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Abstract. We present the first top-down CO fire emissions inventory for Africa based on the direct relation
between geostationary satellite-based fire radiative power (FRP) observations and polar-orbiting satellite obser-
vations of total column carbon monoxide (TCCO). This work significantly extends the previous Fire Radiative
Energy Emissions (FREM) approach that derived total particulate matter (TPM) emission coefficients from FRP
and aerosol optical depth (AOD) observations. The use of satellite-based CO observations to derive biome-
specific CO emission coefficients, EC}(J:O, addresses key uncertainties in the use of AOD observations to estimate
fire-generated CO emissions including the requirement for a smoke mass extinction coefficient in the AOD to
TPM conversion and the large variation in TPM emission factors — which are used to convert TPM emissions to
CO emissions. We use the FREM-derived CO emission coefficients to produce a pan-African CO fire emission
inventory spanning 2004 to 2019. Regional CO emissions are in close agreement with the most recent version
of GFED(v4.1s), despite the two inventories using completely different satellite datasets and methodologies.
Dry matter consumed (DMC) and DMC per unit burned area are generated from our CO emission inventory —
the latter using the 20 m resolution Sentinel-2 FireCCISFD burnt area (BA) product for 2019. We carry out an
evaluation of our FREM-based CO emissions by using them as input in the WRF-CMAQ chemical transport
model and comparing simulated TCCO fields to independent Sentinel-5SP TROPOMI TCCO observations. The
results of this evaluation show FREM CO emissions to generally be in good agreement with these independent
measures — particularly in the case of individual fire-generated CO plumes, where modelled in-plume CO was
within 5 % of satellite observations with a coefficient of determination of 0.80. Modelled and observed total CO,
aggregated over the full model domain, are within 4 % of each other, though localised regions show an over-
estimation of modelled CO by up to 50 %. When compared to other evaluations of current state-of-the-art fire
emissions inventories, the FREM CO emission inventory derived in this work shows some of the best agreement
with independent observations. Updates to previously published FREM TPM emissions coefficients based on
this methodology are also provided, along with a similar evaluation as conducted for CO. The methodology de-
scribed in this work is forming the basis of a forthcoming near-real-time fire emissions product from Meteosat
to be issued by the EUMETSAT LSA SAF (https://landsaf.ipma.pt/en/, last access: 19 December 2022).
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1 Introduction

The open burning of biomass in landscape fires is amongst
the largest contributor of gaseous and particulate emissions
to the atmosphere. In many regions, such fires show sig-
nificant interannual variability, and together global biomass
burning generates a significant fraction of many atmospheric
species, including the pollutants total particulate matter
(TPM) and carbon monoxide (CO) (Andreaec and Merlet,
2001; Bowman et al., 2009; Forster et al., 2007). Landscape
fire emission inventories are thus essential to many studies
in Earth system science (Keywood et al., 2013; Langmann
et al., 2009) and also to “real-time” decision-making appli-
cations such as air quality forecasting. Fire emissions inven-
tories are often constructed using a “bottom-up” approach
in which estimates of dry matter consumed (DMC) are es-
timated from satellite-derived metrics of burned area (BA),
or occasionally active fire (AF) counts, combined with in-
formation on pre-fire fuel load and combustion completeness
(Seiler and Crutzen, 1980). The resulting DMC estimates are
then multiplied by biome-specific emission factors (EFs) that
relate each kilogram of burned biomass to the amount of a
trace gas or aerosol species released. EFs are typically de-
rived from small-scale laboratory or ground-based field mea-
surements (Akagi et al., 2011; Andreae, 2019; Andreae and
Merlet, 2001), along with airborne sampling of fire plumes
(Abel et al., 2003; Lavorel et al., 2007; Quennehen et al.,
2012). The Global Fire Emissions Database (GFED) is the
most widely used “bottom-up” fire emissions inventory (van
der Werf et al., 2006, 2010, 2017), but the reliance on burned
area and pre-fire fuel load information means it cannot pro-
vide near-real-time information. The Global Fire Assimila-
tion System (GFAS) (Kaiser et al., 2012) uses near-real-time
satellite observations of AFs to derive its DMC estimates,
performing the conversion using a previously derived cali-
bration relationship between a given biome’s mean fire ra-
diative energy (FRE) and DMC totals from GFED over a
specific period. The primary advantage of GFAS is the near-
real-time aspect, capable of delivering information suitable
for driving atmospheric models in forecast mode. The main
disadvantage is the fact that the relatively uncertain fuel load
and combustion completeness assumptions, which introduce
some of the most significant uncertainty to bottom-up fire
emissions calculations, are also incorporated into GFAS via
the calibration with GFED (Kaiser et al., 2012; Reid et al.,
2009; Zhang et al., 2008). Other global fire emissions inven-
tories such as FLAMBE (Reid et al., 2009) and FINN (Wied-
inmyer et al., 2011) contain aspects of the same methodolo-
gies and thus suffer similar uncertainty sources.

Recently, so-called “top-down” fire emissions methodolo-
gies have evolved, partly in an attempt to remove the limi-
tations induced by calibrating satellite-derived FRE observa-
tions against DMC totals produced by, for example, GFED.
These top-down methodologies include the Fire Energetics
and Emissions Research (FEER) approach of Ichoku and El-
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lison (2014) and Fire Radiative Energy Emissions (FREM;
Mota and Wooster, 2018; Nguyen and Wooster, 2020). The
FEER and FREM approaches derive landscape fire emis-
sions estimates directly from satellite-derived FRE, thereby
removing the step requiring calculation of DMC and thus the
uncertainties inherent in that calculation. In each method,
a scalar (a so-called “smoke emission coefficient”; ECE in
gMJ~!) is generated for each fire-affected biome, b, to cap-
ture the relationship between the rate of FRE emission (i.e.
the fire radiative power (FRP) of the causal fire) and the as-
sociated emission rate of a particular trace gas or aerosol
species, x. Importantly, because ECB values derived from
laboratory fire measurements (e.g. as per Freeborn et al.,
2008) may not be fully representative of all the effects rel-
evant to satellite data of real landscape fires (Freeborn et
al., 2008; Mota and Wooster, 2018), the FEER and FREM
approaches instead used ECE values derived from satellite
datasets. Specifically, individual fire match-ups where the
fires’ radiative energy emissions and its smoke plume ob-
served from satellite are used to generate the EC? values.
Thus far, both FEER and the FREM approaches have fo-
cused on smoke plume observations of aerosol optical depth
(AOD), which are used to create in-plume values of to-
tal particulate matter (TPM) via application of a smoke
aerosol mass extinction coefficient, S, (in m?>g~!) — as
described by Ichoku and Ellison (2014) and Nguyen and
Wooster (2020). One key difference between the FEER and
FREM approaches is that in FEER, per-pixel EC, coeffi-
cients are generated from fire match-ups within a 1 x 1 grid,
whereas in FREM, biome-specific emission coefficients are
generated (ECE, where “b” denotes the biome). Once rep-
resentative EC?}pM values are obtained using this match-up
dataset, they can be applied to the FRP data of any fire to
derive its rate of TPM emission — including from near-real-
time satellite data feeds. Although uncertainties in the DMC
conversion step are removed in these top-down approaches,
other uncertainties are introduced — primarily from uncer-
tainties in the satellite-derived datasets — and in the case of
ECI%PM, the mass extinction coefficient, 3., is used in the con-
version of AOD to TPM. The FEER approach of Ichoku and
Ellison (2014) uses polar-orbiting MODIS data to provide
the FRP records driving its TPM emissions estimates, whilst
FREM uses the higher-temporal-resolution FRP data avail-
able from geostationary satellites. The latter provides the
highest-temporal-frequency TPM emissions estimates cur-
rently available for Africa (Nguyen and Wooster, 2020), and
this type of high-frequency emission information has been
shown useful for maximising the accuracy of smoke trans-
port modelling (Baldassarre et al., 2015; Garcia-menendez
et al., 2014). The use of geostationary FRP data with FREM
also allows a simple temporal integration to be used to cal-
culate FRE (see Nguyen and Wooster, 2020), obviating the
need for assumptions about the plume height, wind speed and
wind direction, as is used by FEER when deriving ECtpym
from individual MODIS FRP observations (Ichoku and Elli-
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son, 2014). A drawback of using geostationary AF data is
that, at present, operational geostationary satellites have a
lower spatial resolution than polar-orbiting sensors do, re-
sulting in the under-detection of “small” or low-FRP fires.
This “missing” contribution to the FRE can be accounted for
using a so-called “small fire” correction (discussed in more
detail in Sect. 2.1).

The purpose of the current work is to adapt the FREM
approach further to derive trace gas emissions estimates
directly from FRP observations, without first estimating
EC'%PM emissions coefficients as a precursor. The Mota and
Wooster (2018) and Nguyen and Wooster (2020) iterations
of FREM both estimated emissions of a target trace gas, y
(e.g. CO,, CHy or CO), from the biome-specific emissions
coefficient, EC';, which was itself derived via Eq. (1) using
the emission coefficient of a reference species, x (thus far
always TPM):

EFY [gkg™']

BCY [Mi!] = Do
v |8 EF [gkg™!]

-EC) [em']. 1)

Here, ECS’, is the emissions coefficient for the target species
y (e.g. CO) in the biome, b, EFI)’, is the target species y emis-
sion factor in that biome, EFE is the emission factor for the
reference species, x, in that biome, and ECB is the FREM-
based emissions coefficient for the references species, x, in
that biome.

