: https://doi.org/10.5194/acp-23-23-2023-supplement.

Author contributions. HD and HL conceived the study and designed the experiments. HD performed model simulations and analyzed the data. KL, XY, YY, JZ, JJ, BL, and XJ provided useful comments on the paper. HD and HL prepared the paper, with contributions from all co-authors.

Competing interests. The contact author has declared that none of the authors has any competing interests.

Disclaimer. Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgements. We acknowledge the CNEMC for making their data publicly available. We acknowledge the efforts of GEOS-Chem working groups for developing and managing the model.

Financial support. This research has been supported by the National Natural Science Foundation of China (grant no. 42021004), the National Key Research and Development Program of China (grant no. 2019YFA0606800), and the Carbon Peak Carbon Neutral Science and Technology Innovation Foundation of Jiangsu Province (grant no. BK20220031).

Review statement. This paper was edited by Tao Wang and reviewed by two anonymous referees.

References

- AERONET: Aerosol Robotic Network, NASA and LOA-PHOTONS, https://aeronet.gsfc.nasa.gov/new_web/index.html, last access: 17 November 2022.
- Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C. W., and Thiemens,

M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res.-Atmos., 110, D10307, https://doi.org/10.1029/2004jd005659, 2005.

- Atmospheric Chemistry Modeling group: GEOS-Chem model: the Goddard Earth Observing System-Chemisty model, Harvard University, http://acmg.seas.harvard.edu, last access: 17 November 2022.
- Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001jd000807, 2001.
- Chinese State Council: Action Plan on Air Pollution Prevention and Control, http://www.gov.cn/zwgk/2013-09/12/content_2486773. htm (last access: 24 December 2022), 2013 (in Chinese).
- Chinese State Council: Three-Year Action Plan on Defending the Blue Sky, http://www.gov.cn/zhengce/content/2018-07/03/ content_5303158.htm (last access: 24 December 2022), 2018 (in Chinese).
- Chu, B. W., Ma, Q. X., Liu, J., Ma, J. Z., Zhang, P., Chen, T. A., Feng, Q. C., Wang. C. Y., Yang, N., Ma, H. N., Ma, J. J., Russell, A. G., and He, H.: Air Pollutant Correlations in China: Secondary Air Pollutant Responses to NO_x and SO_2 Control, Environ. Sci. Tech. Let., 7, 695–700, https://doi.org/10.1021/acs.estlett.0c00403, 2020.
- CNEMC: China National Environmental Monitoring Center, http: //www.cnemc.cn, last access: 24 December 2022 (in Chinese).
- Dai, H. B., Zhu, J., Liao, H., Li, J. D., Liang, M. X., Yang, Y., and Yue, X.: Co-occurrence of ozone and PM_{2.5} pollution in the Yangtze River Delta over 2013–2019: spatiotemporal distribution and meteorological conditions, Atmos. Res., 249, 105363, https://doi.org/10.1016/j.atmosres.2020.105363, 2021.
- Dang, R. and Liao, H.: Severe winter haze days in the Beijing– Tianjin–Hebei region from 1985 to 2017 and the roles of anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 10801–10816, https://doi.org/10.5194/acp-19-10801-2019, 2019.
- Dang, R. J., Liao, H., and Fu, Y.: Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012–2017, Sci. Total. Environ., 754, 142394, https://doi.org/10.1016/j.scitotenv.2020.142394, 2021.
- Duan, F., He, K., Ma, Y., Yang, F., Yu, X., Cadle, S. H., Chan, T., and Mulawa, P. A.: Concentration and chemical characteristics of PM_{2.5} in Beijing, China: 2001–2002, Sci. Total Environ., 355, 264–275, https://doi.org/10.1016/j.scitotenv.2005.03.001, 2006.
- Fairlie, T. D., Jacob, D. J., and Park, R. J.: The impact of transpacific transport of mineral dust in the United States, Atmos. Environ., 41, 1251–1266, https://doi.org/10.1016/j.atmosenv.2006.09.048, 2007.
- Gao, Y. and Ji, H. B.: Microscopic morphology and seasonal variation of health effect arising from heavy metals in $PM_{2.5}$ and PM_{10} : One-year measurement in a densely populated area of urban Beijing, Atmos. Res., 212, 213–226, https://doi.org/10.1016/j.atmosres.2018.04.027, 2018.
- Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov,A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell,J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3

database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.

