

Supplement of

Effects of pH and light exposure on the survival of bacteria and their ability to biodegrade organic compounds in clouds: implications for microbial activity in acidic cloud water

Yushuo Liu et al.

Correspondence to: Theodora Nah (theodora.nah@cityu.edu.hk)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1. Average nucleotide identity (ANI) value of *Enterobacter* strains B00910, pf0910,
and six others. Strain 1: *Enterobacter hormaechei* subsp. oharae DSM 16687; Strain 2: *Enterobacter hormaechei* subsp.hoffmannii DSM 14563; Strain 3: *Enterobacter hormaechei*ATCC 49162; Strain 4: *Enterobacter quasihormaechei*. GCF 004331385.1; Strain 5: *Enterobacter xiangfangensis* LMG27195; Strain 6: *Enterobacter hormaechei* subsp.
steigerwaltii DSM 16691. Strains 1 to 6 are the closest identified neighbors with strains B0910
and pf0910.

Figure S2. Photon flux inside of the photoreactor (black) and actinic flux for a fall day in Hong Kong in the morning (red). One lamp with output centered at ~365 nm (RPR-3500A, Southern New England Ultraviolet Company), four lamps with outputs centered at ~421 nm (RPR-4190A, Southern New England Ultraviolet Company), and three lamps with outputs centered at ~580 nm (RPR-5750A, Southern New England Ultraviolet Company) were used to illuminate solutions in the photoreactor.

34

Figure S3. Heat maps showing the time evolution of (a) water-soluble compounds and (b) 35 water-insoluble compounds from E. hormaechei B0910 during exposure to simulated sunlight 36 at pH 4.3. The heat maps were generated from non-targeted UPLC-MS analysis of samples 37 with different light exposure times. 259 water-soluble compounds and 215 water-insoluble 38 compounds were selected based on PLS-DA results (VIP > 1.0 criteria). The average UPLC-39 MS intensity of each compound at each light exposure time was obtained from the nine 40 replicates. The average UPLC-MS intensities were subsequently log10 transformed and auto 41 scaled (i.e., mean-centered and divided by the standard deviation of each variable). The color 42 43 scale ranges from red color for high abundance to blue for low abundance.

44

Figure S4. Heat maps showing the time evolution of (a) water-soluble compounds and (b) 45 water-insoluble compounds from E. hormaechei pf0910 during exposure to simulated sunlight 46 at pH 4.3. The heat maps were generated from non-targeted UPLC-MS analysis of samples 47 with different light exposure times. 209 water-soluble compounds and 251 water-insoluble 48 compounds were selected based on PLS-DA results (VIP > 1.0 criteria). The average UPLC-49 MS intensity of each compound at each light exposure time was obtained from the nine 50 replicates. The average UPLC-MS intensities were subsequently log10 transformed and auto 51 scaled (i.e., mean-centered and divided by the standard deviation of each variable). The color 52 53 scale ranges from red color for high abundance to blue for low abundance.

54

Figure S5. Time evolution of the UPLC-MS total ion chromatograph (TIC) signals of (a) water-soluble compounds, and (b) water-insoluble compounds from *E. hormaechei* pf0910 during exposure to simulated sunlight at pH 4.3 over time. These compounds are classified based on their chemical functionality. Also shown are the time evolution of the survival rate and ADP/ATP ratio of *E. hormaechei* pf0910.

61 **Figure S6.** Relative abundance of the different classes of (a) water-soluble compounds, and (b)

62 water-insoluble compounds from *E. hormaechei* B0910 during exposure to simulated sunlight

63 at pH 4.3.

Figure S7. Relative abundance of the different classes of (c) water-soluble compounds, and (d)
water-insoluble compounds from *E. hormaechei* pf0910 during exposure to simulated sunlight
at pH 4.3.

69 Figure S8. Van Krevelen diagrams of water-soluble compounds from E. hormaechei B0910 during exposure to simulated sunlight at pH 4.3 taken at different time points of the experiment: 70 (a) 0 h, (b) 2 h, (c) 4 h, (d) 8 h, and (e) 12 h. The color of each symbol denotes its UPLC-MS 71 72 intensity at that specific time point normalized to its maximum UPLC-MS intensity obtained during the entire experiment. Symbols that are colored white indicates that these compounds 73 were not detected at that specific time point. The Van Krevelen diagrams are divided into eight 74 75 chemical classes based on their O/C and H/C ratios: (1) lipids, (2) unsaturated hydrocarbons, (3) condensed aromatic structures, (4) peptides, (5) lignin, (6) tannin, (7) amino sugars, and (8) 76 77 carbohydrates.

78

79 Figure S9. Van Krevelen diagrams of water-insoluble compounds from E. hormaechei B0910 during exposure to simulated sunlight at pH 4.3: (a) 0 h, (b) 2 h, (c) 4 h, (d) 8 h, and (e) 12 h. 80 The color of each symbol denotes its UPLC-MS intensity at that specific time point normalized 81 82 to its maximum UPLC-MS intensity obtained during the entire experiment. Symbols that are colored white indicates that these compounds were not detected at that specific time point. The 83 Van Krevelen diagrams are divided into eight chemical classes based on their O/C and H/C 84 ratios: (1) lipids, (2) unsaturated hydrocarbons, (3) condensed aromatic structures, (4) peptides, 85 86 (5) lignin, (6) tannin, (7) amino sugars, and (8) carbohydrates.

87

88 Figure S10. Van Krevelen diagrams of water-soluble compounds from E. hormaechei pf0910 during exposure to simulated sunlight at pH 4.3: (a) 0 h, (b) 2 h, (c) 4 h, (d) 8 h, and (e) 12 h. 89 The color of each symbol denotes its UPLC-MS intensity at that specific time point normalized 90 91 to its maximum UPLC-MS intensity obtained during the entire experiment. Symbols that are colored white indicates that these compounds were not detected at that specific time point. The 92 Van Krevelen diagrams are divided into eight chemical classes based on their O/C and H/C 93 ratios: (1) lipids, (2) unsaturated hydrocarbons, (3) condensed aromatic structures, (4) peptides, 94 95 (5) lignin, (6) tannin, (7) amino sugars, and (8) carbohydrates.

96

97 Figure S11. Van Krevelen diagrams of water-insoluble compounds from E. hormaechei pf0910 during exposure to simulated sunlight at pH 4.3: (a) 0 h, (b) 2 h, (c) 4 h, (d) 8 h, and (e) 98 12 h. The color of each symbol denotes its UPLC-MS intensity at that specific time point 99 100 normalized to its maximum UPLC-MS intensity obtained during the entire experiment. Symbols that are colored white indicates that these compounds were not detected at that 101 specific time point. The Van Krevelen diagrams are divided into eight chemical classes based 102 103 on their O/C and H/C ratios: (1) lipids, (2) unsaturated hydrocarbons, (3) condensed aromatic structures, (4) peptides, (5) lignin, (6) tannin, (7) amino sugars, and (8) carbohydrates. 104

Figure S12. Biodegradation rates of oxalate, maleate, and malonate by (a) *E. hormaechei* B0910 and (b) *E. hormaechei* pf0910 under light and dark conditions at pH 4.3 and pH 5.9. Error bars represent one standard deviation from the mean of biological triplicates. Statistical analysis was performed using the Student's t test (ns: not significant, *: p value < 0.05, **: pvalue < 0.01, ***: p value < 0.001).

Figure S13. Survival and ADP/ATP ratios of *E. hormaechei* B0910 and *E. hormaechei* pf0910 under illuminated and dark conditions at pH 4.3 and pH 5.9 in the solutions containing the seven organic acids. Error bars represent one standard deviation from the mean of biological triplicates.

116

117

118

Figure S14. Calculated pH-dependent molar fraction of formic acid in the aqueous phase $(\varepsilon(HA(aq)))$ and pH-dependent molar fractions of oxalic acid, malonic acid, and maleic acid in the aqueous phase ($\varepsilon(H_2A(aq))$) under cloud water conditions (Section S6 and Table S8). A liquid water concentration of $10^6 \ \mu g \ m^{-3}$ (Ervens et al., 2011) was assumed in these calculations. A significant fraction of formic acid will be in the gas phase at pH 4 and 5 under cloud water conditions, whereas all of the oxalic acid, malonic acid, and maleic acid will be in the aqueous phase at pH 4 and 5 under cloud water conditions (note that their values overlap one another at $\varepsilon(H_2A(aq)) = 1$). These differences were due primarily to the large differences in their water solubility (i.e., Henry's law constants) (Table S8).

Table S1. Chemical composition of the artificial cloud water used to prepare bacterial cells 142 and perform experiments that investigated the effects of cloud water pH and light exposure on 143 the survival and energetic metabolism of bacteria. In the experiments, the pH of the artificial 144 cloud water was adjusted while keeping the final organic and inorganic ion composition the 145 same.

Organic ion	μΜ	Inorganic ion	μΜ
Formate	17.1	Na^+	93
Acetate	10.2	$\mathrm{NH_4}^+$	235
Pyruvate	2.7	K^+	8
Oxalate	10.3	Mg^{2+}	23
		Ca^{2+}	49
		Cl	138
		SO_4^{2-}	305

Table S2. Chemical composition of the artificial cloud water used for organic acid
biodegradation experiments.