Using Eq. (1) to translate between emissions coefficients
does introduce some uncertainty, mainly due to the emis-
sions factors of the reference species used thus far (TPM)
typically being far from constant, even in a single biome;
for example, EFtpy is relatively poorly constrained in trop-
ical forest and cultivated land (Akagi et al., 2011; Andreae,
2019). Here we aim to directly generate CO emissions coef-
ficients (ECEO) by replacing the match-up fire-plume AOD
information currently used by FREM (Nguyen and Wooster,
2020) with that of total column CO (TCCO in mol m~2) from
Sentinel-5SP TROPOMI observations (Landgraf et al., 2016).
CO concentrations in landscape fire plumes are higher than
in the ambient atmosphere (e.g. Wooster et al., 2011), thus
providing potential for distinct contrasts between a smoke
plume and its background in the Sentinel-5P TCCO record. A
further advantage of generating EC]éO values directly, rather
than via Eq. (1), is that it removes the requirement for the
smoke aerosol mass extinction coefficient (8¢), used to gen-
erate TPM estimates from AOD measure. The S, coefficient
itself is somewhat dependent on fuel type burned, smoke age-
ing and atmospheric relative humidity (Chin et al., 2002; For-
menti et al., 2003; Reid et al., 2005); therefore direct use of
satellite TCCO retrievals to derive EC'éo removes this un-
certainty source from FREM-derived estimates of trace gas
emissions coming from the satellite FRP retrievals.
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2 Methodology

2.1 FRP and CO datasets

Africa is the most fire-affected continent on the planet (van
der Werf et al., 2017), and to derive EC'%O values we
focused on obtaining match-up fires across Africa’s fire-
affected biomes as observed by the geostationary Meteosat
SEVIRI instrument and by the polar-orbiting Sentinel-5P
(S5P) TROPOMI sensor. The Meteosat FRP-PIXEL (FRP in
MW) product is generated every 15 min from SEVIRI ob-
servations and is issued in near-real time by the EUMET-
SAT LSA SAF (https://landsaf.ipma.pt/en/data/catalogue/,
last access: 19 December 2022). The offline (OFFL) S5P
total column carbon monoxide (TCCO in mol m~2) prod-
uct used in this work can be downloaded from Sentinel-5P
Pre-Operations Data Hub (https://scihub.copernicus.eu/, last
access: 19 December 2022) and has a spatial resolution of
7 x 7km until August 2019, after which the along-track res-
olution was increased to 5.5 km.

Under cloud-free conditions, which predominate during
African fire seasons, the FRP-PIXEL product provides al-
most continuous landscape fire observations. The coarser
pixel size of geostationary observations mean they have a
higher minimum FRP detection limit than polar-orbiting FRP
datasets do such as those from MODIS and VIIRS (Roberts
et al., 2005, 2015) and will therefore detect fewer “small”
AFs and hence measure less instantaneous FRP than these
polar-orbiting sensors. The AFs detectable in the geosta-
tionary FRP products still remain significantly smaller in
terms of pixel area coverage (e.g. down to perhaps 0.01 %
of the pixel) than the minimum burned area detectable in
the MODIS burned area products. These are, however, the
most common data source of bottom-up fire emission esti-
mation approaches (Van Leeuwen et al., 2014; Reid et al.,
2009; Vermote et al., 2009). A recent comparison between
AFs detected by the 30 m spatial resolution Landsat-8 Oper-
ational Land Imager (OLI) and Meteosat FRP-PIXEL data
showed the geostationary product to have an 8 % error of
commission, “false alarm rate” (Hall et al., 2019), very sim-
ilar to that of the widely used MODIS AF products (Giglio
et al., 2016). Prior comparisons between the SEVIRI FRP-
PIXEL product and the 1 km MODIS MOD14 product have
identified the FRP-PIXEL product’s AF error of omission
rate and rate of FRP underestimation compared to MODIS
(Roberts et al., 2015; Wooster et al., 2015). Region-specific
mean small fire scaling factors were derived from compar-
isons of coincident and co-located aggregated FRP from the
MODIS and SEVIRI active fire products. These were deter-
mined to be 1.67 and 1.46 for Northern and Southern Hemi-
sphere Africa (NHAF and SHAF) respectively, and follow-
ing Mota and Wooster (2018), these factors were applied to
account for the average amount of FRP coming from fires
burning below the SEVIRI sensor’s minimum FRP detec-
tion limit. We also apply the cloud cover correction used
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in the LSA SAF Meteosat FRP-GRID product (Wooster et
al., 2015), though the effect of this adjustment is limited due
to sparse cloud cover during the African fire season. To aid
identification of suitable fire match-ups, we also use visual
band data from the Visible/Infra-red Imager and Radiome-
ter Suite (VIIRS) on board the Suomi-NPP (National Polar-
orbiting Partnership) satellite. Suomi-NPP overpasses within
3.5min of the Sentinel-5P overpass and provides 375 and
750 m spatial resolution imagery that greatly benefits plume
identification in the TROPOMI CO data. VIIRS imagery data
were obtained from https://ladsweb.modaps.eosdis.nasa.gov/
(last access: 19 December 2022).

2.2 Top-down FREM-CO methodology

As introduced in Sect. 1, the FREM methodology derives a
biome-dependent “smoke emission coefficient” for a refer-
ence species x [ECE] from the relationship between the ther-
mal energy a fire radiates (i.e. the FRE in MJ) and the mass
of the reference compound x emitted (in kg or g) over the
same time period. Focusing on CO, we derived ECtéO val-
ues from a set of match-up fires for which good observa-
tions of both FRE from the fire and TCCO from its plume
exist. The derived ECt(’jO has units of grams per megajoule
(gMJ~1) or grams per second per megawatt (gs~! MW™1)
and can be used to generate CO emission rates (or totals) for
a fire when multiplied by the FRP (or FRE) estimate for that
fire. Sentinel-5P TROPOMI (S5P) TCCO retrievals are avail-
able from May 2018 until the present day, and we gathered
our match-up data from joint SSP TCCO, Meteosat FRP-
PIXEL, and VIIRS RGB imagery covering July to Decem-
ber 2018 and the full year of 2020. We studied both North-
ern and Southern Hemisphere Africa (NHAF and SHAF),
which have asynchronous fire seasons. We derived ECEO val-
ues for the six “fire biomes” of Africa mapped by Nguyen
and Wooster (2020), with this mapping based on reclassifi-
cation of a 2019 land cover dataset generated from 300 m
spatial resolution MERIS and PROBA-V observations as
part of the European Space Agency (ESA) Climate Change
Initiative (CCI) (https://cds.climate.copernicus.eu/cdsapp#!/
dataset/satellite-land-cover, last access: 19 December 2022).
To provide further biome discrimination for woodland savan-
na/open forest, we made use of percentage tree cover infor-
mation (above 5 m height), taken from a 2015 map of vegeta-
tion continuous fields (VCFs) generated from 30 m Landsat
data (https://landsat.gsfc.nasa.gov/, last access: 19 Decem-
ber 2022). EC'éO values were generated for the resulting six
“fire biomes” — closed-canopy forest, low-woodland savan-
na/open forest, high-woodland savanna/open forest, grass-
land, shrubland and managed land.

Plume selection was carried out based on S5P TCCO ob-
servations (molm~2) and near-co-incident VIIRS imagery
(Fig. 1). Each match-up fire was selected and filtered by man-
ually defining a polygon that encapsulated the smoke plume
and responsible AF pixels. There were several criteria that
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match-ups had to comply with in order to be included for
ECtéO derivation:

— arelatively short period since the start of the fire (mean
of 3.4h since first AF detection) to minimise plume
dispersion and thus maintain an optimal background
TCCO to in-plume TCCO ratio for calculating the fire’s
TCCO anomaly, this temporal limit also reduced the op-
portunity for oxidation of CO to affect these data;

— no other fires being present in the area during the day/-
days preceding the match-up fire being identified;

— some wind-driven dispersion of the plume to minimise
the chance of thick smoke generated by the fire covering
the location of some of the AF pixels and causing the
area containing FRP to be incorrectly masked as cloud;

— cloud-free observations of the fire and plume through-
out the lifetime of the fire, determined from the FRP-
PIXEL Quality Product (3km at nadir) detailed in
Wooster et al. (2015) and the visible band VIIRS im-
agery (750 m at nadir).

The S5P TCCO product also includes a quality value
(qa_value), indicating the potential presence of cloud in the
total column of air from which a CO retrieval is made.
When a threshold of qa_values >0.5 was applied to the S5P
data, this resulted in an average difference of only 2.4 % in
the derived ECtéO values. Furthermore, the validation of the
ga_values assigned in the SSP TCCO product was carried
out in clear-sky only conditions (Borsdorff et al., 2018). The
S5P qa_values were therefore not implemented in the EC‘&O
derivation detailed below; a full discussion of this is detailed
in Appendix A. A buffer of pixels surrounding each plume
was included in each manually defined polygon such that
the buffer easily encapsulated the high TCCO value pixels of
the plume, plus a series of pixels outside of the plume from
which the “background” CO amount relevant to each plume
was calculated. Only match-up fires for which a single “fire
biome” represented more than 50 % of the observed AF pix-
els in the fire were retained for use in ECléO derivation.

For each fire in the final match-up set, we calculated (i)
the total CO (g) contained in the plume from the S5P TCCO
retrievals and (ii) the total FRE (MJ) released by the fire
from Meteosat FRP-PIXEL data — integrating FRP from the
time of the fire’s first AF pixel detection on that day to the
moment of the S5P overpass. The minimum TCCO value
(molm~2) from each plume buffer was taken as the appro-
priate CO background value for that plume and subtracted
from all plume pixel TCCO values. The resulting “excess”
TCCO pixel values were then converted to units of grams by
multiplying by the molecular weight of CO and by the pix-
els’ area calculated from their geographic corner coordinates
(thus accounting for the change in the along-track spatial res-
olution of S5P data in 2019 and any view-angle dependent
pixel area growth). Summing these values across all plume
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pixels of a fire then yielded the total amount of fire-emitted
CO in that plume, which was compared to the total amount
of FRE the fire generated over the time that it released that
CO. Each match-up fire FRE and total CO pair constitutes
one data point on the relevant “fire biome” scatter plot of
Fig. 2. FRE and total CO uncertainties were calculated from
the uncertainty values provided within the FRP-PIXEL prod-
uct and the TCCO product respectively; these are also plotted
in the form of error bars in Fig. 2. In this work the choice was
made to not to apply fixed mask destriping (FMD) to the S5P
TCCO dataset used, as is proposed by Borsdorff et al. (2019);
this methodological choice is discussed in more detail in Ap-
pendix A.