- Gonçalves, M., Jiménez-Guerrero, P., and Baldasano, J. M.: Contribution of atmospheric processes affecting the dynamics of air pollution in South-Western Europe during a typical summertime photochemical episode, Atmos. Chem. Phys., 9, 849–864, https://doi.org/10.5194/acp-9-849-2009, 2009.
- Gong, C. and Liao, H.: A typical weather pattern for ozone pollution events in North China, Atmos. Chem. Phys., 19, 13725–13740, https://doi.org/10.5194/acp-19-13725-2019, 2019.
- Gong, C., Liao, H., Zhang, L., Yue, X., Dang, R. J., and Yang, Y.: Persistent ozone pollution episodes in North China exacerbated by regional transport, Environ. Pollut., 265, 115056, https://doi.org/10.1016/j.envpol.2020.115056, 2020.
- Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
- Jiang, N., Li, L., Wang, S., Li, Q., Dong, Z., Duan, S., Zhang, R., and Li, S.: Variation tendency of pollution characterization, sources, and health risks of PM_{2.5}-bound polycyclic aromatic hydrocarbons in an emerging megacity in China: based on three-year data, Atmos. Res., 217, 81–92, https://doi.org/10.1016/j.atmosres.2018.10.023, 2019.
- Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K., Zhang, Q., and Zhai, S. X.: A two-pollutant strategy for improving ozone and particulate air quality in China, Nat. Geosci., 12, 906–910, https://doi.org/10.1038/s41561-019-0464-x, 2019.
- Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences, Atmos. Chem. Phys., 20, 11423–11433, https://doi.org/10.5194/acp-20-11423-2020, 2020.
- Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017.
- Li, M., Wang, L., and Liu, J.: Exploring the regional pollution characteristics and meteorological formation mechanism of PM_{2.5} in North China during 2013–2017, Environ. Int., 134, 105283, https://doi.org/10.1016/j.envint.2019.105283, 2019.
- Liu, Y. X., Zhao, Q. B., Hao, X., Zhao, J. R., Zhang, Y., Yang, X., Fu, Q. Y., Xu, X. Y., Wang, X. F., Huo, J. T., and Chen, J. M.: Increasing surface ozone and enhanced secondary organic carbon formation at a city junction site: An epitome of the Yangtze River Delta, China (2014–2017), Environ. Pollut., 265, 0269-7491, https://doi.org/10.1016/j.envpol.2020.114847, 2020.
- Lou, S. J., Liao, H., Yang, Y., and Mu, Q.: Simulation of the interannual variations of tropospheric ozone over China: Roles of variations in meteorological parameters and anthropogenic emissions, Atmos. Environ., 122, 839–851, https://doi.org/10.1016/j.atmosenv.2015.08.081, 2015.

- Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.
- Mu, Q. and Liao, H.: Simulation of the interannual variations of aerosols in China: role of variations in meteorological parameters, Atmos. Chem. Phys., 14, 9597–9612, https://doi.org/10.5194/acp-14-9597-2014, 2014.
- Nan, J. L., Wang, S. S., Guo, Y. L., Xiang, Y. J., and Zhou, B.: Study on the daytime OH radical and implication for its relationship with fine particles over megacity of Shanghai, China, Atmos. Environ., 154, 167–178, https://doi.org/10.1016/j.atmosenv.2017.01.046, 2017.
- Ni, R., Lin, J., Yan, Y., and Lin, W.: Foreign and domestic contributions to springtime ozone over China, Atmos. Chem. Phys., 18, 11447–11469, https://doi.org/10.5194/acp-18-11447-2018, 2018.
- Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V.: Sources of carbonaceous aerosols over the United States and implications for natural visibility, J. Geophys. Res.-Atmos., 108, 4355, https://doi.org/10.1029/2002jd003190, 2003.
- Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy, J. Geophys. Res.-Atmos., 109, D15204, https://doi.org/10.1029/2003jd004473, 2004.
- Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., and Seinfeld, J. H.: Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States, J. Geophys. Res.-Atmos., 114, D01205, https://doi.org/10.1029/2008jd010701, 2009.
- Qin, Y., Li, J. Y., Gong, K. J., Wu, Z., Chen, M. D., Qin, M. M., Huang, L., and Hu, J. L.: Double high pollution events in the Yangtze River Delta from 2015 to 2019: Characteristics, trends, and meteorological situations, Sci. Total. Environ., 792, 148349, https://doi.org/10.1016/j.scitotenv.2021.148349, 2021.
- Ren, W., Tian, H., Tao, B., Chappelka, A., Sun, G., Lu, C., Liu, M., Chen, G., and Xu, X.: Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China's forest ecosystems, Glob. Ecol. Biogeogr., 20, 391–406, https://doi.org/10.1111/j.1466-8238.2010.00606.x, 2011.
- Sun, T., Wu, C., and Wu, D.: Time-resolved black carbon aerosol vertical distribution measurements using a 356-m meteorological tower in Shenzhen, Theor. Appl. Climatol., 140, 1263–1276, https://doi.org/10.1007/s00704-020-03168-6, 2020.
- Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H., Gomm, S., Häseler, R., He, L., Holland, F., Li, X., Liu, Y., Lu, S., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., Zhang, Y., Wahner, A., and Zhang, Y.: Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO₂ and RO₂ radicals, Atmos. Chem. Phys., 17, 663–690, https://doi.org/10.5194/acp-17-663-2017, 2017.
- Wang, H., Kiang, C., Tang, X., Zhou, X., and Chameides, W. L.: Surface ozone: a likely threat to crops in Yangtze delta of China, Atmos. Eviron., 39, 3843–3850, https://doi.org/10.1016/j.atmosenv.2005.02.057, 2005.
- Wang, X., Manning, W., Feng, Z., and Zhu, Y.: Ground-level ozone in China: distribution and effects on crop yields, Environ. Pollut.,

