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Abstract. As a long-standing problem in climate models, large positive shortwave radiation biases exist at the
surface over the Southern Ocean, impacting the accurate simulation of sea surface temperature, atmospheric cir-
culation, and precipitation. Underestimations of low-level cloud fraction and liquid water content are suggested
to predominantly contribute to these radiation biases. Most model evaluations for radiation focus on summer and
rely on satellite products, which have their own limitations. In this work, we use surface-based observations at
Macquarie Island to provide the first long-term, seasonal evaluation of both downwelling surface shortwave and
longwave radiation in the Australian Community Climate and Earth System Simulator Atmosphere-only Model
version 2 (ACCESS-AM2) over the Southern Ocean. The capacity of the Clouds and the Earth’s Radiant Energy
System (CERES) product to simulate radiation is also investigated. We utilize the novel lidar simulator, the Au-
tomatic Lidar and Ceilometer Framework (ALCF), and all-sky cloud camera observations of cloud fraction to
investigate how radiation biases are influenced by cloud properties.

Overall, we find an overestimation of + 9.5± 33.5 W m−2 for downwelling surface shortwave radiation
fluxes and an underestimation of −2.3± 13.5 W m−2 for downwelling surface longwave radiation in ACCESS-
AM2 in all-sky conditions, with more pronounced shortwave biases of +25.0± 48.0 W m−2 occurring in sum-
mer. CERES presents an overestimation of +8.0± 18.0 W m−2 for the shortwave and an underestimation of
−12.1± 12.2 W m−2 for the longwave in all-sky conditions. For the cloud radiative effect (CRE) biases, there
is an overestimation of +4.8± 28.0 W m−2 in ACCESS-AM2 and an underestimation of −7.9± 20.9 W m−2

in CERES. An overestimation of downwelling surface shortwave radiation is associated with an underestimated
cloud fraction and low-level cloud occurrence. We suggest that modeled cloud phase is also having an impact on
the radiation biases. Our results show that the ACCESS-AM2 model and CERES product require further devel-
opment to reduce these radiation biases not just in shortwave and in all-sky conditions, but also in longwave and
in clear-sky conditions.
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1 Introduction

The Southern Ocean (SO) makes up a significant component
of the Earth’s climate system. As one of the cloudiest re-
gions on Earth, the SO strongly influences the global energy
balance and climate (Trenberth et al., 2009; Gettelman et al.,
2020). A considerable deficit of reflected shortwave radiation
at the top of the atmosphere (TOA) and an excess of absorbed
shortwave radiation at the surface over the SO has been iden-
tified in both climate models and reanalysis (Trenberth and
Fasullo, 2010; Bodas-Salcedo et al., 2014; Kay et al., 2016;
Zhang et al., 2016; Fiddes et al., 2022; Cesana et al., 2022;
Mallet et al., 2023). Cloud biases tend to limit the capacity
of coupled models to accurately derive sea surface temper-
atures (SSTs) (Hyder et al., 2018), atmospheric circulation
(Ceppi et al., 2012), and precipitation (Hwang and Frierson,
2013), as well as to correctly predict future climate changes
(Trenberth and Fasullo, 2010; McCoy et al., 2015). As a key
driver of global climate, it is important that we unravel what
causes these radiative biases over the SO. Previous studies
have suggested that the poor representation of clouds in cli-
mate models is the main contributor to the radiative biases
(Bodas-Salcedo et al., 2012; Franklin et al., 2013; Mason et
al., 2015), as clouds primarily control the TOA and surface
energy budgets in the climate system (Bennartz et al., 2013;
Luo et al., 2016).