2.3 Derivation of carbon monoxide smoke emission
coefficients (ECgO)

Matchup data for each “fire biome” are shown in Fig. 2
and were used to derive the set of biome-dependent CO
smoke emission coefficients (ECt(’:O) listed in Table 1. Zero-
intercept ordinary least-squares (OLS) regression was used
for this, rather than the orthogonal distance regression (ODR)
used by Nguyen and Wooster (2020) during derivation of
TPM smoke emission coefficients [EC‘%PM]. OLS was used
in this work for two main reasons. Firstly, although the ODR
method considers the uncertainty in each of the variables,
these uncertainties are themselves rather poorly constrained,
with the known uncertainties only representing part of the
total uncertainty sources. There are contributions to the un-
certainty of FRP that are not quantifiable, for example, due
to variations in the amount of interception of a fire’s FRP
signal by any overlying tree canopy. We therefore deemed
use of a regression method in which the slope is strongly
driven by data point uncertainty to be unsuitable for use. Sec-
ondly, weighting based on uncertainty often resulted in un-
due weight being given to high value points (e.g. match-ups
with high FRE and high plume-species amounts) due to them
typically having lower relative uncertainties (see Wooster et
al., 2015). Due to their typically being very few high value
data points in each “fire biome” due to the heavy tailed na-
ture of fire size distribution (Freeborn et al., 2009), these few
large fires were potentially being too strongly weighted in
the resulting calculation of ECE. For these reasons, we opted
to use OLS regression, and to ensure a consistent methodol-
ogy for emission coefficient derivation we also applied the
same approach to the Nguyen and Wooster (2020) dataset to
re-derive their EC%PMvalues using OLS regression (see Ap-
pendix B). The updated EC%FM values for closed-canopy for-
est, managed land, grassland, shrubland, low-woodland sa-
vanna and high-woodland savanna are 26.07, 12.23, 9.39,
9.88, 10.65 and 14.18 gMJ~! respectively. On average these
new values are 14 % lower than those reported in Nguyen and
Wooster (2020) derived via ODR and are the ones referred to
and used hereafter. The WRF-CMAQ-model-based approach
to evaluating our final CO emissions rates and totals in Sect. 4
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was also used to carry out an analogous evaluation of the
TPM emissions generated from the updated ECYpy, values
of Appendix B (see Appendix D).

For each of the six fire biomes, at least 12 match-up fires
were identified for derivation of ECtéO, apart from for closed-
canopy forest. Tropical evergreen forests (the primary type
of closed-canopy forests in tropical regions) are generally
not very susceptible to fire, except during periods of extreme
drought, due to the high humidity and low wind speed within
the dense forest canopy and the limited amount of surface
fuel available due to rapid decomposition of surface litter in
these environments (Marengo et al., 2011; Tomasella et al.,
2013). Fires in such tropical forests are most often the re-
sult of human land-clearing activity and are typically small
in size, unless heavy machinery is involved in land clear-
ing (Van Leeuwen et al., 2014). Furthermore, FRP observa-
tions in closed-canopy forest can be affected by tree canopy
interception of surface-emitted FRP (Roberts et al., 2018).
These factors result in a lower number of observable and
identifiable fire match-ups for tropical closed-canopy forest
areas. Smaller fire sizes and fewer match-up fires being ac-
quired in closed-canopy forests areas relative to other biomes
was also observed during previous applications of the FREM
approach (Mota and Wooster, 2018; Nguyen and Wooster,
2020) and the FEER approach (Ichoku and Ellison, 2014),
even when using 7 years’ worth of MODIS FRP and AOD
data in the latter case. In this work, the ability to identify
small fires in closed-canopy forest is further limited by (i) the
spatial resolution of the SSP TCCO observations, which have
at least a 5 times lower resolution than the 1 km AOD prod-
uct used in Nguyen and Wooster (2020), and (ii) the limited
availability of the S5P trace gas products, which only became
operational from mid-2018. An increased time series of S5P
data and the exploitation of machine learning methods such
as object recognition may aid in identifying a greater number
of plumes in closed-canopy forest — and this is the subject of
ongoing work.

Due to the FEER emission inventory exploiting a far larger
dataset from which to identify fire match-ups (7 years of
MODIS FRP and AOD) and it obtaining many more fire
match-ups in tropical closed-canopy forest (Ichoku and El-
lison, 2014), we instead derive EC'éo for closed-canopy for-
est from the “FEER-equivalent” value. The method used
to derive this is detailed in Nguyen and Wooster (2020)
and essentially involves aggregating the FEER CIPM emis-
sion coefficients of Ichoku and Ellison (2014) (https:/feer.
gsfc.nasa.gov/data/emissions/, last access: 8 February 2023)
to the relevant fire biome. Equation (1) was then applied
to obtain a FEER-equivalent ECléO, which was calculated
as 156.7gMJ~! for the closed-canopy forest fire biome.
We generated FEER-equivalent ECtC’O for each of the other
five fire biomes to compare these to our directly derived
ECtéO values and found agreement within +34 % (see Ta-
ble 1), somewhat justifying our use of the FEER-equivalent
value in the closed-canopy forest biome where a directly de-
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Figure 1. Example data of match-up fires used to develop the CeCO smoke emissions coefficients presented in Fig. 2. (a) VIIRS RGB image
of three landscape fire smoke plumes, along with (b) the corresponding image of Sentinel-5P derived total column CO (TCCO). In both
images, the AF pixel detections taken from the Meteosat FRP-PIXEL product are superimposed (yellow points), along with the bounding
polygons used to delineate the fire plumes. Satellite data are from 11:24 and 11:30 UTC, respectively, on 9 September over an area in northern

Botswana.

rived ECI(’:0 value was not achieved. Further, Nguyen and
Wooster (2020) showed that mean monthly FRE contribution
from fires in closed-canopy forests does not exceed 10 % of
the total monthly FRE coming from African fires, and thus
its total is of relatively low importance to continental-scale
CO emissions totals.

Tests were carried out to determine the statistical signifi-
cance of the EC'(’:O values derived in Fig. 2. Table 2 details the
resulting p values and ¢ values for each pair of biomes and
shows that only one pair of biomes (grassland and managed
land) have EC%O values which are statistically different at the
95 % confidence limit. Two additional biome pairs are sta-
tistically distinct at the 85 % confidence interval (grassland—
low-woodland savanna and managed land—shrubland). This
analysis indicates that in general, based on the current match-
up dataset, different biomes do not have statistically signif-
icant ECt(’:O values; i.e. the type of vegetation being burned
does not result in a statistically different mass of CO being
observed. However, from what is known about emission fac-
tors (e.g. Akagi et al., 2011; Andreae, 2019), this is physi-
cally unrealistic. The updated FREM EC%PM values of Ap-
pendix B were similarly tested for statistical significance,
and the emission coefficients generated from this much larger
match-up dataset (primarily due to the higher spatial resolu-
tion of the MCD19A1 AOD product allowing more plumes,
particularly smaller plumes, to be identified) were overall
more statistically different. Of the 15 biome pairs, only 4
were not statistically significant at a 95 % confidence thresh-
old, and this reduced to two pairs at the 85 % confidence
limit. The fire-plume match-ups used in ECtéO (and EC'%PM)
derivation are classified into one of six distinct “fire biome”
classes based on the fractional contribution of active fires in
these different biomes to the fire. As such, in most cases a
smoke plume is not 100 % generated by fire that burns veg-
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etation of a single biome. As detailed in Sect. 2.2, a filter
is applied to ensure that the majority (>50%) of the active
fire pixels responsible for a smoke plume come from a sin-
gle biome, and only if this condition is met is the fire-plume
match-up included in the ECtéO derivation for that biome. A
larger plume dataset would allow the application of a more
stringent classification condition (e.g. >70 % of active fire
pixels being from a single biome) whilst still maintaining
a reasonable match-up sample size to generate EC'&O val-
ues from for each biome. Having an increased number of
match-up fire plumes which have higher fractional coverage
of one single biome would likely result in EC?:O values that
are more statistically distinct from one another. In the deriva-
tion of EC%PM described in Appendix B, the 1km spatial
resolution of the AOD product used allowed for the inclu-
sion of more small fire plumes to generate ECt%PM values.
These smaller fire plumes were generated by fires covering
smaller areas, meaning that there were more fires included in
the match-up dataset which had a larger majority of their AF
pixels coming from a single biome. Indeed, resulting EC%PM
values generated by this dataset were more statistically dis-
tinct from one another (See Appendix B) than the Eth’O val-
ues herein The barriers to producing a larger sample size in
this study have previously been discussed along with the fu-
ture research focus needed to address this key issue.

For ease of future discussion, hereafter, we will refer to
emissions inventories generated using the ECléO coefficients
of this section as the FREM_bCO emissions inventory or
FREMs_bCO when the small fire correction is applied. Any
emissions inventory generated using the updated EC%PM co-
efficients reported in Table 1 and detailed in Appendix B will
be referred to as FREM_bTPM hereafter. The “b” in both
cases denotes the “base” or reference species used to produce
emissions estimates.

https://doi.org/10.5194/acp-23-2089-2023
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Figure 2. Carbon monoxide smoke emission coefficients (EC%O; ingMJ —1) derived from match-up fires burning across the six fire-affected
biomes shown mapped in Fig. 8b across Southern Hemisphere Africa (note that the match-up fires here come from both African hemispheres).
Each EC'%o is derived from the slope of an ordinary least-squares (OLS) regression between the fire-emitted CO calculated from Sentinel-
5P total column CO (TCCO) observations and the fire’s matching FRE. The shaded grey area indicates the error of each slope. Error bars
represent the uncertainty in both the FRE and total plume CO calculated from the uncertainty measures of the FRP-PIXEL product and the
S5P TCCO product respectively. Closed-canopy forest had insufficient match-up fires identified, and so EC%O for this biome was derived
using the FEER-equivalent procedure detailed in Sect. 2.3 and in Nguyen and Wooster (2020). Data points from the three match-up fires that

were identified in closed-canopy forest are included in the plot.