Organic ion	μΜ	Inorganic ion	μΜ
Formate	50	Na^+	930
Acetate	50	$\mathrm{NH_4}^+$	2350
Pyruvate	50	K^+	80
Oxalate	50	Mg^{2+}	230
Succinate	50	Ca^{2+}	490
Maleate	50	Cl	1380
Malonate	50	SO4 ²⁻	3050
Glutarate	50		
MSA	50		

Transporters	Protein subunits	E. hormaechei B0910	E. hormaechei pf0910
	_	CDS	CDS
	Subunit a, AtpB	MOG78_16595	MMW20_13045
	Subunit c, AtpE	MOG78_16590	MMW20_13050
	Subunit b, AtpF	MOG78_16585	MMW20_13055
F1F0-type ATP	Subunit delta, AtpH	MOG78_16580	MMW20_13060
synthase	Subunit alpha, AtpA	MOG78_16575	MMW20_13065
	Subunit gamma, AtpG	MOG78_16570	MMW20_13070
	Subunit beta, AtpD	MOG78_16565	MMW20_13075
	Subunit epsilon, AtpC	MOG78_16560	MMW20_13080
	Potassium-binding ATPase subunit KdpA	MOG78_10080	MMW20_19865
	Potassium-binding ATPase subunit KdpB	MOG78_10085	MMW20_19860
Kdp-type high- affinity potassium	Potassium-binding ATPase subunit KdpC	MOG78_10090	MMW20_19855
transporter	Potassium-binding ATPase subunit KdpF	MOG78_10075	Gene sequence found but CDS is not annotated. (Chromosome genome nucleotide position: 3800683-3800772)
Kup-type low- affinity potassium transporter	Kup	MOG78_16640	MMW20_13000
affinity potassium transporter	Кир	MOG78_16640	MMW20_13000

Table S3. Genes involved in the pH homeostasis in the two *E. hormaechei* strains.

Table S4. Stoichiometric ranges of the eight chemical classes in VK diagrams (Bauer et al.,

168 2002; Jaenicke, 2005).

Chemical class	H/C	O/C
Amino sugar (Burrows et al.,	$1.62 \leq H/C \leq 2.35$	$0.56 \leq O/C \leq 0.95$
2009)		
Carbohydrate (Jaenicke, 2005)	$1.53 \leq H/C \leq 2.20$	$0.56 \le O/C \le 1.23$
Lignin (Möhler et al., 2007)	$0.86 \leq H/C \leq 1.34$	$0.21 \le O/C \le 0.44$
Lipid (Burrows et al., 2009)	$1.34 \le H/C \le 2.18$	$0.01 \le O/C \le 0.35$
Peptide (Attard et al., 2012)	$1.33 \leq H/C \leq 1.84$	$0.17 \le O/C \le 0.48$
Tannin (Hu et al., 2018)	$0.70 \leq \mathrm{H/C} \leq 1.01$	$0.16 \le O/C \le 0.84$
Unsaturated hydrocarbons	$0.67 \le H/C \le 1.5$	$0 \le O/C \le 0.10$
(Amato et al., 2005)		
Condensed aromatic structures	$0.20 \leq H/C \leq 0.67$	$0 \le O/C \le 0.67$
(Delort et al., 2010)		

Table S5. Genes involved in the biodegradation of organic acids in the two *E. hormaechei*

171 strains.

Organic acid	Genes	E. hormae	echei B0910	E. hormae	chei pf0910
		Biodegradation	CDS	Biodegradation	CDS
		Yes/No	Absent/Present	Yes/No	Absent/Present
Formic acid	Formate dehydrogenase	Yes	MOG78_16880; MOG78_16875; MOG78_16870; MOG78_06810	Yes	MMW20_12765; MMW20_12770; MMW20_12775; MMW20_22665
	Oxalate decarboxylase	Yes	Absent	Yes	Absent
	Oxalate oxidase	Yes	Absent	Yes	Absent
Oxalic acid	Formyl- CoA:oxalate CoA-transferase	Yes	Absent	Yes	Absent
	Succinyl- CoA:oxalate CoA-transferase	Yes	Absent	Yes	Absent
	Hypothetical protein (Cupin 2 protein) ^a	Yes	MOG78_20825	Yes	MMW20_08875
	Malonate decarboxylase	Yes	MOG78_18565; MOG78_18550; MOG78_18545; MOG78_18540; MOG78_18530	No	MMW20_11060; MMW20_11075; MMW20_11080; MMW20_11085; MMW20_11095
Malonic acid	Malonate CoA- transferase	Yes	Absent	No	Absent
	Malonate- semialdehyde dehydrogenase	Yes	Absent	No	Absent
	Malonyl- CoA/methylmalon yl-CoA synthetase	Yes	Absent	No	Absent
	Maleate isomerase	Yes	Absent	No	Absent
Maleic acid	Maleate hydratase	Yes	Absent	No	Absent
	3-isopropylmalate dehydratase ^a	Yes	MOG78_13080; MOG78_13075	No	MMW20_17000; MMW20_17005
	Acetyl-CoA synthetase	No	MOG78_14765	No	MMW20_14980
A cetic acid	Acetate kinase	No	MOG78_01250	No	MMW20_05785
	Aldehyde dehydrogenase	No	MOG78_17415	No	MMW20_12230
	ActP ^b	No	MOG78_14775	No	MMW20_14970

	SatP	NO	MOG/8_13283	INO	
Methane	Alkanesulfonate	Ът	MOG78_08820;	Ът	MMW20_21
sulfonic acid	monooxygenase	No	MOG78_08810	No	MMW20_21
Glutaric acid	Succinate- semialdehyde dehydrogenase / glutarate- semialdehyde dehydrogenase ^c	No	MOG78_19060; MOG78_13695	No	MMW20_10 MMW20_16
	Glutaryl-CoA synthetase	No	Absent	No	Absent
	Glutarate dioxygenase	No	Absent	No	Absent
reported fi	i die incruture.				
Table S6. C	oncentration of rad	licals and ce	ells used to estimate t	he loss rates	by biodegradation
Table S6. C and chemica	oncentration of rad	licals and ce e S6.	ells used to estimate t	he loss rates	by biodegradation
Table S6. C and chemica Radi	oncentration of rad al reactions in Table ical concentration/ ell concentration	licals and ce e S6.	ells used to estimate t	he loss rates	by biodegradation
Table S6. C and chemica Rad Ce	oncentration of rad al reactions in Table ical concentration/ ell concentration	licals and ce e S6. R	ells used to estimate t Area Conc Remote 2.2 >	he loss rates centration $< 10^{-14}$	by biodegradation Reference (Vaitilingom et al., 2010)
Table S6. C and chemica Rad Ce	oncentration of rad al reactions in Table ical concentration/ ell concentration ·OH (M)	licals and ce e S6. R N	Area Conc Area 2.2 > Marine 2.0 >	he loss rates centration $< 10^{-14}$ $< 10^{-12}$	by biodegradation Reference (Vaitilingom et al., 2010) (Vaitilingom et al., 2013)
Table S6. C and chemica Rad Ce	oncentration of rad al reactions in Table ical concentration/ ell concentration ·OH (M)	licals and ce e S6. R N	ells used to estimate t Area Conc Remote 2.2 > Marine 2.0 > Urban 3.5 >	he loss rates centration $< 10^{-14}$ $< 10^{-12}$ $< 10^{-15}$	by biodegradation Reference (Vaitilingom et al., 2010) (Vaitilingom et al., 2013) (Morris et al., 2014)
Table S6. C and chemica Rad Ce	oncentration of rad al reactions in Table ical concentration/ ell concentration ·OH (M)	licals and ce e S6. R N I R	ells used to estimate t Area Conc Remote 2.2 > Marine 2.0 > Urban 3.5 > Remote 5.1 >	he loss rates centration $< 10^{-14}$ $< 10^{-12}$ $< 10^{-15}$ $< 10^{-15}$	Reference (Vaitilingom et al., 2010) (Vaitilingom et al., 2013) (Morris et al., 2014) (Morris et al., 2017)
Table S6. C and chemica Rad Ce	oncentration of rad al reactions in Table ical concentration/ ell concentration ·OH (M)	licals and ce e S6. R N I R N	AreaConcAreaConcRemote2.2 >Marine2.0 >Urban3.5 >Remote5.1 >Marine6.9 >	he loss rates centration $< 10^{-14}$ $< 10^{-12}$ $< 10^{-15}$ $< 10^{-15}$ $< 10^{-15}$	Reference (Vaitilingom et al., 2010) (Vaitilingom et al., 2013) (Morris et al., 2014) (Morris et al., 2017) (Hu et al., 2018)
Table S6. C and chemica Rad Ce	oncentration of rad al reactions in Table ical concentration/ ell concentration ·OH (M)	licals and ce e S6. R N I R	AreaConcAreaConcCemote2.2 >Marine2.0 >Urban3.5 >Remote5.1 >Marine6.9 >Urban1.4 >	he loss rates centration $< 10^{-14}$ $< 10^{-12}$ $< 10^{-15}$ $< 10^{-15}$ $< 10^{-15}$ $< 10^{-13}$	by biodegradation Reference (Vaitilingom et al., 2010) (Vaitilingom et al., 2013) (Morris et al., 2014) (Morris et al., 2017) (Hu et al., 2018) (Huang et al., 2021)

180

Table S7. Estimations of the loss rates of formate, oxalate, and malonate by biodegradation and chemical reactions (i.e., •OH oxidation (daytime) and NO₃• (nighttime)). These loss rates were calculated based on 181

concentrations and pH measured at the different sites. Equations used in these calculations can be found in Section S6. References used to obtain the pH of cloud/rainwater and organic acids are indicated in superscripts. 182

The biodegradation and chemical reaction loss rates calculated here were used to generate Figure 5. 183