Novel techniques including simulators for both satellite re-
trievals and in situ observations, which are vital for model
evaluation, have been developed in recent years. The Cloud
Feedback Model Intercomparison Project (CFMIP) Observa-
tion Simulator Package (COSP) was created to allow quanti-
tative examination of cloud properties, humidity, and precipi-
tation processes in various numerical models (Bodas-Salcedo
et al., 2011). Kuma et al. (2021b) more recently developed
the Automatic Lidar and Ceilometer Framework (ALCF) to
make automatic lidar and ceilometer (ALC) data comparable
with climate models, including both global climate models
(GCMs) and numerical weather prediction (NWP) models.
Large networks of lidars and ceilometers have been installed
globally – for instance, Cloudnet (Illingworth et al., 2007), E-
PROFILE (Illingworth et al., 2019), and ARM (Campbell et
al., 2002). However, surface-based ceilometer observations
of cloud frequency of occurrence and cloud boundaries over
the SO remain sparse (Kuma et al., 2020). The ALCF can uti-
lize the enormous database of surface-based ceilometer ob-
servations to evaluate the cloud occurrence and cloud char-
acteristics in models and reanalysis. This is accomplished by
extracting two-dimensional profiles (time× height) from the
model data, using a modified COSP lidar simulator to per-
form radiative transfer calculations, calibrating and resam-
pling the observed attenuated volume backscattering coeffi-
cient to a common resolution, and conducting similar cloud
detection on both the simulated and observed attenuated vol-
ume backscattering coefficient (Kuma et al., 2021b).

Aside from these new evaluation techniques, a number of
statistical methods have been applied to understand the con-
tribution of clouds to the model radiation biases. Williams
and Webb (2009) used a cloud clustering approach to estab-
lish cloud regimes in models and compared them with satel-
lite observations, showing a positive bias of shortwave cloud
radiative effect in models. Field et al. (2011) utilized the
cyclone compositing method to illustrate the underestima-
tion of the TOA reflected shortwave radiation on the cold-air
side of cyclones in models. These two techniques were com-
bined by Bodas-Salcedo et al. (2014) to relate cloud regimes
and radiative biases to different climatic conditions. It was
observed that the cold-air side of the cyclone composite is
where the majority of model biases appear, and they mostly
occur in the midlevel cloud regime (Bodas-Salcedo et al.,
2014).

By incorporating the observational simulators and statisti-
cal analysis, climate models’ outputs can be assessed against
those observations. From previous research on the evaluation
of cloud property simulations in models, it can be summa-
rized that, over the SO region, the simulated low-level cloud
fractions tend to be lower than both satellite observations
(Trenberth and Fasullo, 2010; Bodas-Salcedo et al., 2012;
Franklin et al., 2013) and surface-based observations (Protat
et al., 2017; Klekociuk et al., 2020; Wang et al., 2020). How-
ever, discrepancies do exist between surface and satellite ob-
servations due to limitations of near-surface cloud retrievals
of satellites.

In the context of widespread supercooled liquid clouds
(SLCs), the underestimation of liquid water content in the
clouds causes less reflective clouds and consequently less re-
flected shortwave radiation in the model at the TOA (Hu et
al., 2010; Bodas-Salcedo et al., 2016). Additionally, the poor
representations of cloud feedbacks attributed to the reduc-
tion in low cloud coverage and water content lead to higher
climate sensitivity in the Coupled Model Intercomparison
Project Phase 6 (CMIP6) compared to the previous version
(Zelinka et al., 2020; Schuddeboom and McDonald, 2021;
Kuma et al., 2023). Failure to accurately simulate physical
properties of clouds in climate models emphasizes the neces-
sity to use a variety of observational datasets to fully evaluate
the models and correct biases through modifying the simula-
tion of cloud fraction, cloud types, and cloud thermodynamic
phases.