3 FREM fire emission inventory

3.1 CO emissions

Following derivation of a ECbCO for each of the six fire
biomes of NHAF and SHAF (Table 1), a set of landscape fire
emission rates and totals for these regions were derived via
application of ECl(’jO values to the complete Meteosat FRP-

https://doi.org/10.5194/acp-23-2089-2023

PIXEL data record of 2004 to 2019 (Wooster et al., 2015).
To account for possible changes in land cover, fire biome
maps for 2005, 2010 and 2015 were produced in an anal-
ogous method to that used to generate the 2019 map (i.e.
based on the CCI Land Cover and Landsat VCF data prod-
ucts of these years). The Meteosat FRP-PIXEL record was
combined with this set of biome maps and the ECEO val-

Atmos. Chem. Phys., 23, 2089-2118, 2023
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Table 1. Biome-dependent CO smoke emission coefficients (ECl(’:O in gMJ —1) as derived from the data shown in Fig. 2. Also shown are

the matching values calculated using the updated FREM ECtT’PM values from Appendix B and FEER-equivalent coefficient values produced
from the FEER product of Ichoku and Ellison (2014), aggregated to the FREM biomes (see Nguyen and Wooster, 2020, for full details).
EC}’:O values calculated via the updated FREM ECL}PM values shown in Appendix B are included to demonstrate the impact of using a

different reference species and the associated EFs in Eq. (1) to estimate E%O'

Fire Sentinel-5P EC%O calculated via  FEER-equivalent
affected TCCO-derived updated FREM EC”?‘PM (see Nguyen and
biome EC]&O (Sect. 2.2) (see Appendix B) Wooster, 2020)
Closed-canopy forest 156.7* 248.7 156.7
Managed land 88.4 72.1 100.7
Grassland 75.5 74.5 87.5
Shrubland 81.1 78.4 87.4
Low-woodland savanna 85.5 84.5 101.9
High-woodland savanna 81.9 112.5 110.1

* Figure 2 shows insufficient match-up fires were found for the closed-canopy forest biome, so the FEER-equivalent value

is reported instead and used hereafter.

Table 2. Results detailing the statistical significance of the ECl(":O values derived for each biome pair. P values below 0.05 and those below
0.15 are bold and italicised, while any biome pair with p values above 0.15 are neither bold or italicised.

Biome 1 Biome 2 p value ¢ value
Grassland managed land 0.013 2.53
Grassland shrubland 0.176 1.36
Grassland high-woodland savanna 0.283 1.08
Grassland low-woodland savanna 0.068 1.84
Managed land shrubland 0.112 1.60
Managed land high-woodland savanna 0.304 1.05
Managed land low-woodland savanna 0.622 0.49
Shrubland low-woodland savanna 0.373 0.89
Shrubland high-woodland savanna 0.886 0.14
High-woodland savanna  low-woodland savanna 0.577 0.56

ues of Table 1 to produce a 16-year record of African fire
emissions. This FREMs_bCO inventory (“s” denoting the
application of the small fire correction) is the highest spatio-
temporal resolution fire emissions inventory for CO yet avail-
able over Africa (15min, 3km at the sub-satellite point).
Monthly totals of FREMs_bCO emissions with cloud and
small fire correction applied are shown in Fig. 3 alongside
those of the most current version of the Global Fire Emis-
sions Database (GFEDv4.1s; van der Werf et al., 2017; http:
/Iwww.globalfiredata.org/, last access: 8 February 2023).
GFEDA4.1s includes its own small fire correction to account
for burn scars undetected in the 500 m MODIS MCD64A1
burned area product. Mean annual CO emission totals are de-
tailed for both inventories with and without their respective
small fire corrections applied in Table 3.

The FREMs_bCO and GFEDv4.1s CO emissions time
series shown in Fig. 3 show very similar magnitudes, par-
ticularly in SHAF. Table 3 confirms that the mean annual
totals are also close, with FREMs_bCO 25 % higher than
that of GFED4.1s in NHAF and 3 % lower in SHAF. The

Atmos. Chem. Phys., 23, 2089-2118, 2023

small fire corrections of both inventories also increase the
basic CO emissions calculated in each inventory by a sim-
ilar magnitude, especially in SHAF. The closeness of these
results is noteworthy when considering that these CO emis-
sions estimates have been produced using completely differ-
ent methodologies and with no input data, conversion vari-
ables or emissions factors in common. Figure 3 also shows
similar annual temporal patterns between the two invento-
ries, with annual peaks and minima generally occurring in
the same years. However, as Mota and Wooster (2018) and
Nguyen and Wooster (2020) noted for TPM emissions, the
FREM methodology often predicts a slightly earlier peak in
annual emissions in SHAF compared to GFED. This shifted
peak agrees with findings showing that polar-orbiting-based
FRP observations also seem to peak in SHAF a month or so
earlier than BA observations do, for example, in the work
of Zheng et al. (2018), who compare GFED BA with GFAS
FRP. The same work also suggests that measured CO emis-
sions actually lag BA-derived CO emissions in Africa, based
on MOPITT CO observations. Zheng et al. (2018) attribute

https://doi.org/10.5194/acp-23-2089-2023
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Figure 3. Monthly landscape fire CO emissions over a 16-year period for (a) Northern and (b) Southern Hemisphere Africa, as derived in
FREMs_bCO and GFEDA4.1s, both with their respective small fire correction applied (“s” indicates its application).

Table 3. Mean annual CO fire emission totals for the period 2004 to 2019 as derived for Northern and Southern Hemisphere Africa using
the FREM methodology developed herein and reported alongside those of GFEDv4.1. Values are reported as those both with and without the
relevant small fire correction applied (“s” indicates its application), as well as the percentage difference made by this upward adjustment.

NHAF total CO  SHAF total CO

emissions (Tg)  emissions (Tg)

Without small fire FREM_bCO 46.6 64.4
correction applied GFEDA4.1 40.5 67.5
With small fire FREMs_bCO 70.1 87.2
correction applied GFEDA4.1s 55.9 90.2
FREM_bCO percentage effect of small fire correction 50.4 35.4
GFED4.1 percentage effect of small fire correction 38.0 36.7

this lag in BA-based CO emissions and observed CO emis-
sions to a shift from flaming to smoldering combustion over
the continent, which is not accounted for in the emissions
factors applied in the GFED procedure.

A more spatially detailed intercomparison is shown in
Fig. 4, examining a month of FREMs_bCO hourly average
CO emissions in two of the most fire-affected countries in
Africa — the Central African Republic (CAR) and Angola —
during January and August 2012 respectively (typically their
peak fire months). GFED hourly averages were calculated by
dividing GFED4.1s monthly emissions totals by the number
of hours in each month. Our mean hourly CO emissions for
CAR in January are lower than those of GFED4.1s by 40 %,
whereas for Angola in August they are 60 % higher. The very
strong fire emissions diurnal cycle is highly resolved by the
FREM inventory, demonstrating the data richness provided

https://doi.org/10.5194/acp-23-2089-2023

by the high temporal resolution of the geostationary FRP ob-
servations used. An additional benefit is that, unlike burned
area data, FRP observations from geostationary satellites are
available in near-real time, and thus the FREM emissions of
CO, TPM and other air pollutants are a potential source of
data for air quality forecasting (Roberts et al., 2015).

The small differences seen between the FREMs_bCO and
GFEDv4.1s CO emissions at the hemisphere scale (Fig. 3)
compared to the larger country-level differences (Fig. 4)
demonstrate how emissions inventories may be similar in
magnitude at larger scales but can vary significantly more
at the local scale. Zhang et al. (2014) compared modelled
AOD fields generated from seven commonly used fire emis-
sions inventories using an atmospheric transport model and
demonstrated that the maximum variation between the mod-
elled AOD averages of these inventories increased signifi-
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cantly when moving from regional to local scale in northern
sub-Saharan Africa.

Past comparisons made between modelled CO atmo-
spheric concentrations driven by GFED and CO observa-
tions coming from instruments such as MOPITT (Worden
et al., 2010) suggest that GFEDv3 underestimated African
CO emissions by up to 50 % (Chevallier et al., 2009; Kopacz
et al., 2010; Pechony et al., 2013). Since GFEDv3 and
GFEDv4.1s CO emissions are similar both for NHAF and
SHATF, this points to a possible continued underestimation of
CO emissions by GFEDv4.1s over Africa. Each GFED ver-
sion uses the 500 m MODIS MCD64A1 burned area prod-
uct as their driving data, and recent studies have shown
African burned area to be higher than MODIS estimates
when mapped using 20m Sentinel-2 MSI or 30 m Landsat
imagery (Hawbaker et al., 2017; Roteta et al., 2019; Tsela
et al., 2010). This underestimation by the MODIS BA prod-
uct is the theoretical basis for requiring the small fire cor-
rection in GFEDv4.1 (Randerson et al., 2012; van der Werf
et al., 2017). However, the relatively good agreement seen
between GFEDv4.1s and the FREMs_bCO inventory com-
pared herein (e.g. Fig. 3) — which are developed from com-
pletely different datasets and approaches — could possibly
suggest African CO emissions are not so underestimated as
past CO observations have suggested when small fires are ac-
counted for. Reconciling top-down- and bottom-up-derived
CO fire emission inventories with observations of CO made
from low-Earth orbit remains a continuing research focus.

3.2 Dry matter consumed

Unlike with bottom-up approaches, where DMC (kg) is cal-
culated first and converted to species emissions estimates
using estimates of fuel load, combustion completeness and
species emissions factors (see Sect. 1), within the FREM ap-
proach fire emissions are estimated directly, and DMC can
then be calculated from these if required. In this case, DMC
is estimated by dividing the emissions total by the species
emissions factor, an approach first demonstrated by Mota and
Wooster (2018) using TPM as the relevant species. CO is
the second greatest emitted product from biomass burning,
and the emissions factor of CO is more consistent and well
constrained than that of TPM (Akagi et al., 2011; Andreae,
2019). Therefore, the FREM-derived CO emissions detailed
in Sect. 3 can be related to DMC far more confidently
and more consistently than those of TPM. Monthly FREM-
derived DMC emissions generated from this approach for
CAR and Angola are shown in Fig. 5 alongside those from
GFEDA4.1s. The former are lower at the peak of the CAR fire
season compared with those of GFEDv4.1s but consistently
higher at the Angolan fire season peak. Either side of these
peaks, there is very good agreement between the two.