Daytime 184

				Formate loss rate (M s ⁻¹)				O	s ⁻¹)	
Location (remote)	Category	pН	Formate (µM)	bio (pH ~4)	bio (pH ~5)	·OH (remote)	Oxalate (µM)	bio (pH~4)	bio (pH ~5)	·OH (remote)
Mount Lu(Möhler et al., 2007)	Cloud	3.81 (Vaïtilingom et al., 2012)	10.83 (Wei et al., 2017)	1.34×10 ⁻¹⁰		5.72×10 ⁻¹⁰	4.95 (Zhu et al., 2018)	1.06×10 ⁻¹²		1.74×10 ⁻¹¹
Mount Lu(Wei et al., 2017)	Rain	4.44 (Peng et al., 2019)	10.21 (Amato et al., 2005)	1.26×10 ⁻¹⁰		5.39×10 ⁻¹⁰	2.54 (Burrows et al., 2009)	5.44×10 ⁻¹³		8.92×10 ⁻¹²
Mount Heng(Amato et al., 2017)	Cloud	3.8 (Amato et al., 2005)	19.65 (Amato et al., 2017)	2.43×10 ⁻¹⁰		1.04×10 ⁻⁹	5.11 (Wei et al., 2017)	1.10×10 ⁻¹²		1.80×10 ⁻¹¹
Mount Heng(Delort et al., 2010)	Rain	4.35 (Vaitilingom et al., 2010)	14.30 (Vaitilingom et al., 2013)	1.77×10 ⁻¹⁰		7.55×10 ⁻¹⁰	1.66 (Ervens and Amato, 2020)	3.55×10 ⁻¹³		5.83×10 ⁻¹²
Mangdang Mountain(Ariya et al., 2002)	Rain	4.81 (Husárová et al., 2011)	7.90 (Vaïtilingom et al., 2011)	9.78×10 ⁻¹¹		4.17×10 ⁻¹⁰	1.80 (Jaber et al., 2020)	3.86×10 ⁻¹³		6.34×10 ⁻¹²
Taiwan(Jaber et al., 2021)	Cloud	3.91 (Joly et al., 2015)	5.74 (Davey and O'toole, 2000)	7.11×10 ⁻¹¹		3.03×10 ⁻¹⁰	6.60 (Delort et al., 2010)	1.42×10 ⁻¹²		2.32×10 ⁻¹¹
Kleiner Feldberg, Germany(Flemming and Wingender, 2010)	Cloud	3.9-4.6 (Vaïtilingom et al., 2012)	3.26 (Matulova et al., 2014)	4.03×10 ⁻¹¹		1.72×10 ⁻¹⁰	ND			
Whiteface Mountain, USA(Amato et al., 2005)	Cloud	5.1-4.4 (Peng et al., 2019)	(Amato et al., 2005)	3.12×10 ⁻¹⁰		1.33×10 ⁻⁹	9.66 (Pye et al., 2020)	2.07×10 ⁻¹²		3.40×10 ⁻¹¹
Rax, Austria(Shah et al., 2020)	Cloud	3.84 (Li et al., 2020)	13.25 (Pye et al., 2020)	1.64×10 ⁻¹⁰		7.00×10 ⁻¹⁰	5.11 (Shah et al., 2020)	1.10×10 ⁻¹²		1.80×10 ⁻¹¹
Sonnblick, Austria(Qu and Han, 2021)	Cloud	5.0-6.5 (Anglada et al., 2015)	6.30 (Joly et al., 2015)		9.79×10 ⁻¹¹	3.33×10 ⁻¹⁰	1.89 (Vaïtilingom et al., 2011)		3.61×10 ⁻¹²	6.65×10 ⁻¹²
Mount Tai, China(Joly et al., 2015)	Cloud	4.6 (Jaber et al., 2021)	31.80 (Jaber et al., 2020)	3.94×10 ⁻¹⁰		1.68×10 ⁻⁹	11.10 (Li et al., 2020)	2.38×10 ⁻¹²		3.91×10 ⁻¹¹
Shangzhong(Qu and Han, 2021)	Rain	ND	4.95 (Peng et al., 2019)	6.13×10 ⁻¹¹		2.61×10 ⁻¹⁰	1.16 (Chen et al., 2012)	2.48×10 ⁻¹³		4.07×10 ⁻¹²
São Paulo State, Brazil(Després et al., 2012)	Rain	4.96 (Ding et al., 2015)	7.80 (Zhou et al., 2018)		1.21×10 ⁻¹⁰	4.12×10 ⁻¹⁰	1.20 (Prokof'eva et al., 2021)		2.29×10 ⁻¹²	4.22×10 ⁻¹²

				Formate loss rate (M s ⁻¹)			Oxalate loss rate (M s ⁻¹)			
Location (Marine)	Category	pH	Formate (µM)	bio (pH ~4)	bio (pH ~5)	·OH (marine)	Oxalate (µM)	bio (pH ~4)	bio (pH ~5)	·OH (marine)
Puerto Rico	Cloud	5.5 (Romano et al., 2019)	1.00 (Ruiz- Gil et al., 2020)		1.55×10 ⁻¹¹	4.80×10 ⁻⁹	0.50 (Romano et al., 2021)		9.55×10 ⁻¹³	1.60×10 ⁻¹⁰
Puerto Rico(Tsai and Kuo, 2013)	Rain	5.3 (Löflund et al., 2002)	0.20 (Sun et al., 2016)		3.11×10 ⁻¹²	9.60×10 ⁻¹⁰	0.00 (Li et al., 2020)			

Puy de dome(Vaitilingom et al., 2010)	Cloud	6.1 (Vaïtilingom et al., 2011)	4.90 (George et al., 2015)		7.61×10 ⁻¹¹	2.35×10 ⁻⁸	1.00 (Huang et al., 2018)		1.91×10 ⁻¹²	3.20×10 ⁻¹⁰
				Fo	rmate loss rate (M	s ⁻¹)		0	xalate loss rate (M s	5 ⁻¹)
Location (Urban)			Formate (µM)	bio (pH ~4)	bio (pH ~5)	·OH (urban)	Oxalate (µM)	bio (pH~4)	bio (pH ~5)	·OH (urban)
Shenzhen, South China(Misovich et al., 2021)	Rain	4.56 (Li et al., 2020)	2.26 (Tsai and Kuo, 2013)	2.80×10 ⁻¹¹		1.90×10 ⁻¹¹	0.58 (Löflund et al., 2002)	1.23×10 ⁻¹³		3.22×10 ⁻¹³
Anshun(Sun et al., 2016)	Rain	4.67 (Li et al., 2020)	8.77 (Vaitilingom et al., 2010)	1.09×10 ⁻¹⁰		7.37×10 ⁻¹¹	2.84 (Jaber et al., 2020)	6.09×10 ⁻¹³		1.59×10 ⁻¹²
Newark US East Coast(Jaber et al., 2021)	Rain	4.6 (Vaïtilingom et al., 2011)	4.44 (Jaber et al., 2020)	5.50×10 ⁻¹¹		3.73×10 ⁻¹¹	0.68 (Jaber et al., 2021)	1.46×10 ⁻¹³		3.81×10 ⁻¹³
Hong Kong SAR(Bearson et al., 1997)	Cloud	3.87 (Lund et al., 2014)	17.10 (Bearson et al., 1997)	2.12×10 ⁻¹⁰		1.44×10 ⁻¹⁰	10.30 (Davey and O'toole, 2000)	2.21×10 ⁻¹²		5.77×10 ⁻¹²
Puy de dome(Delort et al., 2010)	Cloud	3.9 (Flemming and Wingender, 2010)	33.20 (Vaïtilingom et al., 2012)	4.11×10 ⁻¹⁰		2.79×10 ⁻¹⁰	9.30 (Matulova et al., 2014)	1.99×10 ⁻¹²		5.21×10 ⁻¹²

185 ND: No data

186 Nighttime

				For	Formate loss rate (M s ⁻¹)			Oxalate loss rate (M s ⁻¹)				Malonate loss rate (M s ⁻¹)		M s ⁻¹)
Location (remote)	Category	pН	Formate (µM)	bio (pH ~4)	bio (pH ~5)	NO ₃ · (remote)	Oxalate (µM)	bio (pH ~4)	bio (pH ~5)	NO ₃ · (remote)	Malonate (µM)	bio (pH ~4)	bio (pH ~5)	NO ₃ · (remote)
Mount Lu(Guan and Liu, 2020)	Cloud	3.81 (Davey and O'toole, 2000)	10.83 (Delort et al., 2010)	1.69×10 ⁻¹⁰		2.32×10 ⁻¹²	4.95 (Flemming and Wingender, 2010) 2.54	2.07×10 ⁻¹²		1.11×10 ⁻¹²	ND			
Mount Lu(Vaïtilingom et al., 2012)	Rain	4.44 (Matulova et al., 2014)	10.21 (Bianco et al., 2018)	1.59×10 ⁻¹⁰		2.19×10 ⁻¹²	(Laszakovit s and Mackay, 2022)	1.06×10 ⁻¹²		5.69×10 ⁻¹³	ND			
Mount Heng(Watson et al., 2007)	Cloud	3.8 (Rivas- Ubach et al., 2018)	19.65 (Matulova et al., 2014)	3.06×10 ⁻¹⁰		4.21×10 ⁻¹²	5.11 (Bianco et al., 2016)	2.14×10 ⁻¹²		1.15×10 ⁻¹²	ND			
Mount Heng(Tyagi et al., 2015)	Rain	4.35 (Jaber et al., 2021)	14.30 (Bianco et al., 2019)	2.23×10 ⁻¹⁰		3.06×10 ⁻¹²	(Vaitilingo m et al., 2010)	6.94×10 ⁻¹³		3.71×10 ⁻¹³	ND			
Mangdang Mountain(Vaïtilingom et al., 2011)	Rain	4.81 (Fankhause r et al., 2019)	7.90 (Makuc et al., 2001)	1.23×10 ⁻¹⁰		1.69×10 ⁻¹²	1.80 (Tilgner et al., 2021)	7.55×10 ⁻¹³		4.04×10 ⁻¹³	1.40 (Koutny et al., 2006)		5.16×10 ⁻¹²	4.00×10 ⁻¹⁴
Taiwan(Guan and Liu, 2020)	Cloud	(Vaïtilingo m et al., 2011)	5.74 (Jaber et al., 2020)	8.95×10 ⁻¹¹		1.23×10 ⁻¹²	6.60 (Jaber et al., 2021)	2.77×10 ⁻¹²		1.48×10 ⁻¹²	0.16 (Herrmann et al., 2010)	3.65×10 ⁻¹⁴		4.57×10 ⁻¹⁵