Surface-based observations and satellite products are two
main types of datasets used to assess the model’s perfor-
mance. Numerous satellite-based evaluations have been pre-
viously conducted (Bodas-Salcedo et al., 2012, 2014, 2016;
Luo et al., 2016), including for the Australian Community
Climate and Earth System Simulator (ACCESS) model (Fid-
des et al., 2018, 2022). Tansey et al. (2022) examined sur-
face precipitation measurements during Macquarie Island
Cloud and Radiation Experiment (MICRE) and compared
them with data from CloudSat, revealing several notable dif-
ferences attributable to satellite instrument sensitivities and
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algorithm structure. This indicates the limitations of satellites
in observing low-level clouds over the SO, which serves as
a strong motivation for utilizing ground-based observations
to calibrate satellite products. Nonetheless, ground-based ob-
servations in the SO and Antarctica remain limited due to
the harsh atmospheric environment and lack of remote sites
for measurements (Lawson and Gettelman, 2014), leading
to less advanced model evaluation techniques than for the
Northern Hemisphere. The parameterizations of models have
not been comprehensively developed or tuned for the SO re-
gion, on account of the paucity of comparable field obser-
vations and suitable tools that can allow one-to-one compar-
ison between models and observations (McFarquhar et al.,
2021; Kuma et al., 2021b). In recent years, several campaigns
have been conducted to collect cloud properties over the SO
(Protat et al., 2017; McFarquhar et al., 2021; Kremser et al.,
2021). Using these observational data to test climate models
with the latest simulators and statistical analysis, as well as
calibrate satellite data, remains a critical task.

In this work, we evaluated the capability of ACCESS
Atmosphere-only Model version 2 (AM2) to simulate the
downwelling surface radiation, cloud radiative effect, and
limited cloud properties. Performance of the Cloud and the
Earth’s Radiant Energy System (CERES) product in repro-
ducing surface radiation and cloud radiative effect was also
assessed. The campaign described by McFarquhar et al.
(2021) and Tansey et al. (2022) at Macquarie Island was used
as the observational dataset for comparison. Furthermore, the
ALCF product was used to explore the connection of cloud
occurrence and radiative biases in the ACCESS-AM2 model
compared with ceilometers for the first time.

The structure of this paper is organized as follows: Sect. 2
describes the data and methods used in the study, Sect. 3
evaluates the surface radiative bias in the ACCESS-AM2
model and CERES product, Sect. 4 presents the distribution
of cloud fraction and explores the relationship between cloud
fraction and radiative bias in the ACCESS-AM2 model,
Sect. 5 examines the histograms of cloud occurrence using
the ALCF and investigates the link between cloud occurrence
and radiative bias in the ACCESS-AM2 model, and Sect. 6
summarizes the results.

2 Data and methods

2.1 Overview of ground-based observations

The observational data used in this paper originated from
the Macquarie Island Cloud and Radiation Experiment (MI-
CRE), conducted by the United States Department of En-
ergy (DOE) Atmospheric Radiation Measurement (ARM)
program, the Bureau of Meteorology (BoM), and the Aus-
tralian Antarctic Division (AAD), between March 2016 and
March 2018. Located at 54.5◦ S, 158.9◦ E, and with an alti-
tude of 6 m (Fig. 1a), the year-round AAD research station
at Macquarie Island supports a range of scientific activities

and has a long history of surface meteorology observations
(Wang et al., 2015). The primary goal of MICRE was to
gather surface-based measurements of radiation, precipita-
tion, boundary layer (BL) clouds, and aerosol characteris-
tics in order to evaluate satellite products and improve un-
derstanding of diurnal and seasonal fluctuations, particularly
in terms of BL cloud vertical structure over the SO (McFar-
quhar et al., 2021). The data collected during the campaign
include downwelling surface radiation fluxes, precipitation
rates, and ceilometer backscatter measurements along with
standard meteorological observations.

2.2 Instrumentation

Instruments involved in the analysis of cloud radiative bias
include a set of AAD broadbrand radiometers, which mea-
sure downwelling surface shortwave (SW) and longwave
(LW) radiation fluxes; a ceilometer from the University of
Canterbury to determine cloud base height (CBH); and an
AAD all-sky cloud camera to record cloud fraction. Mea-
surements of all instruments cover the period from 5 April
2016 to 6 March 2018.