Once calculated, DMC can be further combined with
burned area information to generate DMC per unit burned
area measures across the African region — the only
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H. M. Nguyen et al.: Biomass burning CO, PM and fuel consumption per unit burned area estimates

observation-based approach capable of doing this at present
(Nguyen and Wooster, 2020). We use FREM-derived DMC
with the Sentinel-2 20 m spatial resolution FireCCI Small
Fire Dataset (v2.0) for 2019 to calculate DMC per unit area
at 0.1° resolution in that year. These observation-based DMC
per unit burned area values are shown in Fig. 6, alongside
BA-based values reported in GFED4.1s for 2019 at 0.25°
resolution. Total carbon emissions can be easily calculated
using the assumed carbon fraction of vegetation (taken typi-
cally as 50+ 5 %) (Andreae, 2019). Focusing in on a 4° x 4°
region of Zambia (Fig. 7) demonstrates the higher spatial de-
tail of the FREM-derived DMC per unit burned area data
compared with that provided by the modelling used within
GFED.

4 FREM-derived CO emissions assessment

4.1 Evaluation methodology

Beyond the comparisons to GFED4.1s detailed in Sect. 3,
our FREMs_bCO emissions were further evaluated through
their use in chemical transport model (CTM) simulations
conducted with the Advanced Research Weather Research
and Forecasting model (WRF-ARW v4.1.1; Skamarock et
al., 2019, and the Community Multiscale Air Quality model,
CMAQ v5.3; EPA, 2019; https://www.epa.gov/cmagq, last ac-
cess: 8 February 2023). The resulting model output fields
(that used FREMs_bCO emissions as input) were compared
to Sentinel-5SP TROPOMI TCCO observations that were
completely independent of those used in the FREM emis-
sions coefficient generation (i.e. those used within Fig. 2).
WRF-CMAQ is commonly used in operational air quality
(AQ) systems (Kukkonen et al., 2012) and in research related
to fire emissions and smoke-contaminated air (Cheng et al.,
2014; Baldassarre et al., 2015; Hu et al., 2016; Vongruang
et al., 2017; Koplitz et al., 2018; Choi et al., 2019). Model
runs were conducted over the ~ 3000 km? region of SHAF
shown in Fig. 8a. Further regions of interest (ROIs) were
used in comparisons between the WRF-CMAQ output and
independent SSP TCCO observations. The WRF-CMAQ do-
main had a spatial resolution of 9 km, with 35 vertical model
layers over a 347 x 319 grid. Model runs were conducted
for the period 15 June to 29 August 2019 and were carried
out in two separate simulations each initialised and fed with
initial and boundary conditions from a global meteorologi-
cal (FNL; https://rda.ucar.edu/datasets/ds083.2/, last access:
8 February 2023) and chemistry (WACCM,; https://www2.
acom.ucar.edu/gcm/waccm, last access: 8 February 2023)
model. The first half of June was excluded due to a change
in the version of the global metrological model used as in-
put. The second simulation started from 29 July 2019, and
both simulations featured a 24 h spin-up time. The model
configuration and set of physical schemes used in WRF were
selected based on previous AQ simulations over SHAF us-
ing the WRF-Chem model (Kuik et al., 2015; Yang et al.,

https://doi.org/10.5194/acp-23-2089-2023
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Figure 4. Hourly FREMs_bCO emissions from landscape fires burning over a month-long period in 2012 during the peak fire season of
(a) the Central African Republic and (b) Angola. The monthly mean of this emission rate is also shown, along with that from GFEDv4.1s.
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Figure 5. Monthly dry matter consumed (DMC in g) for a 16-year period as derived from FREMs_bCO CO emissions and that of GFED4.1s

for (a) the Central African Republic (CAR) and (b) Angola.

2013; Zhang et al., 2014). Details of the WRF-CMAQ con-
figuration and setup are summarised in Appendix C. Anthro-
pogenic emissions were taken from the EDGAR-HTAPvV2 in-
ventory (https://edgar.jrc.ec.europa.eu/dataset_htap_v2, last
access: 8 February 2023), whilst biogenic and dust emis-
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sions were generated inline by the model. The FREMs_bCO
biomass burning inventory was used as input for CO emis-
sions, and emission coefficients for all other gas species re-
quired by the CMAQ model were calculated through the ap-
plication of Eq. (1) using ECE0 values. These emission coef-
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Figure 6. Dry matter consumed (DMC) per unit area, mapped across Southern Hemisphere Africa for 2019. (a) As calculated in 0.1° grid
cell resolution by dividing the FREMs_bCO CO values (with SF correction) by the 20 m FireCCISFD burned area product generated from
Sentinel-2 MSI observations and (b) as reported in GFED4.1s at 0.25° grid cell resolution.
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Figure 7. Mapped dry matter consumed (DMC) per unit area, calculated (a) at a 0.1° grid cell scale using the FREMs_bCO CO values (with
SF correction) across a 4° x 4° region of Zambia for the year 2019 and (b) the same DMC per area values for GFED4.1s.

ficients were then multiplied by hourly mean SEVIRI FRP to
generate all the fire-emitted gas and particulate species emis-
sions required as input in the model. Aerosol species emis-
sions were generated through an analogous application of the
updated FREM EC%PM emission coefficients of Nguyen and
Wooster (2020) (see Appendix B).

The CMAQ model produces a TCCO output (mol m~2)
that could be compared to Sentinel-5P TCCO (molm™2)
measurement data from June to August 2019. None of the
S5P observations used in this comparison were those de-
ployed in the ECEO derivation of Sect. 2.3. Prior to the in-
tercomparison, both model and measurement datasets were
converted to units of grams per square metre (gm~2) via
multiplication by the molecular mass of CO. S5P acquisi-
tions over the model domain occur daily between 12:00 and
14:00 UTC, and the resulting TCCO retrievals were com-
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bined and compared with the mean CMAQ TCCO out-
put from the same 2 h period. Both modelled and observed
TCCO were mapped to a 0.1° grid and their degree of agree-
ment quantified using Pearson’s correlation coefficient (r)
and the normalised mean bias function (NMBF) described
by Yu et al. (2006). The NMBF has been specifically de-
veloped for comparing modelled and observed air pollutant
concentrations, and it reduces the inflation in bias that may
be caused by low values of the observed quantities (see Yu et
al., 2006). NMBF is defined as

)1 o

(EM-¥ o).[exp< > M
> M -3 0 >0
where M and O are the modelled and observed TCCO. As

defined above, a positive NMBF indicates an overestima-
tion of the model by a factor of 1 4+ NMBF, while a negative

NMBF = In
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Figure 8. Southern Hemisphere Africa (SHAF) model domain in WRF-CMAQ, fed with the FREM-derived landscape fire CO emissions
inventory developed herein. Boxes indicate four smaller regions of interest (ROIs) used in comparisons of model output to satellite-derived
CO observations. (a) Domain and ROIs, (b) spatial distribution of the six fire-affected biomes defined herein, and (c) spatial distribution of
fire-emitted total carbon released between 15 July and 29 August as estimated from the FREMs_bCO emissions inventory, calculated through
the application of Eq. (1) to obtain DMC and then carbon fraction. This FREMs_bCO inventory is used as input to the CMAQ model.

NMBF indicates that the model underestimates observations
by a factor of 1 — NMBF. Hence, a NMBF value of 0.10 is a
10 % overestimation by the model and —0.10 a 10 % under-
estimation.

4.2 Evaluation results

Mapped mean monthly TCCO (gm~2) from the CMAQ
model and S5P TCCO observations are shown in Fig. 9,
along with their percentage difference. In general, their spa-
tial distribution agrees well — with the highest TCCO val-
ues in the north-west of the domain — which is the area with
greatest fire activity (Fig. 8c). The magnitude of TCCO over
this region in the CMAQ model output is however higher
than that of the S5P observations, by around 50 % in some
areas in June and July. Across the majority of the rest of the
domain however, modelled TCCO is between 1 % and 30 %
lower than observed TCCO. An improved agreement is seen
in August, with the degree of over- and underestimation of
CMAQ compared to S5P generally reduced.

https://doi.org/10.5194/acp-23-2089-2023

Area-aggregated CO totals (Gg) were calculated by multi-
plying both CMAQ and S5P TCCO by their 0.1° x 0.1° grid
cell areas to obtain a daily summed total CO time series (be-
tween 12:00 and 14:00 UTC) for the full domain extent and
within ROI1 and ROI2 (labelled in Fig. 8). These are shown
in Fig. 10, along with direct comparisons of these daily area-
aggregated estimates. These CO totals show that temporal
patterns observed by S5P are well replicated by the CMAQ
modelling driven by the FREM-derived CO emissions. This
indicates that (i) temporal trends in active fires are being well
captured in the SEVIRI FRP-PIXEL product and (ii) the me-
teorological fields of WREF, particularly wind, are represent-
ing the real conditions sufficiently well. In direct compar-
isons between daily area-aggregated total CO across the four
ROIs (Table 4), ROI1 shows the best agreement between the
model and observations (NMBF = —0.01; a 1 % underesti-
mation by CMAQ compared to S5P). Daily total-area CO
for each ROI in each month of the CMAQ simulation period
is summarised in Table 4, along with statistics for the com-
parisons made within each region and month. In the three
other ROIs, NMBF lies between —0.02 and —0.09 for direct

Atmos. Chem. Phys., 23, 2089-2118, 2023
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Figure 9. Mapped mean monthly total column carbon monoxide (TCCO) between 15 June and 29 August 2019, as determined by (a) SSP
observations typically observed between 12:00 and 14:00 UTC and (b) CMAQ-averaged model TCCO output between 12:00 and 14:00 UTC;
the model is fed with the FREMs_bCO emissions inventory developed herein. Their percentage difference is shown in (c).

CMAQ-S5P comparisons, and both the full domain and all
ROIs show a strong correlation between modelled and ob-
served CO (all r > 0.81).