Kleiner Feldberg,		3.9-4.6	3.26 (Jaber et	11										
Germany(Vaïtilingom et al., 2011)	Cloud	(Jaber et al., 2020)	al., 2021)	5.08×10-11		6.98×10 ⁻¹³	ND				ND			
Whiteface Mountain,	C1 1	3.1-4.4	25.20	2.02.10-10		5 40 10-12	9.66 (Vaitilingo	4.05 10-12		2.17 10-12	7.69	1.75 10-12		2 20 10-13
USA(Herrmann et al., 2010)	Cloud	(Ervens et al., 2003)	(Herrmann et al., 2010)	3.93×10 ¹⁰		5.40×10 ¹²	m et al., 2010)	4.05×10 ¹²		2.1/×10 ¹²	(Vaitilingom et al., 2011)	1./5×10 ¹²		2.20×10 ¹³
Rax, Austria(Fankhauser et	Cloud	3.84 (Pye et	13.25 (Li et al.,	2.07×10 ⁻¹⁰		2.84×10 ⁻¹²	5.11 (Pye et	2.14×10 ⁻¹²		1.15×10 ⁻¹²	1.92 (Shah et	4.38×10 ⁻¹³		5.49×10 ⁻¹⁴
al., 2019)		al., 2020)	2020)				al., 2020)				al., 2020)			
Sonnblick, Austria(Qu	Cloud	(Vaïtilingo	6.30 (Zhu et al.,		1.32×10 ⁻¹⁰	1.35×10 ⁻¹²	1.89 (Peng		1.19×10 ⁻¹¹	4.24×10 ⁻¹³	0.38 (Ariya et		1.42×10^{-12}	1.10×10 ⁻¹⁴
and Han, 2021)	01000	m et al., 2012)	2018)				et al., 2019)				al., 2002)			
Mount Tai,		4.6					11.10 (Vaïtilingo							
China(Vaitilingom et al., 2010)	Cloud	(Husárová et al., 2011)	31.80	4.96×10 ⁻¹⁰		6.81×10 ⁻¹²	m et al.,	4.65×10 ⁻¹²		2.49×10 ⁻¹²	ND			
Shangzhong(Xu et al.,	Rain	, , ,	1 95	7 71×10 ⁻¹¹		1.06×10^{-12}	2011)	4 84×10 ⁻¹³		2 59×10 ⁻¹³	ND			
2009) São Paulo State	Kalli	4 96	4.95	7.71×10		1.00×10	1.10	4.04×10		2.39×10	ND			
Brazil(Coelho et al., 2011)	Rain	(Coelho et al., 2011)	7.80 (Coelho et al., 2011)		1.63×10 ⁻¹⁰	1.67×10 ⁻¹²	(Coelho et al., 2011)		7.57×10 ⁻¹²	2.69×10 ⁻¹³	ND			
				For	rmate loss rate (l	M s ⁻¹)	Orralata	Oxa	alate loss rate (N	1 s ⁻¹)	Malamata	Ma	alonate loss rate (M s ⁻¹)
Location (marine)		pH	Formate (μM)	bio (pH ~4)	bio (pH ~5)	NO ₃ · (marine)	(µM)	bio (pH ~4)	bio (pH ~5)	NO ₃ · (marine)	(µM)	bio (pH ~4)	bio (pH ~5)	NO ₃ · (marine)
Puerto Rico(Gioda et al., 2011)	Cloud	5.5 (Gioda et al., 2011)	1.00 (Gioda et al., 2011)		2.09×10 ⁻¹¹	2.90×10 ⁻¹³	0.50 (Gioda et al., 2011)		3.16×10 ⁻¹²	1.52×10 ⁻¹³	ND			
Puerto Rico(Gioda et al., 2011)	Rain	5.3 (Gioda et al., 2011)	0.20 (Gioda et al., 2011)		4.19×10 ⁻¹²	5.80×10 ⁻¹⁴	ND				ND			
Puv de		6.1	4.90				1.00				0.40			
dôme(Vaitilingom et	Cloud	(Vaitilingo m et al.,	(Vaitilingom et		1.03×10 ⁻¹⁰	1.42×10 ⁻¹²	(Vaitilingo m et al.,		6.31×10 ⁻¹²	3.04×10 ⁻¹³	(Vaïtilingom et		1.47×10 ⁻¹²	1.55×10^{-14}
al., 2013)		2013)	al., 2015)				2013)				al., 2012)			
				For	rmate loss rate (1	M s ⁻¹)		Oxa	alate loss rate (N	(1 s ⁻¹)		Ma	alonate loss rate (M s ⁻¹)
Location (urban)		pH	Formate (μM)	bio (pH ~4)	bio (pH ~5)	NO ₃ · (urban)	Oxalate (µM)	bio (pH ~4)	bio (pH ~5)	NO ₃ · (urban)	Malonate (µM)	bio (pH ~4)	bio (pH ~5)	NO ₃ · (urban)
Shenzhen, South China(Huang et al	Rain	4.56 (Huang et	2.26 (Huang et	3 52×10 ⁻¹¹		1 33×10 ⁻¹¹	0.58 (Huang et	2.41×10^{-13}		3 54×10 ⁻¹²	ND			
2010)	Ttuili	al., 2010)	al., 2010)	0.02 10		100 10	al., 2010)							
Anshun(Zhang et al., 2011)	Rain	4.67 (Zhang et al., 2011)	8.77 (Zhang et al., 2011)	1.37×10 ⁻¹⁰		5.16×10 ⁻¹¹	2.84 (Zhang et al., 2011)	1.19×10 ⁻¹²		1.75×10 ⁻¹¹	ND			
Newark US East Coast(Song and Gao,	Rain	4.6 (Song and Gao,	4.44 (Song and Gao, 2009)	6.92×10 ⁻¹¹		2.61×10 ⁻¹¹	0.68 (Song and Gao,	2.85×10 ⁻¹³		4.19×10 ⁻¹²	0.29(Song and Gao, 2009)	6.61×10 ⁻¹⁴		2.27×10 ⁻¹³
2009) Hong Kong SAR(Li et		2009) 3.87 (Li et	17.10 (Li et al.,	266-10-10		1.01.10-10	2009) 10.30 (Li et	4 22 - 10-12		6 24. 10-11	1.36 (Zhao et	2 10×10-13		1.07.10-12
al., 2020)	Cloud	al., 2020)	2020)	2.00×10		1.01×10 ···	al., 2020) 9 30	4.32×10 **		0.34×10 ···	al., 2019)	5.10×10 ¹⁰		1.0/×10 **
Puy de dome(Vaitilingom et	Cloud	(Vaitilingo	33.20 (Vaitilingom et	5.17×10 ⁻¹⁰		1.95×10 ⁻¹⁰	(Vaitilingo	3.90×10 ⁻¹²		5.73×10 ⁻¹¹	3.50 (Vaitilingom et	7.97×10 ⁻¹³		2.74×10 ⁻¹²
al., 2013)		m et al., 2013)	al., 2013)			-	m et al., 2013)	-		-	al., 2013)			-

187 ND: No data

188 Table S8. Acid dissociation constants and Henry's law coefficients at 25 °C used to generate

Organic acid	First acid	Second acid	Henry's law constant		
	dissociation constant	dissociation constant	$(H_{HA} \text{ or } H_{H_2A})$		
	$(K_{a1}) \pmod{L^{-1}}$	$(K_{a2}) \pmod{L^{-1}}$	$(mol L^{-1} atm^{-1})$		
Formic acid	1.78×10^{-4}	Not applicable	9.53×10^{3}		
	(Haynes, 2014)				
Oxalic acid	5.62×10^{-2}	1.55×10^{-4}	6.11×10^{8}		
	(Haynes, 2014)	(Haynes, 2014)	(Nah et al., 2018) ^a		
Malonic acid	1.48×10^{-3}	2.04×10^{-6}	3.85×10^{10}		
	(Williams, 2022)	(Williams, 2022)	(Compernolle and		
			Müller, 2014)		
Maleic acid	1.26×10^{-2}	8.51×10^{-7}	1.42×10^{10}		
	(Weast and Astle,	(Weast and Astle,	(Lide and Frederikse,		
	1981)	1981)	1995)		

189 $\varepsilon(HA(aq))$ and $\varepsilon(H_2A(aq))$ S curves in Figure S14

^aWhile we used the Henry's law coefficient provided by Nah et al. (2018), it should be noted

that the authors obtained this value by taking the average of $H_{C_2H_2O_4}$ values provided by Clegg et al. (1996), Compernolle and Muller (2014) and Saxena and Hildemann (1996), and

accounted for the effect of temperature using the equations provided by Sander (2015).

194

195 Section S1. Genome assembly, annotation, and taxonomic analysis

Genome assembly of the sequencing reads was performed using the NECAT pipeline 196 (v0.0.1 update20200803) (Chen et al., 2021) with the default parameters. The reads were first 197 corrected (PREP OUTPUT COVERAGE = 40, CNS OUTPUT COVERAGE = 30, 198 MIN READ LENGTH = 3000) and then the corrected reads were assembled 199 (OVLP FAST OPTIONS = -n 500 -z 20 -b 2000 -e 0.5 -j 0 -u 1 -a 1000, 200 OVLP SENSITIVE OPTIONS = -n 500 - z 10 - e 0.5 - j 0 - u 1 - a 1000). Both the correction 201 202 and assembly steps were progressive with multiple processing steps to improve the accuracy and completeness. The quality of the assembled genomes was evaluated using the 203 Benchmarking Universal Single-copy Orthologs (BUSCO v5.3.1) tool based on the database 204 of enterobacterales odb10 (Manni et al., 2021). For both strains B00910 and pf0910, complete 205 circular chromosomes and plasmids were obtained. 206

207 Genome annotation was performed using Prokka (v1.14.6) (Seemann, 2014) with the 208 default parameters. Whole genome-based taxonomic analysis was conducted using the Type (Strain) Genome Server (TYGS) (Meier-Kolthoff and Göker, 2019). Average Nucleotide
Identity (ANI) was calculated by fastANI (v1.33) (Jain et al., 2018). Metabolic pathways were
analyzed using the KEGG Mapper (Kanehisa et al., 2022) and the RAST server (Aziz et al.,
2008). The sequences of the two genomes have been deposited in NCBI under the BioProject
number PRJNA812965.

