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Abstract. Biomass burning is one of the key sources of urban aerosols in the North China Plain, especially dur-
ing winter, when the impact of secondary organic aerosols (SOAs) formed from biogenic volatile organic com-
pounds (BVOCs) is generally considered to be minor. However, little is known about the influence of biogenic
SOA loading on the molecular composition of wintertime organic aerosols. Here, we investigated the water-
soluble organic compounds in fine particulate matter (PM2.5) from urban Tianjin by ultrahigh-resolution Fourier
transform ion cyclotron resonanc mass spectrometry (FT-ICR MS). Our results show that most of the CHO and
CHON compounds are derived from biomass burning which are poor in oxygen and contain aromatic rings that
probably contribute to light-absorbing brown carbon (BrC) chromophores. Under moderate to high SOA-loading
conditions, the nocturnal chemistry is more efficient than photooxidation to generate secondary CHO and CHON
compounds with high oxygen content. Under low SOA loading, secondary CHO and CHON compounds with
low oxygen content are mainly formed by photochemistry. Secondary CHO compounds are mainly derived from
oxidation of monoterpenes. However, nocturnal chemistry may be more productive to sesquiterpene-derived
CHON compounds. In contrast, the number- and intensity-weight of S-containing groups (CHOS and CHONS)
increased significantly with the increase of biogenic SOA loading, which agrees with the fact that a majority of
the S-containing groups are identified as organosulfates (OSs) and nitrooxy–organosulfates (nitrooxy–OSs) that
are derived from the oxidation of BVOCs. Terpenes may be potential major contributors to organosulfates and
nitrooxy–organosulfates. While the nocturnal chemistry is more beneficial to the formation of organosulfates
and nitrooxy–organosulfates under low SOA loading. The SOA loading is an important factor that is associated
with the oxidation degree, nitrate group content and chemodiversity of nitrooxy-organosulfates. Furthermore,
our study suggests that the hydrolysis of nitrooxy-organosulfates is a possible pathway for the formation of
organosulfates.
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1 Introduction

Organic aerosols account for about 20 %–90 % of fine par-
ticulate matter (PM2.5) in the ambient air (Fan et al., 2016;
Kleindienst et al., 2007; Goldstein and Galbally, 2007). Vari-
ous emission sources, including industrial production, coal
combustion, traffic emissions, cooking, biomass burning,
as well as primary bioaerosol, influence the formation of
haze pollution in the North China Plain (Sun et al., 2013;
Fan et al., 2016; Huang et al., 2021). Among these emis-
sion sources, biomass burning plays a prominent role in air
quality and climate change. Biomass burning emissions in-
clude high concentrations of primary organic aerosol (POA),
semivolatile organic compounds (SVOCs), and volatile or-
ganic compounds (VOCs; Koss et al., 2018). Humic-like sub-
stances (HULIS) account for 28 %–34 % of organic carbon
(OC) in the PM2.5 emitted by incomplete combustion of solid
biomass fuels in domestic stoves (Lin et al., 2010; Park and
Yu, 2016). Domestic biomass combustion is also one of the
key emission sources of HULIS, especially during winter and
spring in the North China Plain (Li et al., 2019). Previous
studies have revealed that biomass-burning particles contain
plenty of important chromophores such as nitroaromatics and
N-heterocyclic compounds, which can enhance the light ab-
sorption of aerosols (Wang et al., 2019). A recent study re-
vealed that most of the light absorption of brown carbon
(BrC) is related to biomass-burning particles, with a small
amount from biogenic SOAs (Washenfelder et al., 2015).
There are significant high columnar light-absorbing levels in
areas with frequent biomass-burning activities (Arola et al.,
2011). Therefore, biomass burning has been identified as an
important contributor to atmospheric BrC (Yan et al., 2020;
Saleh et al., 2014; Lin et al., 2016; Yue et al., 2022). Further-
more, large amounts of isoprene, toluene, propylene, and O3
precursors have been measured with high potential values of
total ozone formation from biomass-burning activities such
as wheat-straw burning in northern China (Zhu et al., 2016;
Fu et al., 2012).

Secondary organic aerosols (SOAs) are the main products
of the oxidation of volatile organic compounds (VOCs) in
the presence of OH and NO3 radicals, O3, and other oxi-
dants (Hallquist et al., 2009; Nie et al., 2022; Gentner et al.,
2017). Organosulfates (OSs, ROS(O)2OH, esters of sulfuric
acid) have been found to be the most abundant organosul-
fur compounds in atmospheric particulate matter, contribute
significantly to the mass of SOAs, and play an important
role in their formation pathways (Tolocka and Turpin, 2012;
Brüggemann et al., 2020; Surratt et al., 2008; Fan et al.,
2022). Moreover, nitrooxy–organosulfates (nitrooxy–OSs),
which contain both nitrooxy (-ONO2) and the sulfate ester
group (-OSO3H), also contribute greatly to the formation of
SOAs (Brüggemann et al., 2020; Surratt et al., 2008; Xie et
al., 2022). Previous studies have shown that both organosul-