CMAQ-modelled and S5P-observed area-aggregated total
CO values were also compared for individual smoke plumes.
A total of 383 plumes (see Fig. 11a) were manually identi-
fied through visual inspection of the SSP TCCO product be-
tween 15 July and 29 August 2019 and defined using poly-
gons which were then matched to the CMAQ model output
at 0.1° resolution. In some cases the spatial distribution of
individual plumes in the SSP TCCO product and the CMAQ
TCCO output differed slightly — mainly due to differences in
the modelled wind direction/speed and the real wind fields.
Therefore, a 0.1° buffer was added around each validation
plume’s polygon to account for these variations. In the region
of highest fire activity (in the north-west region of the model
domain) relatively few CO plumes were identified, since the
S5P TCCO values were consistently high across this region

Atmos. Chem. Phys., 23, 2089-2118, 2023

and individual plumes could not be easily distinguished in the
S5P TCCO product. For all identified plumes, in-plume total
CO was calculated for both model and observation, again by
multiplying TCCO pixels (g m~2) by their grid cell areas and
summing these within the bounding polygon containing the
plume.

Figure 11b shows the relationship derived between the
CMAQ-modelled and S5P-observed in-plume CO. Com-
pared to daily area-aggregated total CO over the full do-
main (Fig. 10; NMBF =0.01), in-plume NMBF is slightly
higher at 0.04, i.e. a 4 % overestimation of the modelled data
compared to the observations, while Pearson’s correlation in-
creases from 0.85 to 0.89. The slope of the line-of-best fit for
these data is 1.05, with an r2 of 0.80. Figure 11b shows that
the plumes with the highest total CO values (in both the S5P
product and in the CMAQ model) also tend to have a higher
total CO in CMAQ than in S5P. This is less true for plumes
with a total CO below 20 Mg — indicating that the appropri-

https://doi.org/10.5194/acp-23-2089-2023
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Figure 10. Results from the comparison of modelled (CMAQ) and observed (S5P) area-aggregated total CO within the full domain and
two of the regions of interest (ROIs) defined in Fig. 8. (b, d, f) Time series of daily area-aggregated total CO over the full domain and the
two ROIs as determined by CMAQ and S5P, with their difference represented by the solid grey line and the vertical dotted line on 29 July
indicating the start of the second simulation (see main text). (a, ¢, e) Scatter plot comparing the daily total CO in the right-hand column plots
from CMAQ and S5P. Pearson’s correlation and NMBF of the dataset are shown, along with dotted lines indicating the 1: 1, +20 % and
+50 % relationships. The NMBF of 0.04 indicates a mean 4 % overestimation by the model compared to the observations. Results from the

comparisons plotted here are summarised in Table 4.

ateness of the small fire correction applied, unsurprisingly,
depends on the size of the fire, i.e. the FRP contribution from
small fires undetected in the SEVIRI product. The time series
of daily mean in-plume CO (Fig. 11c) shows that the differ-
ence between these measures does not vary significantly by
month.

https://doi.org/10.5194/acp-23-2089-2023

5 Summary and conclusions

We have presented significant developments to the Fire
Radiative Energy Emissions (FREM) landscape fire emis-
sions methodology of Mota and Wooster (2018) and Nguyen
and Wooster (2020), namely the extension to directly re-
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Table 4. Monthly mean summed TCCO (Gg), as derived across the SHAF domain of Fig. 8 from S5P observations and from the CMAQ
model output fed with the FREMs_bCO CO emissions. The same values for the four regions of interest (ROIs) indicated in Fig. 8 are
also shown, along with the NMBF and Pearson’s correlation coefficient metrics. An NMBF of, for example, 0.05 indicates a mean 5 %

overestimation of the modelled values compared to the observations.

CMAQ mean S5Pmean NMBF Pearson’s
CO (Gg) CO (Gg) correlation
coefficient
Full domain

June 6.70 6.39 0.05 0.69
July 7.21 7.01 0.03 0.75
August 8.12 824  —0.01 0.70
All 7.44 7.35 0.01 0.85

ROI1
June 1.14 1.16  —0.01 0.79
July 1.36 1.31 0.04 0.83
August 1.59 1.65 —0.04 0.67
All 1.40 1.41 —0.01 0.81

ROI2
June 0.89 097 —0.09 0.72
July 0.95 0.99 —-0.04 0.83
August 1.21 1.19 0.02 0.72
All 1.04 1.06 —0.02 0.84

ROI3
June 0.88 097 —-0.10 0.88
July 1.02 1.11 —0.09 0.89
August 1.24 1.33  —0.08 0.61
All 1.07 1.16  —0.09 0.77

ROI4
June 0.73 0.78 —0.08 0.84
July 0.80 0.82 —0.04 0.85
August 0.92 094 —0.02 0.87
All 0.83 0.86 —0.03 0.90

late CO emission rates to FRP observations using an emis-
sions coefficient [ECEO] derived from satellite total col-
umn CO (TCCO) observations and FRE observations. Using
277 match-up fires distributed across Northern and South-
ern Hemisphere Africa, we have generated ECtéO values
[gMJ~!] for five fire-affected biomes which directly link
emission rates of CO (g s~1) to FRP (MW). We have ap-
plied these coefficients to the geostationary FRP dataset of
African landscape fires from 2004 to 2019 to generate the
highest spatio-temporal resolution African CO fire emissions
inventory currently available. We find our CO emissions to-
tals to be similar to those of the most recent version of the
‘bottom-up’ Global Fire Emissions Database (GFEDvA4.1s;
van der Werf et al., 2017), particularly across SHAF where
they are almost identical in magnitude, though featuring a
slightly earlier peak in monthly CO emissions coming from
FREM compared to GFED.

Atmos. Chem. Phys., 23, 2089-2118, 2023

Since direct validation of large-scale fire emissions esti-
mates remains unfeasible, we have conducted an evaluation
of the FREM-derived CO emissions via their use within the
WRF-CMAQ atmospheric chemical transport model across
a southern African domain. The generated regional-scale to-
tal column CO (TCCO) observations are then compared to
independent TCCO observations coming from Sentinel-5P
TROPOMI. Results of this evaluation indicate very good
agreement between the modelled and observed TCCO val-
ues in general, and area-aggregated total CO comparisons
show a bias of 0.01 and 0.04 (1% and 4 % mean overes-
timation by the model compared to observations) over the
full model domain and over individual fire plumes respec-
tively. TCCO emissions are overestimated to a greater ex-
tent (by up to around 50 %) in the north-west region of the
domain where high fire activity is observed and where CO
from fires outside the domain may be being transported into

https://doi.org/10.5194/acp-23-2089-2023
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Figure 11. Evaluation of FREM-derived CO emissions based on WRF-CMAQ modelling. (a) Model domain and the bounding polygons
of 383 plumes identified in the SSP TCCO product between 15 June and 29 August 2019 used in the evaluation. (b) Relationship between
modelled and observed total in-plume CO for the individual smoke plumes identified in (a). Pearson’s correlation and NMBF of the dataset are
shown, along with dotted lines indicating the 1 : 1, £20 % and £50 % relationships. The NMBF of 0.04 indicates a 4 % mean overestimation
by the model compared to the observations. (¢) Summed total CO from all plumes observed on each day of the simulation as determined by
CMAQ (purple) and S5P (red), with their difference represented by the grey line (right-hand-side y axis). The vertical dotted line on 29 July

indicates the start of the second simulation period (see main text).

the model domain. The slope of a linear best-fit relationship
between S5P total CO and CMAQ total CO within individ-
ual fire-generated plumes was 1.05, with an r2 of 0.80. In
comparison to the ~ 30 % average difference observed be-
tween GFEDv3 CO emissions and MOPITT CO observa-
tions (Pechony et al., 2013), the results of the evaluation
herein show good agreement and are well within the range
of biases observed in similar evaluations of other fire emis-
sions inventories (Chevallier et al., 2009; Ichoku and Ellison,
2014; Kaiser et al., 2012; Kopacz et al., 2010; Reddington et
al., 2016). The FREM-derived CO emissions produced were
used to calculate estimates of dry matter consumed (DMC)
and DMC per unit burned area for 2019 — the former through
use of CO emission factors and the latter through an inver-
sion of the approach of Seiler and Crutzen (1980) in which
BA data came from the Sentinel-2 20 m FireCCISFD product

https://doi.org/10.5194/acp-23-2089-2023

of Roteta et al. (2019). DMC measures produced via FREM-
derived CO emissions introduce less uncertainty than those
produced from the FREM-TPM emissions of Nguyen and
Wooster (2020) (updated in Appendix B) due to CO emis-
sion factors being less variable than TPM emission factors
in general, especially from fires in tropical forests and culti-
vated land (Akagi et al., 2011; Andreae, 2019).

Future developments to the approach developed herein
will include its application to FRP data from other geosta-
tionary satellites, for example, those from Himawari (Xu et
al., 2017), Meteosat Indian Ocean and GOES (Xu et al.,
2010). Emissions of other gases can be derived from the ratio
of their emissions factors to those of CO, and this overall ap-
proach forms the basis of a new fire emissions product to be
delivered by the EUMETSAT Land Surface Analysis Satel-

Atmos. Chem. Phys., 23, 2089-2118, 2023
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lite Application Facility (http://landsaf.meteo.pt, last access:
8 February 2023).

Appendix A

In the work of Borsdorff et al. (2019), a fixed mask destrip-
ing (FMD) method is proposed to correct for the striping pat-
tern observed in the operational OFFL S5P TCCO product.
This same “corrected” TCCO is now included as an auxil-
iary dataset in the operational SSP OFFL CO product (from
July 2021). For S5P data prior to this date, it is possible
to recreate this FMD method and apply it retrospectively to
S5P data. We chose not to apply this correction based on our
understanding of the FMD method and the “validation” car-
ried out by Borsdorff et al. (2019), along with observations
from our own tests of the impact of the destriping on smoke
plumes. Primarily, it is currently unclear whether the FMD
method is appropriate in areas where very strong spatial CO
gradients exist (i.e. within smoke plumes). The evaluation of
the FMD method carried out by Borsdorff et al. (2019) in-
volves comparisons of daily averaged destriped S5P TCCO
values against a TCCO measurement made by one of the To-
tal Column Carbon Observation Network (TCCON) ground
stations. Whilst the TCCON station was a single-point obser-
vation, the S5P data were averaged over a colocation radius
of 50km, and typically the CO values varied rather mildly
across this 50km region. This is not the case for our fire-
generated smoke plumes where changes from background to
“high” column CO occur across very small spatial scales.
Further, no TCCON sites exist in Africa, so any evaluation
carried out could not have been geographically appropriate to
our dataset. We therefore chose not to apply the FMD to our
S5P TCCO data used in ECtéO derivation until more quanti-
tative evidence of its appropriateness to such high CO gradi-
ent regions is published. For completeness however, we have
calculated a set of “FMD applied” EC'%O values for compari-
son; these were generated from the same S5P dataset used in
the main ECEO derivation of this work but with the FMD ap-
plied. These are shown in Fig. Al and detailed in Table Al.
The percentage difference between the EC'(’:o values gener-
ated from S5P data “with” and “without” the FMD applied is
also listed.