Section S2. Extraction of water-insoluble and water-soluble biological material and organic compounds for UPLC-MS analysis

216 A modified Bligh & Dyer (BD) protocol was performed to extract water-insoluble organic compounds (Sündermann et al., 2016). Briefly, 3 mL of methanol (Duskan, LC-MS 217 grade)/chloroform (RCI, HPLC grade) (1:2, v/v) was added to a filtered 5 mL sample solution 218 219 and vortexed for 5 min, after which the samples were centrifuged at 3000 rpm for 10 min at 10 °C. The bottom layer was collected into a clean 2 mL centrifuge tube and dried in a concentrator 220 221 using nitrogen gas. The dried extracts were redissolved in 500 µL of acetonitrile (Duskan, LC-222 MS grade) and stored at -20 °C prior to UPLC-MS analysis. Solid-phase extraction (SPE) was performed to remove the inorganic salts and extract the water-soluble organic compounds using 223 hydrophobic lipophilic balanced (HLB) cartridges (Oasis HLB, 6cc 500 mg). The HLB 224 cartridges were first preconditioned with 1 mL methanol and 2 mL Milli-Q water. A 10 mL 225 filtered sample solution was then loaded into the SPE cartridge and washed with 20 mL Milli-226 Q water under vacuum at a flow rate of 5 mL/min. The elution was performed by adding 1.5 227 mL methanol (Duskan, LC-MS grade). The eluent was evaporated to dryness under nitrogen 228 gas and reconstituted in 500 µL acetonitrile (Duskan, LC-MS grade). 229

230 Section S3. UPLC-MS operation, data processing, and statistical analysis

231 Chromatographic separation was performed on a Kinetex HILIC LC column (100×2.1 232 mm, 2.6 µm, 100 Å, Phenomenex). The flow rate was fixed at 0.3 mL/min with ultra-pure 233 water containing 5 mM ammonium acetate (Fisher, LC-MS grade) as mobile phase A and 234 acetonitrile (Duskan, LC-MS grade) for mobile phase B. The following gradient program was 235 used: 0 to 2 min 95% A; 2 to 4 min linear gradient to 80% B; 4 to 11 min linear gradient to

65% B; 11 to 12.5 min 65% B; 12.5 to 13 min linear gradient to 95% B; 13 to 15 min 236 equilibration wash with 95% B. Injection volume was set at 10 uL. The information dependent 237 analysis (IDA) acquisition was acquired with MS scan (100 to 1200 m/z) followed by MS/MS 238 scan (50 to 1200 m/z) in positive ion mode. The following MS conditions were used: 30 PSI 239 curtain gas, 60 PSI ion source gas, 3000 V ESI ion spray voltage, 320 °C source temperature, 240 10 V collision energy for MS, and 80 V declustering potential. MS/MS was acquired with a 241 242 collision energy was 20 V with 5 V spread. The raw MS data was processed for peak detection, retention time correction, alignment, and integration using the XCMS software built into the 243 web-based Galaxy platform (https://umsa.cerit-sc.cz/) (Gowda et al., 2014). The processed data 244 was then uploaded to MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/) (Pang et al., 2021) 245 246 to identify cellular compounds that had prominent ion intensities.

The raw UPLC-MS data first underwent preprocessing, normalization, and quality 247 control steps using the XCMS software built into the web-based Galaxy platform (available at: 248 https://umsa.cerit-sc.cz/). The raw data was processed for peak detection, alignment, and 249 framing. This generated a table that displayed the retention time, mass-to-charge ratio (m/z), 250 251 and the intensity/peak area for each peak. The quality control step was performed to assess the 252 stability of the intensities of peaks ("features") between samples. This was performed using 253 quality control samples, which were mixtures of equal amounts of experimental samples taken at each time point of the experiment. The relative standard deviation (RSD) of each feature in 254 the quality control sample was compared to those in the experimental samples. Features with 255 256 higher RSD in the quality control sample than in the experimental samples were excluded, while features with RSD < 30% were retained for further analysis. Multivariable statistical 257 analysis was performed on the retained features using principal component analysis (PCA) with 258 259 95% confidence ellipse and partial least squares discrimination analysis (PLS-DA) to identify 260 potential discriminations between the experimental samples. Heatmaps were generated to determine how the retained features changed at different time points during the experiment. A 261 selection of discriminant ions and buckets was done based on the variable importance in 262 projection (VIP) values. Features with VIP values greater than 1.0 were used for the 263 identification step. MS/MS analysis was performed for the structural identification of 264

compounds. The structure of each compound was deduced based on its adducts, isotopes, and MS/MS fragments using the SCIEX OS-Q software (AB Sciex). Information about compounds' chemical structures, m/z, and retention times were subsequently uploaded to MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/), which used this information to identify the compounds.

270 Section S4. IC operation

Organic acid concentrations were measured using a Dionex ICS-1100 (ThermoFisher Scientific) system. Separation was achieved using a Dionex IonPac AS18 (4×250 mm) anion exchange column (Thermo Scientific) equipped with a Dionex IonPac AG18 (4×50 mm) guard column (Thermo Scientific). 16 mM potassium hydroxide (Fisher, $\geq 85\%$) was used as the mobile phase at a flow rate of 1.0 mL/min for a 30 min run time. Each aliquot of solution was passed through a syringe filter before IC analysis.

277 Section S5. Estimation of biodegradation and chemical reaction rates (M s⁻¹) in cloud 278 water

279 **S5.1. Biodegradation**

The decay in the concentration of a specific organic acid as a function of time (0 to 12 hours) during a biodegradation experiment can be described by the following equation:

282
$$\frac{d[Acid]}{dt} = k'_{cell} \times [Acid] = k_{cell,acid} \times [cell]_{experiment} \times [Acid]_{experiment}$$

where $k'_{cell}(s^{-1})$ is the pseudo first order rate constant obtained from fitting the decay of the organic acid, and $[Acid]_{experiment}$ (mol L^{-1}) is the initial concentration of the organic acid used in the biodegradation experiment. k'_{cell} is the product of the concentration of bacteria cells used in the experiment ($[cell]_{experiment}, cell L^{-1}$) and the biodegradation rate constant ($k_{cell,acid}, L cell^{-1}s^{-1}$).

288 The loss rate of the organic acid in cloud water resulting from biodegradation is:

289
$$\frac{d[Acid]_{cloud}}{dt} = k_{cell,acid} \times [cell]_{cloud} \times [Acid]_{cloud}$$

where $[cell]_{cloud}$ (cell L^{-1}) is the concentration of bacteria cells present in cloud water, and [Acid]_{cloud} (mol L^{-1}) is the concentration of the organic in cloud water.

292 S5.2. Chemical reactions

293 The loss rates of the organic acid in cloud water resulting from reactions with \cdot OH and 294 NO₃· are:

295
$$\frac{d[Acid]_{cloud}}{dt} = k_{OH,acid} \times [\cdot OH]_{cloud} \times [Acid]_{cloud}$$

296
$$\frac{d[Acid]_{cloud}}{dt} = k_{NO3,acid} \times [NO_3 \cdot]_{cloud} \times [Acid]_{cloud}$$

where $k_{OH,acid}$ ($L \ mol^{-1}s^{-1}$) and $k_{NO3,acid}$ ($L \ mol^{-1}s^{-1}$) are the rate constants for the reactions of the organic acid with \cdot OH and NO₃ \cdot , respectively, and [$\cdot OH$]_{cloud} (mol L^{-1}) and [$NO_3 \cdot$]_{cloud} (mol L^{-1}) are the concentrations of \cdot OH and NO₃ \cdot in cloud water, respectively.

300 Section S6. Gas-aqueous phase partitioning of monocarboxylic and dicarboxylic acids

Meskhidze et al. (2003) and Guo et al. (2016) previously introduced the concept of "S curves", which describe how the pH of the aqueous phase affects the gas-aqueous partitioning of acidic and basic species. It is assumed that the equilibrium between gas and aqueous phases involves the dissolution of the acidic/basic species into the aqueous phase, followed by the dissociation of the dissolved species. Assuming unity activity coefficients, for monocarboxylic acids (HA, e.g., formic acid), the pH-dependence of the molar fraction of HA in the aqueous phase ($\varepsilon(HA(aq))$) is described by the following equation (Nah et al., 2018):

308
$$\varepsilon(HA(aq)) = \frac{H_{HA}WRT(10^{-pH} + K_{a1}) \times 0.987 \times 10^{-14}}{10^{-pH} + H_{HA}WRT(10^{-pH} + K_{a1}) \times 0.987 \times 10^{-14}}$$

where *W* is liquid water concentration (μ g m⁻³), *H*_{HA} (mole L⁻¹ atm⁻¹) is the Henry's law constants for monocarboxylic acid, *K*_{a1} (mole L⁻¹) is the first acid dissociation constant, *R* is the gas constant (8.314 m³ Pa K⁻¹ mol⁻¹), and *T* is temperature (K). The complete derivation for $\varepsilon(HA(aq))$ can be found in the SI of Guo et al. (2015).

313 Assuming unity activity coefficients, for dicarboxylic acids (H₂A, e.g., oxalic acid,

malonic acid, and maleic acid), the pH-dependence of the molar fraction of H₂A in the aqueous phase ($\varepsilon(H_2A(aq))$) can eventually be simplified to the following equation (Nah et al., 2018):

316
$$\varepsilon(H_2A(aq)) \cong \frac{H_{H_2A}WRT(10^{-pH} + K_{a1}) \times 0.987 \times 10^{-14}}{10^{-pH} + H_{H_2A}WRT(10^{-pH} + K_{a1}) \times 0.987 \times 10^{-14}}$$

where *W* is liquid water concentration (μ g m⁻³), H_{H_2A} (mole L⁻¹ atm⁻¹) is the Henry's law constants for monocarboxylic acid, K_{a1} (mole L⁻¹) is the first acid dissociation constant, *R* is the gas constant (8.314 m³ Pa K⁻¹ mol⁻¹), and *T* is temperature (K). The complete derivation for $\varepsilon(H_2A(aq))$ can be found in the SI of Nah et al. (2018), which also includes discussions of the assumptions made during the derivation process which will lead to the disappearance of the second acid dissociation constant (K_{a2}) term during the process of simplifying the equation.

323

324 **References**

Amato, P., Ménager, M., Sancelme, M., Laj, P., Mailhot, G., and Delort, A.-M.: Microbial
population in cloud water at the Puy de Dôme: Implications for the chemistry of clouds,
Atmospheric Environment, 39, 4143-4153, <u>https://doi.org/10.1016/j.atmosenv.2005.04.002</u>,
2005.