fates and nitrooxy–organosulfates are mostly assumed to be
formed by multiphase reactions between acidic sulfate par-
ticles and organic compounds from both biogenic and an-
thropogenic sources (Surratt et al., 2008; Iinuma et al., 2007;
Zhang et al., 2012; Kristensen and Glasius, 2011; Riva et
al., 2016; Fan et al., 2022). Long aliphatic chain organosul-
fates and nitrooxy–organosulfates (C17−28) are characterized
by low degrees of oxidation and unsaturation; they may act
as surfactants and affect the amphiphilicity of atmospheric
particles (Su et al., 2022). Vehicle emissions might be their
potential source. In contrast, (nitrooxy–)organosulfates de-
rived from biogenic VOCs (BVOCs) have characteristics of
a short carbon chain (C5−10), a high degree of oxidation, and
double-bond equivalent (DBE) values close to those of their
biogenic precursors (Tao et al., 2014; Passananti et al., 2016).
In addition, the H/C values of aromatic-like (nitrooxy–
)organosulfates are relatively low, especially the polyaro-
matic (nitrooxy–)organosulfates, which are considered to be
mainly originated from anthropogenic emissions precursors
(e.g., fireworks) (Xie et al., 2020a, b; Kundu et al., 2013).
Thus, both organosulfates and nitrooxy–organosulfates are
prevalent in aerosol particles. They have been identified as
potential SOA markers and have substantial implications
for atmospheric physicochemical processes (Kristensen and
Glasius, 2011; Zhang et al., 2012; Zhu et al., 2019; Brügge-
mann et al., 2017; Froyd et al., 2010; Tolocka and Turpin,
2012; Surratt et al., 2008).

Tianjin is a typical coastal city in the North China Plain
where agriculture is developed; it is susceptible to open
biomass burning during autumn and winter, especially the
agricultural fires (Fan et al., 2020). Under the effect of land
and sea breeze, organic aerosols in Tianjin are greatly influ-
enced by sea source, land source, and diurnal chemistry (Fan
et al., 2020). The low-molecular-weight organic compounds
in aerosols, such as diacids, aliphatic lipids (n-alkanes, fatty
acids, and fatty alcohols), and sugar compounds, have been
investigated in Tianjin by gas chromatography–tandem mass
spectrometry (Fan et al., 2020; Pavuluri et al., 2020; Fu et
al., 2008). However, there are limited studies on the molec-
ular composition of high-molecular-weight (HMW) organic
compounds in ambient aerosols in Tianjin, especially the
molecular markers with complex structure such as polycyclic
aromatic hydrocarbons (PAHs) and polyacids emitted from
biomass burning. In addition, little is known about organic
sulfur-containing compounds and the contribution of sec-
ondary transformation processes from biogenic and anthro-
pogenic sources. Fourier transform ion cyclotron resonance
mass spectrometry (FT-ICR MS) is known for its ultrahigh
resolution and has been applied to characterize natural or-
ganic mixtures in cloud water, rainwater, aerosols, and smoke
particles emitted from biomass burning and coal combustion
(Bianco et al., 2018; Mead et al., 2015; Song et al., 2018;
Wu et al., 2019; Xie et al., 2020b; Qi et al., 2022; Han et
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Figure 1. Temporal variations in the concentrations of biogenic
SOA tracers and biomass-burning tracer detected in Tianjin PM2.5
(Fan et al., 2020). (a) Sum of biogenic SOA tracers; (b) isoprene
SOA tracers; (c) monoterpene SOA tracers; (d) β-caryophyllene
SOA tracer. The red, green, and blue circles represent the PM2.5
samples with high, moderate, and low SOA loading, respectively.

al., 2022; Chen et al., 2022). Therefore, the purpose of this
study is to learn the organic molecular composition with a
wide range of molecular weight in urban aerosols using FT-
ICR MS and to better understand the impacts of secondary
aerosol processes on the molecular diversity in winter when
biomass burning is generally active in the North Plain China.

2 Materials and methods

2.1 Sample collection and organic matter isolation

In this study, we selected wintertime PM2.5 samples collected
in urban Tianjin, East China, from November to Decem-
ber 2016, as part of the wintertime campaign of the Atmo-
spheric Pollution and Human Health in a Chinese Megacity
(APHH-Beijing) program (Shi et al., 2019). Levoglucosan is
treated as the primary tracer of biomass burning (Simoneit,
2002). Isoprene and pinene are selected as the predominant
BVOCs to indicate the photooxidation processes of plant and
marine biogenic emission (Claeys et al., 2007; Helmig et
al., 2006; Sharkey et al., 2008). Levoglucosan and biogenic
SOA tracers from isoprene and terpene oxidation have been
measured using a traditional gas chromatography–mass spec-

trometry (GC–MS). Details of these PM2.5 samples as well
as molecular compositions of organic aerosols were provided
in our previous study (Fan et al., 2020). Based on our previ-
ous study, we have determined six isoprene oxides, including
2-methylglyceric acid, C5-alkene triols and 2-methyltetrols,
and four pinene oxides, such as 3-hydroxyglutaric acid (Fan
et al., 2020). According to the sum of biogenic SOA trac-
ers of daytime aerosols, we selected three groups that were
strongly affected by biomass burning but with high, moder-
ate, and low loadings of biogenic SOA, then selected the cor-
responding nocturnal ones (Table 1, Fig. 1) (i.e., high SOA
loading – D: daytime sample with relatively high concentra-
tions of SOA).