2.2.1 Radiometers

Both a Kipp & Zonen CMP21 pyranometer (SW) and a Kipp
& Zonen CGR4 pyrgeometer (LW) which are sensitive over
285–2800 nm and 4.5–42 µm, respectively, were used to col-
lect radiation data (Fig. 1b). The sensors have a time resolu-
tion of 1 min, and results were recorded as means and stan-
dard deviations for each of the 600 individual readings of
output voltage at 1 min interval and logged on a Campbell
Scientific CR3000 data logger.

The LW radiation fluxes (W m−2) were calculated using

Ld =
Uemf

SL
+ 5.67× 10−8

· T 4
b , (1)

where Uemf is the pyrgeometer output voltage (µV), SL is the
pyrgeometer sensitivity (µV (W m−2)−1), and Tb is the ther-
mistor temperature (K) of the pyrgeometer. The temperature
(K) was calculated using

Tb =
(
α+

[
β · ln(R)+ γ · (ln(R))3

])−1
, (2)

where R is the resistance (�) and α (1.0295× 10−3), β
(2.391× 10−4), and γ (1.568× 10−7) are calibration coef-
ficients from the Kipp & Zonen calibration certificate.

The SW radiation fluxes (W m−2) were calculated using

Sd =
Uemf

SS
, (3)

where Uemf is the pyranometer output voltage (µV) and SS is
the pyranometer sensitivity (µV (W m−2)−1).
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Figure 1. (a) Location of Macquarie Island (54.5◦ S, 158.9◦ E). The blue color scale represents the bathymetry of oceans. (b) Photo of cloud
camera (on top of the mast), pyranometer (on the arm to the right), and pyrgeometer (on the arm to the left) installed in the Clean Air Lab
enclosure (credit: Andrew Klekociuk, Australian Antarctic Division). (c) Photo of the Vaisala CL51 ceilometer installed in the Bureau of
Meteorology lab, about 200 m away from cloud camera and radiometers (credit: Jeff Aquilina, Bureau of Meteorology).

The uncertainty in pyranometer measurements is derived
from the sensitivity (±0.11 µV (W m−2)−1), and the uncer-
tainty of the pyrgeometer is derived from the combination of
sensitivity (±0.30 µV (W m−2)−1) and temperature measure-
ments (±0.11 K). The radiometers were validated against a
separate set of radiometers that were part of the ARM de-
ployment at Macquarie Island (see Appendix A). The two
independent datasets were found to be comparable within
2 % for the SW and 5 % for the LW, which are within the
uncertainty of the instrumentation.

Both the pyranometer and pyrgeometer sensors were
changed on 19 March 2017. Prior to this date the sensitiv-
ities (SS and SL) were 8.89 and 13.01 µV (W m−2)−1, and
after this date they were 9.23 and 9.07 µV (W m−2)−1. From
Eq. (1), the pyrgeometer requires a temperature measurement
to calculate the radiation flux. This is nominally obtained
from a thermistor aboard the sensor; however, a cable fault
between 5 July 2016 at 14:37 UT and 23 November 2016 at
02:22 UT affected the thermistor resistance and consequently
the measured temperature. Over this interval temperatures
were substituted with those obtained from a similar thermis-
tor aboard the pyranometer. Temperatures differences were
within 1 % between the two thermistors on average. Prior
to 23 May 2017, the dataset was recorded with the Camp-
bell logger default data type FP2, which has a range limit of
−7999 to 7999 µV. This inadvertently clipped the SW (pyra-
nometer) data that exceeded 7999/8.89=∼ 900 W m−2 be-
fore 19 March 2017 and 7999/9.23=∼ 867 W m−2 between
19 March and 23 May 2017. The LW (pyrgeometer) data
were unaffected by this effect. The limited clipped points that
accounted for approximately 3 % of the whole dataset were
removed. This was corrected to an IEEE 4 B data type on

23 May 2017, which has a ±2.15e9 range limit and 1 bit res-
olution that covered all levels of voltage output by the sensor.
Additionally, 9 d of data, which accounted for approximately
1 % of the whole dataset, were removed because of too few
data points on those days to statically calculate a daily aver-
age.

