

Supplement of

Experimental chemical budgets of OH, HO₂, and **RO**₂ radicals in rural air in western Germany during the JULIAC campaign 2019

Changmin Cho et al.

Correspondence to: Hendrik Fuchs (h.fuchs@fz-juelich.de) and Anna Novelli (a.novelli@fz-juelich.de)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. HO₂ and RO₂ background signals converted into apparent ambient concentrations used in the evaluation
 of HO₂ and RO₂ measurements. The average background signals originate from the reference experiments in the
 chamber while the upper limits are obtained from calibrations.

19		HO2	HO2	RO2	RO2
20		background 10^7 cm^{-3}	background upper limit	background 10 ⁷ cm ⁻³	background upper limit
21			10^7 cm^{-3}		10^{7} cm^{-3}
22	Winter	0.4±0.6	1.2	0.5±0.2 2.8±0.4ª	2.8
23					
24	Spring	1.0±0.15	2.0	0.5±0.2	2.5
25	Summer	1.0±0.6	2.1	2.8±0.5	5.4
26	Autumn	0.0 ± 0.4	1.5	0.0 ± 0.4	1.5
27	·				

^a Variable background signals that are equivalent to RO₂ concentrations: from 14 Jan. to 25 Jan.: $(0.5\pm0.2) \times 10^7$ cm⁻³, from 26 Jan. to 6 Feb.: $(1.6\pm0.2) \times 10^7$ cm⁻³, from 07 Feb. to 10 Feb.: $(2.8\pm0.4) \times 10^7$ cm⁻³.

30

31

Table S2. List of the used VOCs for the radical budget analysis.

34						
34	Classification	Species	Instrument			
35						
	alkenes	pentene, hexene	VOCUS- PTR-TOF-MS			
36						
37	aromatics	toluene, xylene, benzene, phenol, furan, styrol, cresol	PTR-TOF-MS			
	BVOCs	isoprene, monoterpenes, sesquiterpenes	VOCUS- PTR-TOF-MS			
	OVOCs	acetaldehyde, acetone, acetonitrile, acrolein, adipinic acid, benzaldehyde, butanone, cyclohexanone, formic acid, glycolaldehyde, glycolic acid, hydroxyacetone, methylglyoxal, methyl vinyl ketone, methacrolein, nopinone, pentanone, pinonaldehyde, succinic acid	VOCUS- PTR-TOF-MS			

38	Table S3.	Meteorological and	trace gas cond	itions during the	e specific per	riod for Case 1 a	nd 2.

	Case 1 (05.08	- 08.08.2019)	Case	Case 2 (22.08 - 31.08.2019)		
Parameter	Median	Interquartile	Median	Interquartile		
SAPHIR temperature (°C)	27.0	7.8	31.0	9.1		
H ₂ O (%)	1.44	0.25	1.4	0.5		
OH (10 ⁶ cm ⁻³)	4.5	5.2	4.1	5.7		
$HO_2 (10^8 \text{ cm}^{-3})$	1.4	1.4	2.7	3.8		
$RO_2 (10^8 \text{ cm}^{-3})$	2.1	2.6	2.9	3.1		
O ₃ (ppbv)	37.5	11.3	57.5	37.6		
NO (ppbv)	0.26	0.39	0.22	0.54		
NO ₂ (ppbv)	3.4	2.2	4.3	4.6		
CO (ppmv)	0.12	0.01	0.16	0.03		
HCHO (ppbv)	1.8	0.7	3.4	1.8		
HONO (ppbv)	0.18	0.09	0.21	0.15		
<i>k</i> _{OH} (s ⁻¹)	5.2	1.1	8.7	3.4		
$\overline{k_{\mathrm{VOC}}\left(\mathrm{s}^{-1} ight)}$	3.3	0.9	5.7	3.4		
Total aerosol surface area (10 ⁷ nm ² cm ⁻³)	8.5	2.5	11.2	11.7		

Figure S1: Time series of temperature and trace gas concentrations during the winter period of the JULIAC campaign (Cho et al., 2022). Vertical dashed lines denote midnight. Grey shaded areas indicate calibration days, when no measurements were done and days when the chamber roof was closed due to bad weather conditions.

Figure S2: Time series of temperature and trace gas concentrations during the autumn period of the
JULIAC campaign (Cho et al., 2022). Vertical dashed lines denote midnight. Grey shaded areas indicate
calibration days, when no measurements were done and days when the chamber roof was closed due to

49 bad weather conditions.

Figure S3: Time series of OH, HO₂, and RO₂ radical concentration measured by the FZJ-LIF-CMR instrument and measurements of the OH reactivity (k_{OH}) measured in the winter period of the JULIAC campaign (Cho et al., 2022). Vertical bars represent 1 σ statistical errors. Vertical dashed lines denote midnight. Grey shaded areas indicate calibration days when no measurements were done and days when the chamber roof was closed due to bad weather conditions.

Figure S4: Time series of OH, HO₂, and RO₂ radical concentration measured by the FZJ-LIF-CMR instrument and measurements of the OH reactivity (k_{OH}) measured in the autumn period of the JULIAC campaign (Cho et al., 2022). Vertical bars represent 1 σ statistical errors. Vertical dashed lines denote midnight. Grey shaded areas indicate calibration days when no measurements were done and days when the chamber roof was closed due to bad weather conditions.

Figure S5: Median values of the diurnal profiles of OH, HO₂, RO₂, k_{OH} , j_{O1D} , NO, O₃ measured in the winter and autumn periods of the JULIAC campaign. Colored areas represent the contributions of measured reactants to the total OH reactivity. Vertical lines give 25th and 75th percentile values.

Figure S6: Chemical budgets for OH, HO₂, and RO₂ radicals similar to Figure 12 (only Case 1), using the lower limit of the reaction rate coefficient of the reaction of RO₂ with NO, 7.7×10^{-12} cm³ s⁻¹ (at 298 K for CH₃O₂) to calculate the turnover rate of this reaction. Grey areas indicate the 1 σ uncertainty derived from experimental errors of the measured quantities (Table 2) and of the reaction rate constants (Table 1).

72

- 73
- 74

Figure S7: Experimental budgets for RO_X similar to Figure 11 (Case 1 and 2), using the high limits of alkene

concentrations contributing to radical production by ozonolysis reactions and applying the HO_2 uptake on the

- 78 aerosols (Section 4.2). Grey areas indicate the 1σ uncertainty derived from experimental errors of the measured
- 79 quantities (Table 2) and of the reaction rate constants (Table 1).