The S5P TCCO product is accompanied by a qa_value
for each TCCO pixel, which indicates the presence or ab-
sence of cloud in the total column of air that pixel covers.
The ga_value assigned determines which averaging kernel is
applied in the SSP TROPOMI retrieval of TCCO - i.e. the
retrieval’s sensitivity to CO at different levels of the atmo-
sphere. A discussion of the vertical averaging kernels used
in the TROPOMI TCCO algorithm can be found in Borsdorff
et al. (2018). It can be seen in that work that at the typical al-
titudes at which the large smoke plumes from the types of
fires used in our match-up process are observed (typically
800 to 4000 m altitude), the weighting of the averaging ker-
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nel applied to pixels containing mid-level cloud (i.e. pixels
with ga_values >0.5 but <1.0) differs by no more than 0.1
from the weighting of the averaging kernel applied to clear-
sky pixels. In fact, of all altitudes, the sensitivity to TCCO
is closest between pixels with qa_values >0.5 & <1.0 and
pixels with qa_value = 1.0 at the altitudes which the bulk of
a fire’s smoke plume is likely to be observed at after several
hours of burning (approximately 1500-2000 m). We there-
fore hypothesise that a restriction on qa_values would have
minimal impact on TCCO retrievals in our dataset, partic-
ularly as two higher-resolution datasets were already used
to remove cloud-affected plumes (the FRP-PIXEL Quality
Product and VIIRS visible imagery; 3 km and 750 m at nadir
respectively). Similarly to the validation of the FMD pro-
cedure described above, S5P CO qa_values were evaluated
using the TCCON ground-based solar Fourier transform in-
frared (FTIR) monitoring networks, with this conducted by
averaging the S5P CO product over 50 km? areas around each
ground measurement site and comparing the TCCO values
(Borsdorff et al., 2018). None of these sites were located in
Africa, and the validation was based on large area averaging
of ambient-type total column CO data from clear-sky condi-
tions (Borsdorff et al., 2018). Our match-up dataset features
TCCO observations over far smaller areas, with extremely
elevated CO and strong spatial CO gradients. The applica-
tion of the qa_values applied in Borsdorff et al. (2018) is
therefore unlikely to be fully representative of our applica-
tion, and we hence treat the qa_values assigned in the S5P
data with caution and choose not to apply a qa_value thresh-
old to the S5P data used to derive the EC]éO values of the
main work. We have, however, calculated a set of EC‘&O
values from S5P data to which a qa_value >0.5 threshold
was applied, and these are shown in Fig. A2. These values
are summarised in Table Al along with the ECEO values
derived when the previously discussed fixed mask destrip-
ing (FMD) is applied and the respective percentage differ-
ence between these and the EC'Eo values presented in the
main text. The qa_values >0.5 thresholding results in an av-
erage EC‘%O value difference of only 2.4 % across all five
biomes (maximum difference is 5.9 %), demonstrating that
the impact of the mid-level cloud on the retrieval of TCCO
in our study is rather minimal and well within the uncertainty
bounds of the EC'EO values.

https://doi.org/10.5194/acp-23-2089-2023
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Figure A1. CO emissions coefficients (ECl(’:O) derived with FMD applied to the SSP TCCO data.

Table A1. Comparison of smoke emission coefficients generated from standard S5P data (which has neither the FMD procedure applied or a
qa_value threshold of >0.5 applied) and those generated from S5P with both these adjustments applied. Percentage differences between the
standard S5P data and these two variants of the S5P data are also detailed.

S5P without ~ S5P with  Percentage  S5P excluding  Percentage

FMD applied & FMD  difference qa_value <0.5  difference
including all applied (%) (%)
qa_values

Grassland 75.51 68.94 —-8.7 73.49 2.7
Shrubland 81.07 76.16 —6.1 82.26 —-1.5
Managed land 88.35 82.91 —6.2 87.63 0.8
High-woodland savanna 81.85 79.99 —-23 77.03 59
Low-woodland savanna 85.49 77.04 -9.9 86.62 —-1.3

https://doi.org/10.5194/acp-23-2089-2023 Atmos. Chem. Phys., 23, 2089—-2118, 2023
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Figure A2. CO emissions coefficients (EC'(’:O) derived with a qa_value >0.5 threshold applied to the SSP TCCO data.

Appendix B

To maintain a consistent methodology between the FREM
CO-based fire emissions inventory described in this work and
the TPM-based version described in Nguyen and Wooster
(2020), which was derived using orthogonal distance regres-
sion (ODR), the OLS regression approach used herein was
reapplied to the fire-plume match-up dataset of Nguyen and
Wooster (2020). Updated FREM TPM-based fire emissions
coefficients (C;FPM) were generated from the nearly 1000
sample fires detailed in Nguyen and Wooster (2020). Each
match-up consisted of a set of SEVIRI FRP-PIXEL product
AF pixels for the target fire, along with the 1 km MCDI19A1
MAIAC AOD product for that fire (see Nguyen and Wooster,
2020, for details). Figure B1 shows the updated TPM emis-
sions coefficients [C;FPM] for each of the

Atmos. Chem. Phys., 23, 2089-2118, 2023

six biomes defined herein, and these are summarised in Ta-
ble B1 (column 1), along with the previous ODR-derived val-
ues of Nguyen and Wooster (2020; column 2) and various
other forms of the same coefficients.
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Figure B1. TPM smoke emission coefficients (C;FPM; in gMJ _1) for the six African fire-affected biomes defined in the main text, each
derived from the slope of an ordinary least-squares (OLS) regression between data of fire-emitted total particulate matter (TPM) and matching
fire radiative energy (FRE). The grey shaded area defines the 95 % probability prediction interval of the OLS-derived slope. Each scatter plot
is accompanied by an illustrative insert that depicts the typical land cover for the biome as seen in © Google Earth (example locations
are closed-canopy forest 10.359° S, 19.086° E; grassland 21.180° S, 19.560° E; managed land 10.495° N, 7.586° E; low-woodland savanna
7.085° N, 27.095° E; high-woodland savanna 12.523° S, 23.323° E; and shrubland 23.055° N, 22.242° E).
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Table B1. TPM emission coefficients from previous FREM versions and updates (in units of g MJ —h.

FREM CIPM FREM CIPM  FREM CTPM FREM CIPM  FEER-equivalent

(OLS updated) (ODR; Nguyen (Mota and (from Cgo of (see Nguyen

and Wooster, 2020)  Wooster, 2018)  Fig. 2 and Eq. 1)  and Wooster, 2020)

Closed-canopy forest 26.07 34.33 65.63 16.43 16.34
Managed land 12.23 13.98 15.62 15.00 15.80
Grassland 9.39 9.99 13.03 9.52 10.98
Shrubland 9.88 12.17 17.36 10.22 10.97
Low-woodland savanna 10.65 12.10 19.75 10.78 12.78
High-woodland savanna 14.18 16.43 19.75 10.32 13.81

Table B2. Results detailing the statistical significance of the EC'%PM values of each biome pair. P values below 0.05 and those below 0.15
are bold and italicised, while any biome pair with p values above 0.15 are neither bold or italicised.

Appendix C

Biome 1 Biome 2 p value t value
grassland managed land 0.02 2.46
grassland shrubland 0.34 0.95
grassland high-woodland savanna 0.00 10.10
grassland low-woodland savanna 0.01 2.66
grassland closed-canopy forest 0.00 6.61
managed land shrubland 0.04 2.02
managed land high-woodland savanna 0.09 1.70
managed land low-woodland savanna 0.17 1.38
managed land closed-canopy forest 0.00 5.06
shrubland high-woodland savanna 0.00 8.66
shrubland low-woodland savanna 0.12 1.54
shrubland closed-canopy forest 0.04 2.01
high-woodland savanna  low-woodland savanna 0.00 7.80
high-woodland savanna  closed-canopy forest 0.00 8.65
low-woodland savanna  closed-canopy forest 0.00 6.11

Table C1. Summary of WRF-CMAQ model configuration.

General features

Domain extent

10°E —44°E, 5-32° S

Modelled time period 15 June to 28 July and 29 July to 29 August 2019
Resolution 9km x 9km, 35 vertical levels (top layer at 5 kPa)
WREF configuration Scheme

Cloud microphysics Linetal.

Radiation (shortwave) Goddard

Radiation (longwave)
Boundary layer physics

Rapid Radiative Transfer Model (RRTM)
Mellor—Yamada—Janic (MY]J)

Land surface processes Noah LSM
Cumulus convection Grell 3-D
CMAQ configuration

Chemistry mechanism CB6r3
Aerosol module AERO7
Dust emissions inline
Biogenic emissions inline BEIS3

Initial and boundary conditions

Metrology
Chemistry

NCEP ENL, 0.25° x 0.25°, 26 levels, 6 h
WACCM, 0.9° x 1.25°, 88 levels, 3h

Atmos. Chem. Phys., 23, 2089-2118, 2023
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Appendix D
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Figure D1. Hourly AOD averaged over all six AERONET sites, both from the CMAQ simulations and AERONET observations. A vertical
dotted line on 29 July indicates the start of the second simulation.

