Corrigendum to Atmos. Chem. Phys., 23, 14779–14799, 2023 https://doi.org/10.5194/acp-23-14779-2023-corrigendum © Author(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License.

Corrigendum to "The Emissions Model Intercomparison Project (Emissions-MIP): quantifying model sensitivity to emission characteristics" published in Atmos. Chem. Phys., 23, 14779–14799, 2023

 Hamza Ahsan¹, Hailong Wang², Jingbo Wu³, Mingxuan Wu², Steven J. Smith¹, Susanne Bauer³, Harrison Suchyta¹, Dirk Olivié⁴, Gunnar Myhre⁵, Hitoshi Matsui⁶, Huisheng Bian⁷,
Jean-François Lamarque⁸, Ken Carslaw⁹, Larry Horowitz¹⁰, Leighton Regayre^{9,11,12}, Mian Chin⁷, Michael Schulz⁴, Ragnhild Bieltvedt Skeie⁵, Toshihiko Takemura¹³, and Vaishali Naik¹⁰

¹Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA ²Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA ³NASA Goddard Institute for Space Studies, New York, NY, USA ⁴Norwegian Meteorological Institute, Oslo, Norway ⁵CICERO Center for International Climate Research, Oslo, Norway ⁶Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan ⁷NASA Goddard Space Flight Center, Greenbelt, MD, USA ⁸Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA ⁹Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK ¹⁰NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA ¹¹Met Office Hadley Centre, Exeter, Fitzroy Road, Exeter, Devon, UK ¹²Centre for Environmental Modelling and Computation, School of Earth and Environment, University of Leeds, Leeds, UK ¹³Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan

Correspondence: Hamza Ahsan (hamza.ahsan@pnnl.gov)

Published: 6 May 2025

In two instances in our article, we quote results from a study on emission plume heights from oil sands processing facilities (Akingunola et al., 2018) and mention plume heights ranging from ~ 500 to ~ 1500 m. However, we have recently confirmed that this is incorrect due to an erroneous figure in the referenced paper (Mark Gordon, personal communication, 2025). The corrected plume height range is approximately 200 to 1000 m from the surface. This correction does not alter our numerical findings or conclusions but provides a slightly different context.

The two corrected sections of text are reproduced below (italicized parts have changed).

- Section 1. While many regional atmospheric models incorporate plume rise parameterizations, a study on plume rise of SO₂ emissions emitted by flare stacks in the Athabasca oil sands found that the commonly used Briggs plume rise algorithm (Briggs, 1982) underpredicted the plume heights of these sources (Akingunola et al., 2018), which ranged from ~ 200 to ~ 1000 m from the surface.

- Section 2.3.1. According to the AeroCom protocol, emissions from industrial facilities and power plants should be injected evenly at a height of 100 to 300 m above the surface, and emissions from international shipping are injected into the lowest model layer (Dentener et al., 2006). No recommendation on assumptions for effective emission injection height was provided as part of CMIP6. However, the height of plume rise has been measured to exceed these assumed heights by 400 to 700 m, as was the case for SO_2 emissions emitted by flare stacks in the Athabasca oil sands (Akingunola et al., 2018; Gordon et al., 2018). We note, however, that stack exit temperatures for these oil sands processing facilities are generally hotter than those at facilities such as coal-fired power plants, likely resulting in higher plume rise for oil sands facilities.