All the samples are analyzed by FT-ICR MS for the
water-soluble organic compounds. The details of extraction
and concentration of dissolved organic matter (DOM) from
aerosol samples were taken from the previous study (Xie et
al., 2020b). In short, the filter sample is sonicated in 10 mL
ultrapure Milli-Q water for 10 min and repeated three times.
The solution is then filtered with 0.45 µm hydrophilic PTFE
filers. The extract is loaded onto a preconditioned solid-phase
extraction (SPE) cartridge (Oasis HLB, Waters, US). The
cartridge is dried under a pure nitrogen flow. Then, the re-
tained organics are eluted with HPLC-grade methanol.

2.2 FT-ICR MS analysis

The isolated organic fractions are analyzed with a solariX
2XR FT-ICR instrument (Bruker Daltonik GmbH, Bremen,
Germany) equipped with a 7 T superconducting magnet.
Samples are ionized in negative ion mode using an electro-
spray ionization (ESI) ion source. For full scan mass spectra,
mass spectra are acquired fromm/z 150 to 1000 (where most
NOM measurements are conducted) with a transient size of
4 megawords using the quadrupolar detection mode. A to-
tal of 256 individual transients are collected and co-added
to an enhanced signal-to-noise ratio, resulting in resolving
power of ∼ 600000 at m/z 400. The full scan mass spec-
tra are internally calibrated using a series of homologous
compounds in DataAnalysis (Bruker Daltonics). A peak list
with a signal-to-noise ratio (S/N ) greater than 4 is gener-
ated. All possible formulae are calculated using Composer
15.6 (Sierra Analytics) software with a mass tolerance of
±0.5 ppm. A calculation criterion for the calculator is set as
follows: C50H100O50N2S1. All the calculated formulae with
DBE greater than 30 are excluded.

The relative abundance–weighted elemental ratios, AImod,
MWw, and AImod,w, are calculated based on previous studies
(Zhao et al., 2013; Sleighter and Hatcher, 2008; Koch and
Dittmar, 2016). All assigned molecular formulae are catego-
rized into the following five classifications according to their
elemental composition: (1) combustion-derived polycyclic
aromatic hydrocarbons (PAHs-like; AImod > 0.66), (2) vas-
cular plant-derived polyphenols and PAHs with aliphatic
chains (Polyphenols-like; 0.50<AImod ≤ 0.66), (3) highly
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Table 1. The concentrations (ng m−3) of chemical compounds in PM2.5 samples.

Organic marker compounds High SOA Moderate Low SOA
loading SOA loading loading

Da N D N D N

Sum of biogenic SOA tracers 68.7 28.4 48.9 31.2 15.9 7.13

Biogenic SOA tracers

Isoprene SOA tracers

2-methylglyceric acid 2.28 1.12 2.35 0.88 1.58 0.03
C5-alkene triols 1.25 0.24 2.48 0.99 0.24 0.79
2-methylthreitol 1.71 0.91 1.51 3.46 0.46 0.20
2-methylerythritol 4.12 1.21 1.67 3.72 0.46 0.48
Subtotal 9.37 3.47 8.02 9.04 2.73 1.50

Monoterpene SOA tracers

3-hydroxyglutaric acid 1.76 1.46 2.27 1.16 0.53 0.74
Pinonic acid 15.4 9.57 9.53 5.76 5.29 0.55
Pinic acid 24.9 7.71 13.8 6.86 0.89 0.58
MBTCAb 0.20 0.19 1.24 2.05 0.12 0.12
subtotal 42.3 18.9 26.8 15.8 6.71 1.13

Sesquiterpene SOA tracer β-caryophyllinic acid 17.0 6.05 14.1 6.37 6.50 6.00

Biomass burning tracers

Levoglucosan 471 258 167 303 127 424
Galactosan 49.9 22.4 31.3 16.2 13.4 44.4
Mannosan 54.1 25.8 46.3 25.6 22.5 69.3
L/M ratio 8.71 10.0 3.61 11.8 5.64 6.12

Note: a D: daytime, N: nighttime; b MBTCA: 3-methyl-1,2,3-butanetricarboxylic acid.

unsaturated and phenolic compounds (Phenols-like; AImod ≤

0.50 and H/C< 1.5), (4) unsaturated aliphatic compounds
(Aliphatics-like; 1.5≤ H/C< 2), (5) carbohydrate, satu-
rated fatty and sulfonic acids (Carbohydrates-like; H/C≥ 2)
(Merder et al., 2020; Šantl-Temkiv et al., 2013). According
to the O/C ratio, the PAHs-like, Polyphenols-like, Phenols-
like, and Aliphatics-like compounds are derived into O-poor
and O-rich classes (Table S1) (Merder et al., 2020).

3 Results and discussion

3.1 General molecular characterization of organic
aerosols

In this study, thousands of formulae (4995–6959) are ob-
tained in each spectrum ranging from 150 to 1000 Da (Ta-
ble S2). The identified molecular formulae are classified into
CHO, CHON, CHOS, and CHONS components, based on
their elemental compositions. For example, CHOS refers to
formulae that contain C, H, O, and S elements. By compar-
ing the number of four molecular components between all the
samples, it was found that the S-containing species (CHOS
and CHONS) are the most prominent components (61.8 %–
96.5 %) in high and moderate SOA-loading samples, while
only 25.2 %–37.6 % are present in the samples with low bio-
genic SOA loading (Fig. 2), suggesting that secondary trans-
formation processes contributed significantly to S-containing
compounds. Since there was little difference in the sum of
biogenic SOA tracers between the nighttime samples in the

moderate–high SOA-loading groups, the molecular compo-
sitions in these two groups are similar overall (Figs. 2 and 3).