Table D1. Monthly mean of hourly CMAQ and AERONET AOD, the NMBF of hourly CMAQ AOD with respect to observations and the
temporal Pearson correlation coefficient of hourly AOD over each month and the whole modelled period (15 June to 29 August 2019).

Month CMAQ AERONET NMBF Pearson’s

mean mean correlation (r)

Lubango June 0.52 0.26 1.00 0.71
July 0.68 0.49 0.65 0.70

August 0.66 0.56 0.16 0.42

All 0.64 0.45 0.41 0.50

Misamfu June 0.41 0.13 2.08 0.72
July 0.20 022 —-0.70 0.16

All 0.27 0.19 0.47 0.13

Gobabeb June 0.22 0.17 0.34 0.75
July 0.20 025 —0.30 0.60

August 0.21 024 —0.11 0.13

All 0.21 022 —0.03 0.45

Maun Tower  June 0.06 0.10  —0.55 0.57
July 0.12 0.12  —0.04 0.69

August 0.40 0.39 0.05 0.61

All 0.21 0.22 0.00 0.72

Welgegund June 0.13 0.12 0.10 0.57
July 0.13 0.11 0.31 0.50

August 0.52 0.45 0.14 0.29

All 0.21 0.18 0.21 0.66

Skukuza June 0.27 0.21 0.26 0.53
July 0.36 0.25 0.43 0.19

August 0.43 0.40 0.08 0.41

All 0.37 0.29 0.27 0.39

All sites June 0.28 0.16 0.78 0.64
July 0.28 0.22 0.27 0.33

August 0.44 0.37 0.20 0.53

All 0.34 0.26 0.31 0.59
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The updated TPM emissions coefficients (CIPM) calcu-
lated in Appendix B (with the exception of the closed-canopy
forest value) were used to derive an emission inventory for
aerosols that was then used as an input to a WRF-CMAQ
simulation. These same simulations used gaseous emissions
generated from the FREMs_bCO emissions coefficients de-
scribed in the main article as input. To evaluate the TPM
emissions values, the AOD fields produced by these CMAQ
simulations were compared with independent ground-based
and satellite-based AOD metrics. The WRF-CMAQ model
setup and configuration are described in Appendix C and in
the main article, while the results of the FREM-TPM emis-
sions estimates’ evaluation are presented here.

AERONET is a global network of ground-based sun pho-
tometers that provides retrievals of aerosol optical prop-
erties, including Angstrom exponent, aerosol refractive in-
dex and aerosol optical depth (AOD), at different wave-
lengths (Holben et al., 2001). Data from AERONET sites
within the CMAQ model domain were used in compar-
isons with CMAQ-generated AOD fields (at 381 nm). The
AERONET sites used were Maun Tower (19.9° S, 23.55° E),
Lubango (15.0°S, 13.4°E), Misamfu (10.2°S, 31.2°E),
Gobabeb (23.6°S, 15.0° E), Welgegund (26.6°S, 26.9°E)
and Skukuza (35.0°S, 31.6°E). AERONET AOD data are
available for the full simulation period from each of these
sites, with the exception of Misamfu and Welgegund that
have data available from 15 June until 29 July and 13 Au-
gust respectively. AERONET AOD observations at 380 nm
are used in comparisons to WRF-CMAQ-modelled AOD at
381 nm.

Figure D1 shows hourly mean AOD, averaged across all
six AERONET sites, as determined by CMAQ and by the
AERONET measurements. CMAQ AOD captures the tem-
poral pattern of AOD rather well across these six sites but in
general tends to show higher values than the ground-based
measures. Hourly modelled and observed AOD were com-
pared in terms of their Pearson’s correlation (r) and NMBF
in each month as well as over the full simulation period,
and these results are summarised in Table D1, along with
monthly mean AOD for CMAQ and AERONET at each site.
NMBF over the full simulation period at the six AERONET
sites ranges between a 4 % underestimation and 41 % over-
estimation by CMAQ relative to AERONET, and Pearson’s
correlation coefficient ranges between 0.36 and 0.72.

In addition to this comparison to ground-based AOD
data, CMAQ-modelled AOD at 550nm was compared to
the MODIS MAIAC 550nm 1km product (Collection 6
MCD19A2; Lyapustin et al., 2018) — the same AOD prod-
uct used in the derivation of FREMv2 TPM emissions co-
efficients (Appendix B and Nguyen and Wooster, 2020),
though a completely different set of days were used in
the generation of the match-up dataset. Daytime Aqua and
Terra overpasses occurring between approximately 08:00
and 10:00 UTC daily over the CMAQ domain were com-
pared to mean CMAQ AOD between 08:00 and 10:00 at
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550 nm. Both modelled and observed AOD were remapped
toa0.1° x 0.1° grid for ease of comparison.

The spatial distribution of monthly mean AOD in the MA-
IAC AOD product and CMAQ is shown in Fig. C2. Most
notable in Fig. C2 is the large variation between under- and
overestimation by modelled AOD compared with MAIAC
AOQOD, as can be seen in the difference plot of C2c. In the
north-west of the domain, where the highest fire activity oc-
curs (see main article, Fig. 8c), some areas feature CMAQ
AOD that is close to 60 % greater than MAIAC AOD, with
the highest overestimation occurring in June. While in other
regions of the of the domain, CMAQ underestimates ob-
served AOD significantly. In these areas, however, AOD val-
ues are already low, and hence, this supposed underestima-
tion is not as significant in absolute terms, though it does
indicate that — in its base state — the CMAQ model tends to
underestimate AOD.

Daily modelled and observed AOD in each ROI (see main
article Fig. 8a) and in the full domain were used to gener-
ate mean monthly AOD during the simulation period (Ta-
ble C2), and the NMBF and Pearson’s correlation coefficient
(r) between CMAQ and MAIAC daily AOD were also calcu-
lated. The results show that CMAQ AOD, in general, is sig-
nificantly overestimated relative to MAIAC AOD, and this
overestimation is greater than for the CMAQ TCCO compar-
isons to Sentinel-5P TCCO shown in the main text (Sect. 4).
Daily mean CMAQ AOD in the domain for the full simu-
lation period is 120 % higher than MAIAC mean AOD, and
when restricted to days in June this increases to 184 %. Mean
CMAQ AOD in ROI1 - which includes much of the area
with the highest fire activity — shows the largest overestima-
tion, ranging between 105 % and 180 % depending on the
month. Conversely, ROI2 and ROI3, in which there is gen-
erally lower fire activity, show lower NMBF values rang-
ing from an underestimation of 30 % to an overestimation
of 77 % by CMAQ AOD. The correlation between modelled
and observed daily means varies by ROI and by month, but
in most cases r>0.60.

As with the evaluation conducted for the FREM-derived
CO emissions (see main article Sect. 4), comparisons be-
tween CMAQ and MAIAC AOD were also conducted for
individual smoke plumes identifiable in the MATAC AOD
product. Individual fire-emitted plumes were identified in the
MAIAC AOD product at its native 1 km spatial resolution.
Polygons were used to define plume boundaries, and each
plume was matched between modelled and observed AOD
data. A 0.1° grid cell buffer was applied to account for vari-
ations in the spatial distributions of the plumes. Fire-emitted
AODs for CMAQ and MAIAC plumes were calculated via
the method described in Nguyen and Wooster (2020).

Figure C3 shows the spatial distribution of the 415 individ-
ual smoke plumes used in comparisons and the relation be-
tween the fire-emitted AOD fields of CMAQ and MAIAC for
each of these plumes. There is a large spread in the data, and
Pearson’s correlation is relatively low at 0.43. The NMBF
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indicates an overall underestimation of CMAQ AOD com-
pared with MATIAC AQOD, by 10 %. This is drastically differ-
ent from the 120 % overestimation of daily AOD by CMAQ
relative to MAIAC in the full domain comparisons. The im-
pact of model error, and the more extensive spatial variabil-
ity between the modelled and observed plumes, may signif-
icantly contribute to the large differences seen in the com-
parison made at large scales and those for individual plumes.
The true accuracy of the FREM derived emission is likely
somewhere in between.

June . July

__________ a Maun_Tower

MAIAC AOD

(b)

CMAQ AOD

(c)

o
Differance (%)

|
ul
o

-100
Figure D2. Mapped mean monthly AOD at 550 nm from (a) the MAIAC satellite product and (b) CMAQ simulations (note the colour

scale differences between a and b) during the simulation period from 15 June to 29 August 2019. Panel (¢) shows the percentage difference
between MAIAC and CMAQ AOD.
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Figure D3. Location of smoke plumes identified in the MAIAC 1km AOD product between 15 June and 29 August 2019 and the bounding
polygons used to define the area over these plumes (a). Relationship between fire-emitted CMAQ AOD and observed fire-emitted MAIAC
AOD in these plumes (b). Pearson’s correlation and NMBF of the dataset are shown, along with dotted lines indicating the 1 : 1, 20 % and

50 % lines.

Table D2. Monthly means of daily CMAQ and MAIAC AOD, in the full extent of the domain and the ROIs, the NMBF of daily CMAQ
AOD with respect to observations, and the temporal Pearson correlation coefficient of daily AOD over each month and the whole modelled
period are also included (15 June to 29 August 2019).

CMAQ MAIAC NMBF Pearson’s

mean AOD mean AOD correlation (r)

Full domain  June 0.11 0.04 1.84 0.77
July 0.13 0.05 1.37 0.63

August 0.15 0.79 0.94 0.21

All 0.13 0.06 1.2 0.5

ROI1 June 0.26 0.09 1.8 0.9
July 0.37 0.15 1.42 0.73

August 0.55 0.27 1.05 0.48

All 041 0.18 1.21 0.64

ROI2 June 0.07 0.09 -0.3 0.44
July 0.07 0.07 0.06 0.69

August 0.21 0.11 1 0.63

All 0.13 0.09 0.42 0.64

ROI3 June 0.07 0.04 0.77 0.8
July 0.11 0.09 0.16 0.79

August 0.22 0.16 0.39 0.59

All 0.14 0.1 0.32 0.73

ROI4 June 0.07 0.05 0.56 0.69
July 0.11 0.05 0.97 0.46

August 0.17 0.07 1.41 0.71

All 0.12 0.06 1.13 0.81
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