2.2.2 Ceilometer

A Vaisala CL51 ceilometer, which is a vertically pointed
near-infrared lidar with a regular vertical resolution of
10 m that operates at a wavelength of 910 nm (±10 nm)
up to a range of 15.4 km, was employed to detect attenu-
ated backscatter (Fig. 1c). A two-dimensional (time× range)
range-corrected attenuated backscatter profile was sampled
every 6 s as the primary output (Klekociuk et al., 2020). The
ceilometer observations were sub-sampled to 5 min time res-
olution and 50 m vertical resolution by averaging multiple
columns and bins through the ALCF (Kuma et al., 2020).
Columns and bins here are, respectively, time and vertical
intervals of the backscatter profile. Information on CBH, pre-
cipitation, and at times boundary layer height can be obtained
from the backscatter profile using detection algorithms. Fog
can be observed in the backscatter profiles as well. How-
ever, there are limitations to the capabilities of a ceilome-
ter. Cloud tops and upper cloud layers are typically not vis-
ible in the backscatter profile due to the absorption of laser
energy by thick clouds. As a result, the instrument is best
suited for monitoring low-level clouds, although it may also
be used to observe mid- to high-level clouds in the absence
of low-level clouds (Klekociuk et al., 2020). Moreover, the
signal and noise properties of the Vaisala CL51 ceilometer
were investigated by Kotthaus et al. (2016), and a system-
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atic bias was noted in the attenuated backscatter recorded by
the instrument, which is determined by the internal calibra-
tion. Calibration of the instrument is achieved by scaling the
backscatter signal to match the observed lidar ratio with the
theoretical value (O’Connor et al., 2004).

During the selected period for conducting the radiation–
cloud occurrence analysis in Sect. 5, which spanned from
September 2017 to February 2018, approximately 6.7 % of
the ceilometer data were excluded due to poor quality.

2.2.3 All-sky cloud camera

For the cloud fraction (CF) analysis, color images were taken
at 1 min intervals with an all-sky camera (Fig. 1b). Both “all-
sky” and “zenith” regions of interest (ROIs) were included
in the data processing, which comprised most of the unob-
structed sky and an 8◦ radius field at the zenith, respectively.
Based on a color charge-coupled device (CCD) sensor, the
camera contains a three-element 1.24 mm F2.8 lens that gives
a 190◦ hemispherical “fisheye” field of view (FoV) to deter-
mine cloud distribution (Klekociuk et al., 2020; Wang et al.,
2020). In terms of FoV of the cloud camera, it covered an
area of 52 km in diameter at 4.5 km altitude. For each im-
age captured during the day (solar elevation> 5◦), a modi-
fied version of the blue-red pixel ratio and differencing algo-
rithms were employed to distinguish clear-sky and cloudy-
sky pixels. Cumulative pixel counts, previously applied in
several studies, were used to establish a CF (Li et al., 2011;
Ghonima et al., 2012; Yabuki et al., 2014). For the pixel ra-
tio algorithm (BdR – blue channel divided by red channel),
a threshold of 1.3 was applied to the 8 bit (0–255) blue/red
components to differentiate blue (clear-sky) pixels. For the
pixel differencing algorithm (BmR – blue channel minus red
channel), a threshold of 30 was applied to 8 bit (0–255) blue-
red components to differentiate blue (clear-sky) pixels. The
cloud camera dataset was organized to align with the avail-
able radiometer dataset, ensuring that the measurement of the
CF could be directly linked with radiation data.