The potential source of a compound class may be assessed
by the ratio of the number and intensity weights of all com-
pound classes, with a higher proportion indicating a greater
contribution from the source. Aliphatics-like organics ac-
count for the highest proportion in high and moderate SOA-
loading groups (43.8 %–50.5 %). In contrast, Phenols-like
and Aliphatics-like contribute the most in the low biogenic
SOA-loading groups (68.4 %–69.3 %). In addition, aromatic
compounds (PAHs-like and Polyphenols-like) in the low
biogenic SOA-loading groups (34.5 %–38.8 % and 30.5 %–
33.7 %) are significantly higher than the other two groups
(Figs. 3 and S1). These indicate that intense biomass burning
may contribute greatly to PAHs-like, Polyphenols-like, and
Phenols-like compounds. However, the increased loading of
biogenic SOA contributes more saturated Aliphatics-like and
Carbohydrates-like compounds.

Table S2 summarizes the number of components in each
subgroup and the relative abundance–weighted elemental ra-
tios, DBE, and modified aromaticity index (AImod) for each
sample (Zhao et al., 2013; Sleighter and Hatcher, 2008).
The AImod, based on heteroatoms such as oxygen, sulfur,
and nitrogen, reflects C=C double-bond density to reveal the
double-bond ratio to the total carbons in a molecule (Koch
and Dittmar, 2006). As shown in Table S2, the AImod,w val-
ues observe similar change trends for different subgroups
of each sample shown: AImod,w (CHON) >AImod,w (CHO)
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Figure 2. Comparison of molecular elemental types of all PM2.5 samples. The pie chart shows the percentage of the different compound
groups in various samples by intensity.

Figure 3. The van Krevelen diagrams of five compounds classes in each sample: (1) PAHs-like – polycyclic aromatic hydrocarbons,
(2) Polyphenols-like – polyphenols and PAHs with aliphatic chains, (3) Phenols-like – highly unsaturated and phenolic compounds,
(4) Aliphatics-like – unsaturated aliphatic compounds, (5) Carbohydrates-like – carbohydrate, saturated fatty and sulfonic acids. Note:
oxygen-poor compounds (O/C≤ 0.5), oxygen-rich compounds (O/C> 0.5).

https://doi.org/10.5194/acp-23-2061-2023 Atmos. Chem. Phys., 23, 2061–2077, 2023



2066 S. Zhong et al.: Impact of biogenic SOA loading on the molecular composition of wintertime PM2.5

>AImod,w (CHOS) ≥AImod,w (CHONS). The DBE values
are also widely used to estimate the degree of unsatura-
tion (Koch and Dittmar, 2006). In this study, the DBEw
also have a similar pattern: DBEw (CHON) >DBEw (CHO)
>DBEw (CHONS) >DBEw (CHOS). Trends in DBEw
and AImod are similar to previous studies, such as DOM
from urban aerosols and biomass-burning particulate mat-
ter (Song et al., 2018; Jiang et al., 2021). This might be be-
cause CHO and CHON compounds are mainly composed of
combustion-derived highly unsaturated and phenolic com-
pounds (Phenols-like), followed by highly aromatic PAHs-
like and Polyphenols-like, while CHOS and CHONS were
mostly Aliphatics-like, Phenols-like, and Carbohydrates-like
with relatively high saturation (Table S3).

3.2 CHO compounds

The CHO compounds, which may contain carboxyl and/or
hydroxyl functional groups, have been widely detected in
the ESI negative mode and identified in water-soluble or-
ganic matter in aerosols and cloud water (Bianco et al., 2018;
Tu et al., 2016; Xie et al., 2020a; Kourtchev et al., 2016).
About 596 to 1967 ions could be assigned to CHO groups
in the PM2.5 samples (Table S2). The intensity contribution
of CHO compounds accounted for 3.6 %–49.3 % of the total
compound in each sample, a difference of 1 order of mag-
nitude (Fig. 2). Both the number and intensity contributions
of CHO compounds decrease significantly with the increase
of biogenic SOA loading, especially during the day, suggest-
ing that biomass burning contributed greatly to the chemical
diversity of CHO compounds.

As shown in Fig. 4a, the CHO compounds are classi-
fied into 13 subgroups based on their O numbers. Most
of the O > 10 subgroups are detected only in the sam-
ples with moderate to high biogenic SOA loading, and the
number increased with SOA concentrations. These high-
oxygen-containing compounds are mainly highly unsatu-
rated Phenols-like compounds (Fig. 4b). Combined with
DBE and carbon number plots (Fig. S3), these unique O-
rich compounds might be lignin-like compounds contain-
ing a single benzene ring, which are particularly sensitive to
the UV light (Qi et al., 2016). In contrast, CHO compounds
containing one oxygen atom existed only in the low SOA-
loading group. Moreover, the number of each CHO subgroup
at night is much greater than that during the day in moderate–
high SOA-loading groups, and the opposite is true in the
low SOA-loading group. These suggest that nocturnal chem-
istry was more efficient than photochemistry in oxidizing and
forming biogenic secondary organic aerosols with high oxy-
gen content at moderate–high SOA loadings, while photo-
chemistry dominates the formation of secondary CHO com-
pounds with low oxygen content at low SOA loadings.