147, 394–400, https://doi.org/10.1016/j.envpol.2006.05.006, 2007.

- Woodward-Massey, R., Slater, E. J., Alen, J., Ingham, T., Cryer, D. R., Stimpson, L. M., Ye, C., Seakins, P. W., Whalley, L. K., and Heard, D. E.: Implementation of a chemical background method for atmospheric OH measurements by laserinduced fluorescence: characterisation and observations from the UK and China, Atmos. Meas. Tech., 13, 3119–3146, https://doi.org/10.5194/amt-13-3119-2020, 2020.
- Xuan, J., Liu, G., and Du, K.: Dust emission inventory in northern China, Atmos. Environ., 34, 4565–4570, https://doi.org/10.1016/S1352-2310(00)00203-X, 2000.
- Ye, B., Ji, X., Yang, H., Yao, X., Chan, C. K., Cadle, S. H., Chan, T., and Mulawa, P. A.: Concentration and chemical composition of PM_{2.5} in Shanghai for a 1-year period, Atmos. Environ., 37, 499–510, https://doi.org/10.1016/S1352-2310(02)00918-4, 2003.
- Yue, X., Unger, N., Harper, K., Xia, X., Liao, H., Zhu, T., Xiao, J., Feng, Z., and Li, J.: Ozone and haze pollution weakens net primary productivity in China, Atmos. Chem. Phys., 17, 6073– 6089, https://doi.org/10.5194/acp-17-6073-2017, 2017.
- Zhang, Y. and Wang, Y.: Climate-driven ground-level ozone extreme in the fall over the Southeast United States, P. Natl. Acad. Sci. USA, 113, 10025–10030, https://doi.org/10.1073/pnas.1602563113, 2016.

- Zhao, X. J., Zhao, P. S., Xu, J., Meng,, W., Pu, W. W., Dong, F., He, D., and Shi, Q. F.: Analysis of a winter regional haze event and its formation mechanism in the North China Plain, Atmos. Chem. Phys., 13, 5685–5696, https://doi.org/10.5194/acp-13-5685-2013, 2013.
- Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
- Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei, Y., and He, K.: Changes in China's anthropogenic emissions and air quality during the COVID-19 pandemic in 2020, Earth Syst. Sci. Data, 13, 2895–2907, https://doi.org/10.5194/essd-13-2895-2021, 2021.
- Zhu, J., Chen, L., Liao, H., and Dang, R. J.: Correlations between PM_{2.5} and ozone over China and associated underlying reasons, Atmosphere, 10, 352, https://doi.org/10.3390/atmos10070352, 2019.
- Zong, L., Yang, Y., Gao, M., Wang, H., Wang, P., Zhang, H., Wang, L., Ning, G., Liu, C., Li, Y., and Gao, Z.: Large-scale synoptic drivers of co-occurring summertime ozone and PM_{2.5} pollution in eastern China, Atmos. Chem. Phys., 21, 9105–9124, https://doi.org/10.5194/acp-21-9105-2021, 2021.