2.3 Algorithms for cloud radiative effect and clear-sky
radiation

2.3.1 Cloud radiative effect (CRE)

The cloud radiative effect (CRE) is defined as the influence
of clouds on total radiation budget, computed from the dif-
ference in SW radiation and LW radiation between all-sky
and clear-sky conditions (Wang et al., 2020). According to
Shupe and Intrieri (2004) and Dommenget and Flöter (2011),
the CRE is defined as

CRE(θ )= (1−α) · (S(θ )− S0(θ ))+ ε · (L(θ )−L0(θ )) , (4)

which can be divided into shortwave cloud radiative effect
(CRESW),

CRESW(θ )= (1−α) · (S(θ )− S0(θ )) , (5)

and longwave cloud radiative effect (CRELW),

CRELW(θ )= ε · (L(θ )−L0(θ )) , (6)

where α is the surface SW albedo; ε is the LW surface emis-
sivity; θ is the solar zenith angle; S(θ ) and S0(θ ) are, re-
spectively, the downwelling surface SW radiation in all-sky
and clear-sky conditions; and L(θ ) and L0(θ ) are, respec-
tively, the downwelling surface LW radiation in all-sky and
clear-sky conditions. In this analysis, α = 0.055 and ε = 0.97
were used to permit comparisons with earlier investigations
(Fairall et al., 2008; Protat et al., 2017; Klekociuk et al.,
2020).

2.3.2 Clear-sky radiation

Along with the measured SW and LW radiation under all-sky
conditions, estimating the clear-sky radiation field is neces-
sary to obtain the values of S0(θ ) and L0(θ ) before calcu-
lating the CRE using Eq. (4). Macquarie Island is almost
constantly covered by clouds, where only 0.6 % of time was
classified as clear sky by the all-sky camera. The limited ob-
served clear-sky conditions meant we were unable to sat-
isfactorily validate clear-sky models such as the SW clear-
sky model by Corripio (2003) and the LW clear-sky model
by Idso (1981). Both of these clear-sky models, upon com-
parison to the ACCESS-AM2 and satellite products, showed
large biases, even using the parameters tuned for the SO pro-
vided by Wang et al. (2020).

With this in mind, we have used the downwelling sur-
face clear-sky radiation fields from the European Center for
Medium-range Weather Forecasting (ECMWF) Reanalysis 5
(ERA5) (Hersbach et al., 2020) for calculating cloud radia-
tive effects. Assimilated measurements from different mi-
crowave sounders provide information on brightness tem-
peratures and humidity to derive the clear-sky radiation in
ERA5 (Hersbach et al., 2020). The ERA5 clear-sky fields
have been used to validate other clear-sky models, such as in
Shakespeare and Roderick (2021). The ACCESS-AM2 and
CERES products both take into account ERA5 atmospheric
properties, and hence each of these three products showed
minimal differences. In this way we are able to limit intro-
duced biases due to inaccurate clear-sky fields. We suggest
that further efforts are needed to validate clear-sky models
for the SO.

2.4 ACCESS-AM2

ACCESS-AM2 uses the same configuration as the ACCESS-
CM2 (coupled model) without the ocean. The atmospheric
component of ACCESS-AM2 is based on the UK Met Of-
fice’s (UKMO) Unified Model (UM) version 10.6 Global At-
mosphere (GA) 7.1 (Walters et al., 2019), with the Commu-
nity Atmosphere Biosphere Land Exchange (CABLE) ver-
sion 2.5 land surface model (Bi et al., 2020). The model
has been operated globally at N96 resolution (approximately
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1.25◦ latitude by 1.875◦ longitude) with 85 vertical levels (Bi
et al., 2020; Bodman et al., 2020). Model output has been
saved as daily means from April 2016 to March 2018 and
limited hourly instantaneous output from September 2017 to
February 2018 to coincide with three other campaigns de-
scribed in McFarquhar et al. (2021) besides MICRE.