The carbon oxidation state (OSC) is a widely used param-
eter to describe the oxidation processes of complex organic
mixtures (Kroll et al., 2011). The OSC values of semi-volatile

and low-volatility oxidized organic aerosol (SV-OOA and
LV-OOA) range from −1 to +1 and are less than 13 car-
bon atoms, which may be associated with multi-step ox-
idation reactions. The OSC values of biomass-burning or-
ganic aerosol (BBOA) is relatively low, ranging from −0.5
to −1.5, and greater than 7 carbon atoms. Molecules with
OSC values less than−1 and a carbon number greater than 20
may be related to hydrocarbon-like organic aerosol (HOA).
As shown in Fig. 5, the number of molecules in the SV-
OOA and BBOA regions and their peak intensities increase
significantly as the SOA loading increased, suggesting that
the increase of SOA loading might promote the multi-step
oxidation reactions. Some of the high-intensity CHO com-
pounds, such as C19H28O7, C17H26O8, that may be typical
dimers of α-pinene secondary organic aerosol as well as their
homologues in the SV-OOA area, are detected in high and
moderate SOA-loading samples (Fig. S6). However, the rel-
atively high-intensity CHO compounds such as C20H26O3
and C20H30O2, which had DBE values of 8 and 6, and may
be diterpenoid derivatives (dehydroabietic acid and pimaric
acid), are detected in the samples with low SOA loading
(Gómez-González et al., 2012; Kourtchev et al., 2014; Yas-
meen et al., 2011, 2010; Kristensen et al., 2013, 2014; Müller
et al., 2008). The most likely molecular structures of these
α-pinene derivatives are illustrated in Fig. 5. Obviously, the
oxygen content and DBE values of these biogenic secondary
CHO compounds in low SOA-loading groups are signifi-
cantly lower than that of the other two moderate–high SOA-
loading groups. These results indicate that biogenic CHO
compounds are mainly derivatives of monoterpenes, and the
oxygen content of these biogenic SOAs increases signifi-
cantly with the increase of SOA loading, especially monoter-
pene derivatives.

In addition, the effects of natural oxidation processes can
also be observed at the microscale of individual peaks in the
expanded segments of the full-scan mass spectra. For exam-
ple, Fig. 6 shows a ∼ 0.3 Da segment from three daytime
samples. The unique CHO compounds are labeled between
the three daytime samples, respectively. Two and one unique
CHO compounds with higher oxygen content were detected
in the first and second spectra and transferred to species with
lower mass (Fig. 6a and b). On the contrary, there are five
new CHO compounds with lower O content in the spectrum
of samples in the low SOA-loading group – D, and the mass
of these compounds increases with decreasing oxygen con-
tent (Fig. 6c). The DBE value increased with the increase of
oxygen number and OSC, which is consistent with Fig. 5.
These results indicate that secondary CHO organic aerosols
have obvious bias in the formation processes. At low SOA
loads, especially monoterpene derivatives, secondary CHO
organic aerosols are dominated by conjugated polyene com-
pounds with low oxygen content and high saturation, while
with the increase of SOA load, multi-step oxidation formed
the O-rich compounds containing monophenyl ring, which

Atmos. Chem. Phys., 23, 2061–2077, 2023 https://doi.org/10.5194/acp-23-2061-2023
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Figure 4. (a, c, e, g) Classification of CHO, CHON, CHOS, and CHONS compounds into different subgroups based on the number of O
and N atoms in molecules. (b, d, f, h) The number of five compound classifications of all molecules to each sample. The column is the sum
of the formula number in each subgroup.
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Figure 5. The carbon oxidation state (OSC) versus C number of CHO compounds. The size and color bar denote the relative peak intensity
and DBE value. The dashed circles are marked as SV-OOA (semi-volatile oxidized organic aerosol), LV-OOA (low-volatile oxidized organic
aerosol), BBOOA (biomass-burning organic aerosol), and HOA (hydrocarbon-like organic aerosol). The formulae for biogenic SOA com-
pounds with relatively high intensity were C15H18O8, C16H24O8, C19H28O7, C17H26O8, C20H26O3, C20H30O2, respectively. Note that
the proposed structures were representative, not determined.

Figure 6. Mass-scale-expanded segments (0.30 Da) of the broadband mass spectra for CHO compounds. The shift to higher mass defect in
the low SOA-loading group – D sample reflects lower oxygen content and DBE value, and vice versa reflects higher oxygen content and
DBE value in high and moderate SOA-loading groups – D sample.

may be important light-absorbing chromophores in the at-
mosphere (Deng et al., 2022).