Amato, P., Joly, M., Besaury, L., Oudart, A., Taib, N., Mone, A. I., Deguillaume, L., Delort, A.

330 M., and Debroas, D.: Active microorganisms thrive among extremely diverse communities in

cloud water, PLoS One, 12, e0182869, 10.1371/journal.pone.0182869, 2017.

Anglada, J. M., Martins-Costa, M., Francisco, J. S., and Ruiz-Lopez, M. F.: Interconnection of
 reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and
 biological processes, Accounts of chemical research, 48, 575-583,
 <u>https://doi.org/10.1021/ar500412p</u>, 2015.

Ariya, P. A., Nepotchatykh, O., Ignatova, O., and Amyot, M.: Microbiological degradation of
atmospheric organic compounds, Geophysical Research Letters, 29, 34-31-34-34,
10.1029/2002gl015637, 2002.

- 339 Attard, E., Yang, H., Delort, A. M., Amato, P., Pöschl, U., Glaux, C., Koop, T., and Morris, C.
- E.: Effects of atmospheric conditions on ice nucleation activity of Pseudomonas, Atmospheric chemistry and Physics, 12, 10667-10677, https://doi.org/10.5194/acp-12-10667-2012, 2012.
- Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K.,
- 343 Gerdes, S., Glass, E. M., and Kubal, M.: The RAST Server: rapid annotations using subsystems

- technology, BMC genomics, 9, 1-15, <u>https://doi.org/10.1186/1471-2164-9-75</u>, 2008.
- 345 Bauer, H., Kasper-Giebl, A., Loflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., and

Puxbaum, H.: The contribution of bacteria and fungal spores to the organic carbon content of
cloud water, precipitation and aerosols, Atmospheric Research, 64, 109-119,
https://doi.org/10.1016/s0169-8095(02)00084-4, 2002.

- Bearson, S., Bearson, B., and Foster, J. W.: Acid stress responses in enterobacteria, Fems
 Microbiology Letters, 147, 173-180, <u>https://doi.org/10.1111/j.1574-6968.1997.tb10238.x</u>,
 1997.
- Bianco, A., Voyard, G., Deguillaume, L., Mailhot, G., and Brigante, M.: Improving the characterization of dissolved organic carbon in cloud water: Amino acids and their impact on the oxidant capacity, Sci Rep, 6, 37420, 10.1038/srep37420, 2016.
- 355 Bianco, A., Deguillaume, L., Chaumerliac, N., Vaitilingom, M., Wang, M., Delort, A. M., and
- 356 Bridoux, M. C.: Effect of endogenous microbiota on the molecular composition of cloud water:
- 357 a study by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), Sci
- 358 Rep, 9, 7663, 10.1038/s41598-019-44149-8, 2019.
- Bianco, A., Deguillaume, L., Vaitilingom, M., Nicol, E., Baray, J. L., Chaumerliac, N., and
 Bridoux, M.: Molecular Characterization of Cloud Water Samples Collected at the Puy de
 Dome (France) by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry,
 Environmental Science & Technology, 52, 10275-10285,
 <u>https://doi.org/10.1021/acs.est.8b01964</u>, 2018.
- Burrows, S. M., Elbert, W., Lawrence, M. G., and Poschl, U.: Bacteria in the global atmosphere
 Part 1: Review and synthesis of literature data for different ecosystems, Atmospheric
 Chemistry and Physics, 9, 9263-9280, https://doi.org/10.5194/acp-9-9263-2009, 2009.
- 367 Chen, X., Ran, P., Ho, K., Lu, W., Li, B., Gu, Z., Song, C., and Wang, J.: Concentrations and
- Size Distributions of Airborne Microorganisms in Guangzhou during Summer, Aerosol and Air
 Ouality Research, 12, 1336-1344, https://doi.org/10.4209/aagr.2012.03.0066, 2012.
- Chen, Y., Nie, F., Xie, S.-Q., Zheng, Y.-F., Dai, Q., Bray, T., Wang, Y.-X., Xing, J.-F., Huang,
 Z.-J., and Wang, D.-P.: Efficient assembly of nanopore reads via highly accurate and intact
 error correction, Nature Communications, 12, 1-10, <u>https://doi.org/10.1038/s41467-020-</u>
 20236-7, 2021.
- Clegg, S. L., Brimblecombe, P., and Khan, L.: The Henry's law constant of oxalic acid and its
 partitioning into the atmospheric aerosol, Idojaras, 100, 51-68, 1996.
- Coelho, C. H., Allen, A. G., Fornaro, A., Orlando, E. A., Grigoletto, T. L., and Campos, M. L.
 A.: Wet deposition of major ions in a rural area impacted by biomass burning emissions,
 Atmospheric environment, 45, 5260-5265, <u>https://doi.org/10.1016/j.atmosenv.2011.06.063</u>,
 2011.

Compernolle, S. and Müller, J. F.: Henry's law constants of diacids and hydroxy polyacids:
recommended values, Atmos. Chem. Phys., 14, 2699-2712, <u>https://doi.org/10.5194/acp-14-</u>
2699-2014, 2014.

Davey, M. E. and O'toole, G. A.: Microbial biofilms: from ecology to molecular genetics,
Microbiology and molecular biology reviews, 64, 847-867,
https://doi.org/10.1128/MMBR.64.4.847-867.2000, 2000.

- Delort, A.-M., Vaïtilingom, M., Amato, P., Sancelme, M., Parazols, M., Mailhot, G., Laj, P.,
 and Deguillaume, L.: A short overview of the microbial population in clouds: Potential roles in
 atmospheric chemistry and nucleation processes, Atmospheric Research, 98, 249-260,
 10.1016/j.atmosres.2010.07.004, 2010.
- Després, V., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A., Buryak, G., FröhlichNowoisky, J., Elbert, W., Andreae, M., Pöschl, U., and Jaenicke, R.: Primary biological aerosol
 particles in the atmosphere: a review, Tellus B: Chemical and Physical Meteorology, 64,
 <u>https://doi.org/10.3402/tellusb.v64i0.15598</u>, 2012.
- Ding, W., Li, L., Han, Y., Liu, J., and Liu, J.: Site-related and seasonal variation of bioaerosol
 emission in an indoor wastewater treatment station: level, characteristics of particle size, and
 microbial structure, Aerobiologia, 32, 211-224, <u>https://doi.org/10.1007/s10453-015-9391-5</u>,
 2015.
- Ervens, B. and Amato, P.: The global impact of bacterial processes on carbon mass,
 Atmospheric Chemistry and Physics, 20, 1777-1794, <u>https://doi.org/10.5194/acp-20-1777-</u>
 2020, 2020.
- 401 Ervens, B., Gligorovski, S., and Herrmann, H.: Temperature-dependent rate constants for 402 hydroxyl radical reactions with organic compounds in aqueous solutions, Physical Chemistry
- 403 Chemical Physics, 5, 1811-1824, <u>https://doi.org/10.1039/B300072A</u>, 2003.
- Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud
 droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos.
 Chem. Phys., 11, 11069-11102, 10.5194/acp-11-11069-2011, 2011.
- Fankhauser, A. M., Antonio, D. D., Krell, A., Alston, S. J., Banta, S., and McNeill, V. F.:
 Constraining the Impact of Bacteria on the Aqueous Atmospheric Chemistry of Small Organic
 Compounds, ACS Earth and Space Chemistry, 3, 1485-1491,
 10.1021/acsearthspacechem.9b00054, 2019.
- Flemming, H. C. and Wingender, J.: The biofilm matrix, Nature Reviews Microbiology, 8, 623633, <u>https://doi.org/10.1038/nrmicro2415</u>, 2010.
- 413 George, K. M., Ruthenburg, T. C., Smith, J., Yu, L., Zhang, Q., Anastasio, C., and Dillner, A.
- M.: FT-IR quantification of the carbonyl functional group in aqueous-phase secondary organic
 aerosol from phenols, Atmospheric Environment, 100, 230-237,
 https://doi.org/10.1016/j.atmosenv.2014.11.011, 2015.

- Gioda, A., Reyes-Rodriguez, G. J., Santos-Figueroa, G., Collett, J. L., Decesari, S., Ramos, M., 417 Netto, H., Neto, F. R. D., and Mayol-Bracero, O. L.: Speciation of water-soluble inorganic, 418 organic, and total nitrogen in a background marine environment: Cloud water, rainwater, and 419 420 aerosol particles. Journal Geophysical Research-Atmospheres, of 116. https://doi.org/10.1029/2010jd015010, 2011. 421
- 422 Gowda, H., Ivanisevic, J., Johnson, C. H., Kurczy, M. E., Benton, H. P., Rinehart, D., Nguyen,
- 423 T., Ray, J., Kuehl, J., Arevalo, B., Westenskow, P. D., Wang, J., Arkin, A. P., Deutschbauer, A.
- 424 M., Patti, G. J., and Siuzdak, G.: Interactive XCMS Online: simplifying advanced metabolomic
- 425 data processing and subsequent statistical analyses, Anal Chem, 86, 6931-6939,
 426 https://doi.org/10.1021/ac500734c, 2014.
- Guan, N. and Liu, L.: Microbial response to acid stress: mechanisms and applications, Applied
 Microbiology and Biotechnology, 104, 51-65, <u>https://doi.org/10.1007/s00253-019-10226-1</u>,
 2020.
- 430 Guo, H., Liu, J., Froyd, K. D., Roberts, J. M., Veres, P. R., Hayes, P. L., Jimenez, J. L., Nenes,
- 431 A., and Weber, R. J.: Fine particle pH and gas-particle phase partitioning of inorganic species
- 432 in Pasadena, California, during the 2010 CalNex campaign, Atmos. Chem. Phys., 17, 5703433 5719, https://doi.org/10.5194/acp-17-5703-2017, 2017.
- 434 Guo, H., Sullivan, A. P., Campuzano-Jost, P., Schroder, J. C., Lopez-Hilfiker, F. D., Dibb, J. E.,
- Jimenez, J. L., Thornton, J. A., Brown, S. S., Nenes, A., and Weber, R. J.: Fine particle pH and
 the partitioning of nitric acid during winter in the northeastern United States, Journal of
- the partitioning of nitric acid during winter in the northeastern United States, Journal of
 Geophysical Research: Atmospheres, 121, 10,355-310,376,
- 437
 Geophysical
 Research:
 Atmospheres,
 121,