The ACCESS-AM2 model is configured for the Atmo-
spheric Model Intercomparison Project (AMIP) simulations,
contributing to the Coupled Model Intercomparison Project
Phase 6 (CMIP6) experiments (Eyring et al., 2016). The
model used in this study is nudged to ERA5 (Hersbach et
al., 2020). The horizontal wind and temperature in the free
troposphere and stratosphere were nudged at every dynam-
ical time step using reanalysis fields and updated every 3 h
(Fiddes et al., 2022). Sea surface temperatures (SSTs) and
sea ice concentrations (SICs) are derived in accordance with
the input4MIPS database and updated to cover the time pe-
riod of this simulation (Hurrell et al., 2008). Solar forcing,
greenhouse gases (GHGs), volcanic aerosol optical depth,
and ozone are prescribed in the ACCESS-AM2 following the
CMIP6 AMIP model configuration (Eyring et al., 2016).

Of interest to this study, the ACCESS-AM2 model uses
the Suite Of Community RAdiative Transfer codes based
on Edwards and Slingo (SOCRATES) (Edwards and Slingo,
1996) and Wilson et al.’s (2008) prognostic CF and conden-
sate cloud scheme, which includes large-scale as well as con-
vective clouds. For comparison with the observational data,
the radiation and prognostic CF in the model was linearly in-
terpolated to the point nearest to Macquarie Island (54.5◦ S,
158.9◦ E). Additional details associated more generally with
the ACCESS-AM2 model can be found in Bodman et al.
(2020), and these specific simulations are detailed in Fiddes
et al. (2022).

2.5 CERES SYN 1◦ dataset

The CERES project provides satellite-based observations of
global clouds and radiation budgets. CERES instruments
measure SW broadband radiances in 0.3–5 µm and LW
broadband radiances in 5–200 µm (https://ceres.larc.nasa.
gov/instruments, last access: 21 January 2023). The CERES
Synoptic TOA and downwelling surface fluxes and clouds
(SYN) 1◦ product calculates hourly, 3-hourly, daily, and
monthly surface SW and LW fluxes using cloud and aerosol
properties derived from a variety of sources (Rutan et al.,
2015). In this study we examine the daily CERES SYN 1◦

Edition 4A product by linearly interpolating to the point
nearest to Macquarie Island (54.5◦ S, 158.9◦ E) from April
2016 to March 2018, for consistency with the observational
data.

2.6 ALCF

The ALCF is an open-source command line tool that pro-
cesses ALC data and compares them to GCMs, NWP mod-

els, and reanalysis. It conducts the required steps to model
the ALC attenuated volume backscattering coefficient by ex-
tracting cloud liquid and ice mixing ratios, cloud fraction,
and thermodynamic data from the model. Additionally, the
ALCF transforms the observed raw ALC attenuated volume
backscattering coefficient profiles to make them comparable
with the simulated profiles (Kuma et al., 2021b).

For the model data, the ALCF first extracts two-
dimensional cloud liquid and ice content profiles at the sur-
vey area and then uses the Subgrid Cloud Overlap Pro-
file Sampler (SCOPS) to generate 10 random subcolumns
for each profile to detect clouds in the model (Chepfer et
al., 2008). The default setting for generating cloud over-
lap is maximum-random overlap assumption, which assumes
neighboring layers with non-zero CF are fully overlapped,
while layers separated by zero CF are randomly overlapped.
The same sampling rate (5 min) and vertical bins (50 m) were
used in lidar simulator to make the model and observations
comparable. The attenuated volume backscattering coeffi-
cient profiles are then simulated for 10 subcolumns based
on the COSP lidar simulator. Subsequently, the ALCF re-
samples the observational profiles to increase the signal-to-
noise ratio, subtracts the noise, calculates the lidar ratio, ap-
plies an absolute calibration, and uses a cloud detection al-
gorithm to calculate cloud mask and CBH for both simulated
and observational data. A threshold of 6× 10−6 m−1 sr−1