3.3 CHON compounds

Large amounts of organic nitrogen compounds are observed
in all PM2.5 samples. The CHON group could be assigned to
272 to 2513 ions in all samples, whose abundance–weight
contribution accounts for 1.0 %–25.3 %, being similar to

Atmos. Chem. Phys., 23, 2061–2077, 2023 https://doi.org/10.5194/acp-23-2061-2023
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CHO (Table S2, Fig. 2). Apparently, in the low SOA-loading
group, the abundance–weight contribution of CHON com-
pounds is significantly higher than that in the other two
groups. Under the moderate–high SOA-loading groups, the
concentration of levoglucosan, a marker of biomass burning,
was about 2 times higher in the nighttime sample than that of
the corresponding daytime samples (Fig. 1, Table 1), indicat-
ing that the intensity of biomass burning was relatively high
at night, the same as was the abundance–weight contribution
of CHON compounds. This is combined with the fact that
most CHON compounds are classified as O-poor Phenols-
like and Polyphenols-like compounds (Fig. 4d), which are
similar to the characteristics of CHON compounds emit-
ted from biomass materials (Song et al., 2018). Several of
the highest intensity nitroaromatic CHON compounds with
C numbers less than 10, such as C7H7N1O4, C8H9N1O3,
C8H7N1O5, C9H9N1O5, C7H5N1O4, are detected in particu-
late matter emitted from combustion processes and potential
contributors to light absorption as BrC chromophores (Song
et al., 2018; Desyaterik et al., 2013; Yan et al., 2020; Iinuma
et al., 2010) (Fig. S4). The CHON compounds are classi-
fied into 24 subgroups based on their N and O numbers, in-
cluding N1On (N1O1 – N1O13) and N2On (N2O2 – N2O12)
subgroups (Fig. 4c); 80 %–100 % of the CHON compounds
have O/N≥ 3. Hence, it can be inferred that most of CHON
compounds in this study contained oxidized nitrogen func-
tional groups such as nitro- (-NO2) and/or organonitrates (-
ONO2). These results suggest that CHON compounds might
be mainly derived from biomass burning, such as nitrophe-
nols, nitrocatechols, nitroguaiacols, and nitrosalicylic acids,
which has also been observed in previous studies (Kourtchev
et al., 2015; Zhang et al., 2013; Song et al., 2018).

The typical α-pinene and isoprene SOA components such
as C10H14N1O5, C6H14N1O7, and C5H7N1O4 (Perraud et
al., 2010; Ng et al., 2008) are not detected in all samples, sug-
gesting that isoprene and monoterpene may not contribute
significantly to secondary CHON aerosols but sesquiterpenes
might. Figure 7a shows the peak intensity distributions of
seven nitrogen-containing SOAs from β-caryophyllene (i.e.,
C10H13N1O3, C12H19N1O6, C16H27N1O7, C15H25N1O8,
C15H27N1O8, C17H29N1O8, and C15H25N1O9) (Chan et al.,
2010). The moderate SOA-loading – D sample with high-
est concentrations of sesquiterpene SOAs have the lowest
relative abundance. In particular, the relative abundance of
C10H13N1O3 in the low SOA-loading – N sample is about
3.5 times that of the high SOA-loading – N sample. The rel-
ative abundance of these compounds in the nighttime sam-
ples is about twice that of the daytime samples. All these
nitrogen-containing SOA compounds are detected in the se-
ries of β-caryophyllene/NOx irradiation experiments (Chan
et al., 2010), but our study demonstrates that nocturnal chem-
istry might be more conducive to sesquiterpene SOA com-
pound formation, especially under low sesquiterpene-loading
conditions.

3.4 CHOS compounds

In our PM2.5 samples, about 853 to 1663 ions are identified
as CHOS, and the intensity contribution ranges from 20.4 %
to 78.8 % (Fig. 2, Table S2). Their intensity contribution in
the low SOA-loading samples (20.4 %–23.4 %) is lower than
those of the moderate–high biogenic SOA-loading groups
(38.0 %–78.8 %). The intensity contribution of daytime sam-
ples is 23.9 %–25.4 % higher than that of corresponding
nighttime samples at moderate SOA loads (Fig. 2a–d), while
it was opposite under the low SOA loads, with a 3 % higher
intensity contribution at night (Fig. 2e and f). As shown in
Table S2, the number of CHOS compounds is 853 in the
low SOA-loading – D sample, which nearly doubles with
increase of SOA loads. The average of AImod,w and DBEw
values of CHOS compounds are significantly lower than that
of CHO and CHON categories, and also much lower than
that of CHOS generated by the combustion of coal (0.31)
and biomass materials (0.13–0.18) (Song et al., 2018). As
shown in Fig. 4e, the identified CHOS formulae are O3S-
O14S class species, with O6−9S being the most abundant. In-
terestingly, almost all the CHOS formulae had O/S ratios
≥ 4, and these CHOS compounds are tentatively regarded
as organosulfates (OSs). The sulfate group (OSO3H) car-
ries four O atoms and readily deprotonates by ESI(–); it has
been identified as contributing significantly to the genera-
tion of SOA (Wang et al., 2016; Lin et al., 2012; Tolocka
and Turpin, 2012). Furthermore, the most abundant CHOS
compounds such as C15H24O7S, C15H28O7S, C15H26O7S,
C10H18O6S, C9H16O6S, C10H18O7S, etc., and their corre-
sponding homologues were detected (Figs. 8, S5 and S6),
which are generated by the oxidation of isoprene, monoter-
pene, and sesquiterpene, respectively (Riva et al., 2016; Pas-
sananti et al., 2016; Surratt et al., 2008; Chan et al., 2010).
These data indicate that the majority of CHOS compounds
are derived primarily from the oxidation of BVOCs, and that
the formation efficiency of nocturnal chemistry and photo-
chemistry varies with biogenic SOA loads.