 438
 https://doi.org/10.1002/2016JD025311, 2016.
 120,
 121,
- <u>https://doi.org/10.1002/2010/D025511</u>, 2010.
- 439 Haynes, W. M.: CRC handbook of chemistry and physics, CRC Press, Boca Raton, Florida2014.
- 440 Herrmann, H., Hoffmann, D., Schaefer, T., Brauer, P., and Tilgner, A.: Tropospheric aqueous-
- 441 phase free-radical chemistry: radical sources, spectra, reaction kinetics and prediction tools,
- 442 Chemphyschem, 11, 3796-3822, <u>https://doi.org/10.1002/cphc.201000533</u>, 2010.
- Hu, W., Niu, H. Y., Murata, K., Wu, Z. J., Hu, M., Kojima, T., and Zhang, D. Z.: Bacteria in atmospheric waters: Detection, characteristics and implications, Atmospheric Environment, 179, 201-221, <u>https://doi.org/10.1016/j.atmosenv.2018.02.026</u>, 2018.
- Huang, D. D., Zhang, Q., Cheung, H. H. Y., Yu, L., Zhou, S., Anastasio, C., Smith, J. D., and
 Chan, C. K.: Formation and Evolution of aqSOA from Aqueous-Phase Reactions of Phenolic
 Carbonyls: Comparison between Ammonium Sulfate and Ammonium Nitrate Solutions,
 Environmental Science & Technology, 52, 9215-9224, <u>https://doi.org/10.1021/acs.est.8b03441</u>,
 2018.
- Huang, S., Hu, W., Chen, J., Wu, Z., Zhang, D., and Fu, P.: Overview of biological ice
 nucleating particles in the atmosphere, Environment International, 146, 106197,
 https://doi.org/10.1016/j.envint.2020.106197, 2021.

- Huang, X.-F., Li, X., He, L.-Y., Feng, N., Hu, M., Niu, Y.-W., and Zeng, L.-W.: 5-Year study
 of rainwater chemistry in a coastal mega-city in South China, Atmospheric Research, 97, 185-
- 456 193, <u>https://doi.org/10.1016/j.atmosres.2010.03.027</u>, 2010.
- 457 Husárová, S., Vaïtilingom, M., Deguillaume, L., Traikia, M., Vinatier, V., Sancelme, M., Amato,
- 458 P., Matulová, M., and Delort, A.-M.: Biotransformation of methanol and formaldehyde by
- 459 bacteria isolated from clouds. Comparison with radical chemistry, Atmospheric Environment,
- 460 45, 6093-6102, 10.1016/j.atmosenv.2011.06.035, 2011.
- Jaber, S., Joly, M., Brissy, M., Leremboure, M., Khaled, A., Ervens, B., and Delort, A.-M.:
 Biotic and abiotic transformation of amino acids in cloud water: experimental studies and
 atmospheric implications, Biogeosciences, 18, 1067-1080, 10.5194/bg-18-1067-2021, 2021.
- Jaber, S., Lallement, A., Sancelme, M., Leremboure, M., Mailhot, G., Ervens, B., and Delort,
 A.-M.: Biodegradation of phenol and catechol in cloud water: comparison to chemical
 oxidation in the atmospheric multiphase system, Atmospheric Chemistry and Physics, 20,
 4987-4997, 10.5194/acp-20-4987-2020, 2020.
- Jaenicke, R.: Abundance of cellular material and proteins in the atmosphere, Science, 308, 7373, <u>https://doi.org/10.1126/science.1106335</u>, 2005.
- Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., and Aluru, S.: High
 throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries, Nature
 communications, 9, 1-8, https://doi.org/10.1038/s41467-018-07641-9, 2018.
- 473 Joly, M., Amato, P., Sancelme, M., Vinatier, V., Abrantes, M., Deguillaume, L., and Delort, A.-
- 474 M.: Survival of microbial isolates from clouds toward simulated atmospheric stress factors,
- 475 Atmospheric Environment, 117, 92-98, <u>https://doi.org/10.1016/j.atmosenv.2015.07.009</u>, 2015.
- Kanehisa, M., Sato, Y., and Kawashima, M.: KEGG mapping tools for uncovering hidden
 features in biological data, Protein Science, 31, 47-53, <u>https://doi.org/10.1002/pro.4172</u>, 2022.
- Koutny, M., Sancelme, M., Dabin, C., Pichon, N., Delort, A.-M., and Lemaire, J.: Acquired
 biodegradability of polyethylenes containing pro-oxidant additives, Polymer Degradation and
 Stability, 91, 1495-1503, 10.1016/j.polymdegradstab.2005.10.007, 2006.
- Laszakovits, J. R. and MacKay, A. A.: Data-Based Chemical Class Regions for Van Krevelen
 Diagrams, Journal of the American Society for Mass Spectrometry, 33, 198-202,
 <u>https://doi.org/10.1021/jasms.1c00230</u>, 2022.
- Li, T., Wang, Z., Wang, Y., Wu, C., Liang, Y., Xia, M., Yu, C., Yun, H., Wang, W., Wang, Y.,
 Guo, J., Herrmann, H., and Wang, T.: Chemical characteristics of cloud water and the impacts
 on aerosol properties at a subtropical mountain site in Hong Kong SAR, Atmospheric
 Chemistry and Physics, 20, 391-407, https://doi.org/10.5194/acp-20-391-2020, 2020.
- Lide, D. R. and Frederikse, H. P. R.: CRC handbook of chemistry and physics, Boca Raton,Florida1995.

- Löflund, M., Kasper-Giebl, A., Schuster, B., Giebl, H., Hitzenberger, R., and Puxbaum, H.: 490 Formic, acetic, oxalic, malonic and succinic acid concentrations and their contribution to 491 organic carbon in cloud water, Atmospheric Environment, 36, 1553-1558, 492 https://doi.org/10.1016/S1352-2310(01)00573-8, 2002. 493
- Lund, P., Tramonti, A., and De Biase, D.: Coping with low pH: molecular strategies in
 neutralophilic bacteria, FEMS Microbiology Reviews, 38, 1091-1125,
 <u>https://doi.org/10.1111/1574-6976.12076</u>, 2014.
- Makuc, J., Paiva, S., Schauen, M., Krämer, R., André, B., Casal, M., Leão, C., and Boles, E.:
 The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not
 transport monocarboxylic acids across the plasma membrane, Yeast, 18, 1131-1143, 2001.
- Manni, M., Berkeley, M. R., Seppey, M., and Zdobnov, E. M.: BUSCO: assessing genomic data quality and beyond, Current Protocols, 1, e323, <u>https://doi.org/10.1002/cpz1.323</u>, 2021.
- 502 Matulova, M., Husarova, S., Capek, P., Sancelme, M., and Delort, A. M.: Biotransformation of
- 503 various saccharides and production of exopolymeric substances by cloud-borne Bacillus sp.
- 5043B6, Environ Sci Technol, 48, 14238-14247, 10.1021/es501350s, 2014.
- Meier-Kolthoff, J. P. and Göker, M.: TYGS is an automated high-throughput platform for state of-the-art genome-based taxonomy, Nature communications, 10, 1-10,
 <u>https://doi.org/10.1038/s41467-019-10210-3</u>, 2019.
- 508 Meskhidze, N., Chameides, W. L., Nenes, A., and Chen, G.: Iron mobilization in mineral dust:
- 509 Can anthropogenic SO2 emissions affect ocean productivity?, Geophysical Research Letters,
- 510 30, <u>https://doi.org/10.1029/2003GL018035</u>, 2003.
- 511 Misovich, M. V., Hettiyadura, A. P. S., Jiang, W. Q., Zhang, Q., and Laskin, A.: Molecular-
- 512 Level Study of the Photo-Oxidation of Aqueous-Phase Guaiacyl Acetone in the Presence of C-
- 312 Devel Study of the Flieto Oxidation of Fiqueous Fliase Guardey Fleetone in the Flestence of C
 513 3*: Formation of Brown Carbon Products, Acs Earth and Space Chemistry, 5, 1983-1996,
 514 https://doi.org/10.1021/acsearthspacechem.1c00103, 2021.
- 515 Möhler, O., DeMott, P., Vali, G., and Levin, Z.: Microbiology and atmospheric processes: the 516 role of biological particles in cloud physics, Biogeosciences, 4, 1059-1071, 517 https://doi.org/10.5194/bg-4-1059-2007, 2007.
- 518 Morris, C. E., Soubeyrand, S., Bigg, E. K., Creamean, J. M., and Sands, D. C.: Mapping
- Rainfall Feedback to Reveal the Potential Sensitivity of Precipitation to Biological Aerosols,
 Bulletin of the American Meteorological Society, 98, 1109-1118,
 https://doi.org/10.1175/BAMS-D-15-00293.1, 2017.
- 522 Morris, C. E., Conen, F., Alex Huffman, J., Phillips, V., Pöschl, U., and Sands, D. C.: 523 Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use
- through biological ice nucleators in the atmosphere, Glob Chang Biol, 20, 341-351,
 https://doi.org/10.1111/gcb.12447, 2014.