About half of CHOS compounds are Aliphatics-like com-
pounds, followed by Phenols-like and Carbohydrates-like
compounds with low aromatic degree (Fig. 4f). Not only the
total formulae number, but also the number of each CHOS
subgroup in the moderate–high SOA-loading daytime sam-
ples are significantly higher than that in the correspond-
ing nighttime samples. In contrast, in the case of low bio-
genic SOA loading, it is opposite. Interestingly, the O ≥ 12
organosulfates are identified only in the moderate–high bio-
genic SOA-loading groups, and the formula number is even
slightly higher in the moderate SOA-loading group than that
in high biogenic SOA-loading group (Fig. 4e). Additionally,
305 to 560 OS compounds with high O/S ratios (≥ 10) are
found to be densely distributed in the moderate–high bio-
genic SOA-loading groups compared to the samples with
low SOA loads, particularly in the region of high molecu-
lar weight (HMW > 500 Da) (Fig. 8). Similarly, the number
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Figure 7. (a) Relative abundance distributions of typical CHON compounds derived from β-caryophyllene. Some of the proposed chemical
structures have been reported in a previous study (Chan et al., 2010). (b) Relative abundance distributions of typical nitrooxy–organosulfates.
The hydrolysis reactions and the proposed chemical structures have been reported in a previous study (Lin et al., 2012).

Figure 8. DBE versus molecular weight of CHOS compounds. The color bar and marker size denote the O/S ratios and the relative peak
magnitudes of CHOS compounds. The formulae for biogenic SOA compounds with relatively high intensity were C15H24O7S, C15H28O7S,
C15H26O7S, C10H18O6S, C9H16O6S, and C10H18O7S. Note that the proposed structures were representative, not determined.
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of these HMW OSs is 1.6–2.3 times higher in the daytime
samples with moderate–high biogenic SOA loads than in the
nighttime samples, but only 33 % in the low SOA loads.
Apparently, these high-oxygen-containing compounds are
mainly composed of O-rich Phenols-like and Aliphatics-like
compounds (Fig. 4f), unlike long-chain aliphatic organosul-
fates with a few or no additional functional groups which are
emitted from traffic (Tao et al., 2014). Combined with a DBE
value and C number (Figs. 8 and S5), it could be inferred that
these O-rich species might have alicyclic alkane organosul-
fates containing conjugated polyene, similar to organosul-
fates derived from the oxidation of BVOCs (Chan et al.,
2010; Surratt et al., 2008). The differences between daytime
and nighttime aerosols indicate that photochemical oxidation
should be more beneficial for multi-step oxidation of bio-
genic organosulfates when the biogenic SOA loading is rel-
atively high (Fig. S6). On the other hand, organosulfates are
more likely to be generated by nocturnal chemistry when the
biogenic SOA loading is low.

In addition, it should be noted that C5 organosulfates
(C5H10O5S, C5H10O6S and C5H12O7S, etc.) typically as-
sociated with isoprene (C5H8) in laboratory studies (Sur-
ratt et al., 2008; Chan et al., 2010) are not observed in all
samples. Although the corresponding C6−9 isoprene-related
organosulfate homologues are detected, their relative abun-
dance is low (Figs. 8 and S5). In addition, the concentrations
of isoprene and sesquiterpene SOA tracers were similar in the
moderate–high SOA-loading groups, but monoterpene SOA
differed greatly. These results suggest that isoprene may be
a relatively minor contributor to the population of organosul-
fates in winter, and monoterpene might be the potential con-
tributor to the high-oxygen-containing OSs.

3.5 CHONS compounds

The intensity of CHONS compounds accounts for 5.2 %–
24.3 % of total compounds in all PM2.5 samples. Both the
intensity weighted and number increased with the increase of
biogenic SOA loads (Fig. 2, Table S2). The average OM/OC
ratios of CHONS are much higher than other subgroups (Ta-
ble S2), which is consistent with S atoms in molecules, in-
dicating that the oxidation time of CHONS compounds is
longer or the oxidation efficiency is higher (Altieri et al.,
2009). With the increase of biogenic SOA loading, the num-
ber of CHONS compounds increases dramatically by 1294,
implying that biogenic SOA contributes significantly to the
chemical diversity of CHONS compounds. Similar to CHOS
compounds, the total number of CHONS compounds in the
moderate–high SOA-loading daytime samples is 436 more
than in the nighttime samples, whereas in the low SOA-
loading group, the number of CHONS compounds in the day-
time sample is 55 % than in the nighttime sample.

Based on the N and O atoms, CHONS compounds were
classified into 22 subgroups, including N1OnS1 (N1O3S1-
N1O14S1) and N2OnS1 (N2O5S1-N2O14S1) (Fig. 4g). It

should be noted that more than 70 % of N1OnS1 formu-
lae contain 7 or more O atoms, and about 50 % of N2OnS1
formulae have fewer than 10 O atoms, implying that these
CHONS compounds are probably nitrooxy–organosulfates
(nitrooxy–OSs) containing nitrate (-ONO2) groups (Fig. 4g).
The CHONS compounds are mainly Phenols-like and
Aliphatics-like, followed by Carbohydrates-like (Fig. 4h),
suggesting that these compounds might contain long alkyl
carbon chains character. Similar to CHOS compounds,
CHONS compounds might be formed primarily by the sec-
ondary conversion processes of VOCs at high concentrations
of nitrogen oxide (NOx) (Surratt et al., 2008; Kundu et al.,
2013). The total formulae number and the number of each
CHONS subgroup of daytime samples are both higher than
that of corresponding nighttime samples at moderate and
high SOA loads, while the number is opposite at low SOA
loads (Fig. 4g and h), suggesting that nocturnal chemistry
is more conducive to nitrooxy–OSs generation at low bio-
genic SOA loads, while photochemistry is more efficient for
the formation of nitrooxy–OSs with the increase of biogenic
SOA loads.