- 526 Nah, T., Guo, H., Sullivan, A. P., Chen, Y., Tanner, D. J., Nenes, A., Russell, A., Ng, N. L.,
- 527 Huey, L. G., and Weber, R. J.: Characterization of aerosol composition, aerosol acidity, and
- 528 organic acid partitioning at an agriculturally intensive rural southeastern US site, Atmos. Chem.
- 529 Phys., 18, 11471-11491, <u>https://doi.org/10.5194/acp-18-11471-2018</u>, 2018.
- 530 Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., Gauthier, C.,
- Jacques, P. E., Li, S., and Xia, J.: MetaboAnalyst 5.0: narrowing the gap between raw spectra
- and functional insights, Nucleic Acids Res, 49, W388-W396,
 https://doi.org/10.1093/nar/gkab382, 2021.
- 534 Peng, J., Zhou, S., Xiao, K., Zeng, J., Yao, C., Lu, S., Zhang, W., Fu, Y., Yang, Y., and Bi, X.:
- 535 Diversity of bacteria in cloud water collected at a National Atmospheric Monitoring Station in
- 536 Southern China, Atmospheric Research, 218, 176-182,
- 537 <u>https://doi.org/10.1016/j.atmosres.2018.12.004</u>, 2019.
- 538 Prokof'eva, T. V., Shoba, S. A., Lysak, L. V., Ivanova, A. E., Glushakova, A. M., Shishkov, V.
- A., Lapygina, E. V., Shilaika, P. D., and Glebova, A. A.: Organic Constituents and Biota in the
- 540 Urban Atmospheric Solid Aerosol: Potential Effects on Urban Soils, Eurasian Soil Science, 54,
- 541 1532-1545, <u>https://doi.org/10.1134/S1064229321100094</u>, 2021.
- Pye, H. O., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr, J. L.,
 Fahey, K. M., Hennigan, C. J., and Herrmann, H.: The acidity of atmospheric particles and
 clouds, Atmospheric chemistry and physics, 20, 4809-4888, <u>https://doi.org/10.5194/acp-20-</u>
- 545 <u>4809-2020</u>, 2020.
- Qu, R. and Han, G.: A critical review of the variation in rainwater acidity in 24 Chinese cities
 during 1982–2018, Elementa: Science of the Anthropocene, 9,
 <u>https://doi.org/10.1525/elementa.2021.00142</u>, 2021.
- Rivas-Ubach, A., Liu, Y., Bianchi, T. S., Tolic, N., Jansson, C., and Pasa-Tolic, L.: Moving
 beyond the van Krevelen diagram: A new stoichiometric approach for compound classification
 in organisms, Analytical chemistry, 90, 6152-6160, 2018.
- Romano, S., Fragola, M., Alifano, P., Perrone, M. R., and Talà, A.: Potential Human and Plant
 Pathogenic Species in Airborne PM10 Samples and Relationships with Chemical Components
 and Meteorological Parameters, Atmosphere, 12, 654, <u>https://doi.org/10.3390/atmos12050654</u>,
 2021.
- 556 Romano, S., Di Salvo, M., Rispoli, G., Alifano, P., Perrone, M. R., and Tala, A.: Airborne
- bacteria in the Central Mediterranean: Structure and role of meteorology and air mass transport,
- 558 Sci Total Environ, 697, 134020, <u>https://doi.org/10.1016/j.scitotenv.2019.134020</u>, 2019.
- 559 Ruiz-Gil, T., Acuña, J. J., Fujiyoshi, S., Tanaka, D., Noda, J., Maruyama, F., and Jorquera, M.
- 560 A.: Airborne bacterial communities of outdoor environments and their associated influencing
- factors, Environment International, 145, 106156, <u>https://doi.org/10.1016/j.envint.2020.106156</u>,
- 562 2020.

- Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos.
 Chem. Phys., 15, 4399-4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
- 565 Saxena, P. and Hildemann, L. M.: Water-soluble organics in atmospheric particles: A critical
- review of the literature and application of thermodynamics to identify candidate compounds,
- 567 Journal of Atmospheric Chemistry, 24, 57-109, <u>https://doi.org/10.1007/BF00053823</u>, 1996.
- Seemann, T.: Prokka: rapid prokaryotic genome annotation, Bioinformatics, 30, 2068-2069,
 <u>https://doi.org/10.1093/bioinformatics/btu153</u>, 2014.
- 570 Shah, V., Jacob, D. J., Moch, J. M., Wang, X., and Zhai, S.: Global modeling of cloud water
- acidity, precipitation acidity, and acid inputs to ecosystems, Atmos. Chem. Phys., 20, 1222312245, <u>https://doi.org/10.5194/acp-20-12223-2020</u>, 2020.
- 573Song, F. and Gao, Y.: Chemical characteristics of precipitation at metropolitan Newark in the574USEastCoast,AtmosphericEnvironment,43,4903-4913,575https://doi.org/10.1016/j.atmosenv.2009.07.024, 2009.
- 576 Sun, X., Wang, Y., Li, H., Yang, X., Sun, L., Wang, X., Wang, T., and Wang, W.: Organic acids
- 577 in cloud water and rainwater at a mountain site in acid rain areas of South China, Environ Sci
- 578 Pollut Res Int, 23, 9529-9539, 10.1007/s11356-016-6038-1, 2016.
- 579 Sündermann, A., Eggers, L. F., and Schwudke, D.: Liquid Extraction: Bligh and Dyer, in: 580 Encyclopedia of Lipidomics, 1-4, <u>https://doi.org/10.1007/978-94-007-7864-1_88-1</u>, 2016.
- Tilgner, A., Schaefer, T., Alexander, B., Barth, M., Collett Jr, J. L., Fahey, K. M., Nenes, A.,
 Pye, H. O., Herrmann, H., and McNeill, V. F.: Acidity and the multiphase chemistry of
 atmospheric aqueous particles and clouds, Atmospheric Chemistry and Physics, 21, 1348313536, 2021.
- Tsai, Y. I. and Kuo, S.-C.: Contributions of low molecular weight carboxylic acids to aerosols
 and wet deposition in a natural subtropical broad-leaved forest environment, Atmospheric
 Environment, 81, 270-279, https://doi.org/10.1016/j.atmosenv.2013.08.061, 2013.
- 588 Tyagi, P., Ishimura, Y., and Kawamura, K.: Hydroxy fatty acids in marine aerosols as microbial 589 tracers: 4-year study on β -and ω -hydroxy fatty acids from remote Chichijima Island in the 590 western North Pacific, Atmospheric Environment, 115, 89-100, 2015.
- Vaitilingom, M., Amato, P., Sancelme, M., Laj, P., Leriche, M., and Delort, A. M.: Contribution
 of microbial activity to carbon chemistry in clouds, Appl Environ Microbiol, 76, 23-29,
 10.1128/AEM.01127-09, 2010.
- Vaitilingom, M., Deguillaume, L., Vinatier, V., Sancelme, M., Amato, P., Chaumerliac, N., and
 Delort, A. M.: Potential impact of microbial activity on the oxidant capacity and organic carbon
 budget in clouds, Proc Natl Acad Sci U S A, 110, 559-564, 10.1073/pnas.1205743110, 2013.
- 597 Vaïtilingom, M., Attard, E., Gaiani, N., Sancelme, M., Deguillaume, L., Flossmann, A. I.,

- 598Amato, P., and Delort, A.-M.: Long-term features of cloud microbiology at the puy de Dôme599(France), Atmospheric Environment, 56, 88-100,600https://doi.org/10.1016/j.atmosenv.2012.03.072, 2012.
- 601 Vaïtilingom, M., Charbouillot, T., Deguillaume, L., Maisonobe, R., Parazols, M., Amato, P.,
- 602 Sancelme, M., and Delort, A. M.: Atmospheric chemistry of carboxylic acids: microbial 603 implication versus photochemistry, Atmospheric Chemistry and Physics, 11, 8721-8733,
- 604 10.5194/acp-11-8721-2011, 2011.
- Watson, J., Baker, T., and Bell, S.: Molecular biology of the gene, 6th edn. W, 2007.
- Weast, R. C. and Astle, M. J.: CRC Handbook of Chemistry and Physics, CRC Press1981.
- Wei, M., Xu, C., Chen, J., Zhu, C., Li, J., and Lv, G.: Characteristics of bacterial community in
 cloud water at Mt Tai: similarity and disparity under polluted and non-polluted cloud episodes,
 Atmos. Chem. Phys., 17, 5253-5270, <u>https://doi.org/10.5194/acp-17-5253-2017</u>, 2017.
- 610 pKa data compiled by R. Williams: 611 <u>https://organicchemistrydata.org/hansreich/resources/pka/pka_data/pka-compilation-</u> 612 williams a df. last access 7 Dec 2022
- 612 <u>williams.pdf</u>, last access: 7 Dec 2022.
- Ku, G., Lee, X., and Lv, Y.: Urban and rural observations of carboxylic acids in rainwater in
 Southwest of China: the impact of urbanization, Journal of atmospheric chemistry, 62, 249260, https://doi.org/10.1007/s10874-010-9151-4, 2009.
- Zhang, M., Khaled, A., Amato, P., Delort, A. M., and Ervens, B.: Sensitivities to biological 616 aerosol particle properties and ageing processes: potential implications for aerosol-cloud 617 3699-3724, 618 interactions and optical properties, Atmos. Chem. Phys., 21, https://doi.org/10.5194/acp-21-3699-2021, 2021. 619
- Zhang, Y., Lee, X., and Cao, F.: Chemical characteristics and sources of organic acids in
 precipitation at a semi-urban site in Southwest China, Atmospheric environment, 45, 413-419,
 <u>https://doi.org/10.1016/j.atmosenv.2010.09.067</u>, 2011.
- Zhao, W., Wang, Z., Li, S., Li, L., Wei, L., Xie, Q., Yue, S., Li, T., Liang, Y., and Sun, Y.: Watersoluble low molecular weight organics in cloud water at Mt. Tai Mo Shan, Hong Kong, Science
 afthe Tatal Environment (07, 124005, https://doi.org/10.1016/j.asiteteeu/2010.124005, 2010
- of the Total Environment, 697, 134095, <u>https://doi.org/10.1016/j.scitotenv.2019.134095</u>, 2019.
- Zhou, H., Wang, X., Li, Z., Kuang, Y., Mao, D., and Luo, Y.: Occurrence and Distribution of
 Urban Dust-Associated Bacterial Antibiotic Resistance in Northern China, Environmental
 Science & Technology Letters, 5, 50-55, <u>https://doi.org/10.1021/acs.estlett.7b00571</u>, 2018.
- Zhu, C., Chen, J., Wang, X., Li, J., Wei, M., Xu, C., Xu, X., Ding, A., and Collett, J. L.: 629 Chemical Composition and Bacterial Community in Size-Resolved Cloud Water at the Summit 630 of Mt. Tai, China, Aerosol Quality 631 and Air Research, 18, 1-14, https://doi.org/10.4209/aaqr.2016.11.0493, 2018. 632
- 633