Figure 9 shows the DBE, C, and O atomic distributions
in the CHONS compounds. The most abundant nitrooxy–
OSs – C10H17N1O7S1, C10H17N1O9S1, C10H19N1O9S1,
C15H25N1O7S1, C10H18N2O11S1 – which are generated by
the oxidation of α-terpinene, α, β-pinene, β-caryophyllene,
and terpinolene in atmosphere and smog-chamber experi-
ments (Altieri et al., 2009; Kundu et al., 2013; Lin et al.,
2012; Surratt et al., 2008; Chan et al., 2010; Wang et al.,
2021), as well as the corresponding homologues (Fig. S6),
are detected in all samples, highlighting the importance of
BVOCs to form CHONS compounds. It is worth noting that
in the two low SOA-loading samples, the highest abundance
of nitrooxy–OSs with m/z 294.0653 and the molecular for-
mula C10H17N1O7S1 might be formed by the oxidation of α-
pinene in the presence of SO2 and NOx (Kundu et al., 2013;
Altieri et al., 2009), suggesting that CHONS compounds
might be mainly derived from the oxidation of monoterpene
when SOA loading is low, especially pinonic acid and pinic
acid.

Interestingly, most of the N1O12−14S1 and N2OnS1
species were detected only in the moderate and high SOA-
loading samples, and the number of these compounds in
daytime samples was more abundant than in the nighttime
samples (Fig. 4g). According to Table 1, the sum concen-
trations of isoprene SOA tracers in the moderate and high
SOA-loading groups are similar, but the concentrations of
monoterpene SOA tracers were much different. Most of the
relatively high-abundance CHONS compounds are monoter-
pene nitrooxy–OSs. Therefore, our results indicate that the
load of biogenic SOAs is an important factor determining
the oxidation degree, nitrate (-ONO2) content, and chemical
diversity of CHONS compounds.

In particular, previous studies have shown that nitrate (-
ONO2) and/or sulfate (-OSO3H) might undergo hydroly-
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Figure 9. Double-bond equivalent (DBE) versus C number for all the CHONS compounds. The color bar and marker size denote the number
of O atoms and the relative peak intensities of molecular formulae on a logarithmic scale. Note that the proposed structure is representative,
not determined.

sis in the presence of atmospheric water (Lin et al., 2012;
Liu et al., 2012; Hu et al., 2011). Figure 7b shows one
of the hydrolysis reactions of nitrooxy–OSs with relatively
high abundance. Obviously, the terpene-related nitrooxy–
OSs (C10H18N2O11S1) were only observed in the moder-
ate and high SOA-loading groups. In the presence of wa-
ter, the terpene-related nitrooxy–OSs substitutes the nitrate
group with hydroxyl groups by hydrolysis. Therefore, it can
be inferred that the corresponding CHOS and CHONS (N =
1) organosulfates in the studied samples may be generated
through the hydrolysis of nitrooxy–OSs.

4 Conclusions

Four categories of organic compounds, including CHO,
CHON, CHOS, and CHONS species were determined by
ultrahigh-resolution FT-ICR MS in the urban Tianjin dur-
ing winter. Biomass burning was found to contribute signif-
icantly to CHO and CHON compounds; most of the them
are O-poor and highly unsaturated PAHs and (Poly)phenols,
which are important light-absorbing chromophores in the at-
mosphere. There is a significant change for both the number
and abundance–weight contribution between daytime and
nighttime samples at different biogenic SOA loadings. The
nocturnal chemistry is more efficient than photochemistry
in oxidizing and forming secondary CHO and CHON com-
pounds with high oxygen content at moderate–high SOA
loadings, while photochemistry dominates the formation of
secondary CHO and CHON compounds with low oxygen
content at low SOA loadings. The biogenic CHO compounds
are mainly derivatives of monoterpenes. However, nocturnal

chemistry might be more conducive to sesquiterpene SOA
formation, especially under low sesquiterpene-loading con-
ditions.

The S-containing compounds (CHOS and CHONS) are
mainly derived from the oxidation of BVOCs. About 96 %
of S-containing compounds are considered as organosul-
fates and nitrooxy–organosulfates. Compared with CHO and
CHON compounds, high abundances of S-containing com-
pounds with higher H/C ratio and lower DBE and AImod val-
ues are mainly composed of by alicyclic alkane organosul-
fates. With the increasing SOA loading, the contribution
of the number and abundance–weight contribution of S-
containing compounds increased dramatically. The noctur-
nal chemistry is more conducive to nitrooxy–OSs generation
at low biogenic SOA loadings, while photochemistry is more
efficient for nitrooxy–OSs formation with the increase of bio-
genic SOA. Monoterpenes might be potential contributors to
high-oxygen-content organosulfates. Our results show that
the biogenic SOA is an important factor determining the ox-
idation degree, nitrate (-ONO2) content and chemical diver-
sity of S-containing compounds in urban Tianjin. Moreover,
some of the CHOS and CHON1S organosulfates can also be
formed by the hydrolysis of the nitrate group of nitrooxy–
organosulfates.
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