for backscattering coefficient is applied to identify cloud
mask after removing 5 standard deviations of range-scaled
noise. This value was found to be a good compromise be-
tween false detection and misses of cloud at Macquarie Is-
land, where the boundary layer aerosol is prevalent, after
testing different threshold values. This step is important to
make the simulated and observed backscattering coefficient
profiles comparable. Next, the statistical summary including
the CF, cloud frequency of occurrence (CFO), and attenuated
volume backscattering coefficient histograms is derived. The
CFO is calculated for each height level by counting the num-
ber of bins which have a positive cloud mask divided by the
total number of columns in the time range. The total CF is
calculated by counting the number of columns which have at
least one cloudy bin, divided by the total number of columns
in the time range. For the ceilometer data, the ALCF applies
the same operations as the model but starts from the denoised
step. Plots of cloud occurrence representing the CBH and
attenuated volume backscattering histogram are generated
from the ALCF code. More information about this frame-
work can be found in Kuma et al. (2021b).

Several limitations exist within the ALCF that can cause
uncertainties (Kuma et al., 2021b). Firstly, the accuracy of
the CL31 and CL51 ceilometers’ calibration may be im-
pacted by the absorption of water vapor at 910 nm, which
can limit the precision of their comparison. However, it is
improbable that the calculated cloud masks will be signifi-
cantly influenced due to the high backscattering caused by
clouds. Secondly, precipitation and aerosol are not currently
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implemented in the simulator. The cloud detection algo-
rithm typically identifies observed precipitation as “cloud”,
whereas the simulated profile does not show any backscat-
tering in the area where precipitation is occurring. Finally,
the ALCs also encounter several measurement limitations.
Specifically, inadequate overlap, dead time, and after-pulse
corrections often yield sub-optimal outcomes at close range.
Semi-automated methods include calculating the distribution
of integrated attenuated volume backscattering coefficient by
analyzing the height where maximum backscattering occurs.

The ALCF was operated from September 2017 to Febru-
ary 2018 to correspond with the hourly ACCESS-AM2 out-
put in this study. The cloud occurrence in the ALCF output
was primarily used to investigate the relationship between
the cloud radiative bias and the representation of cloud oc-
currence in the model.

3 Surface radiative biases

3.1 All-sky and clear-sky surface radiation biases

Figure 2 shows the time series of daily averaged surface SW
and LW radiation fluxes at Macquarie Island from April 2016
to March 2018 based on the surface radiometer (dotted black
line), ACCESS-AM2 model (red line), and CERES satellite
product (blue line). During this 2-year period, the SW ra-
diation fluxes in the upper panel present a clear annual cy-
cle, reaching the peak in austral summer (DJF) of around
250 W m−2. This annual cycle is also found in the magnitude
of the SW fluctuations, with the smallest amplitude variabil-
ity in winter and the largest amplitudes in summer. The sur-
face SW radiation fluxes simulated by ACCESS-AM2 model
and CERES align with observations regarding the R2 values
of 0.79 and 0.93, respectively (Fig. 2a). For LW radiation
fluxes in the lower panel, some variation is visible with lower
downwelling LW flux in winter than in summer, which would
be expected since the clouds and atmosphere are colder in
winter and thus radiating less LW radiation to the surface.
The magnitude of LW fluxes varies mainly between 250 and
350 W m−2, with a lower variability than SW fluxes. For the
LW radiation fluxes, with the exception of winter (JJA) when
the CERES exhibits a clear underestimation, the model and
satellite conform to the observations well.

The model and satellite product, respectively, show Pear-
son correlations of SW radiation fluxes of 0.92 (ACCESS-
AM2) and 0.98 (CERES) compared to the observations, with
the periodicity of SW radiation enhancing these results. Af-
ter monthly detrending, the correlations decrease to 0.72 and
0.94, suggesting a good performance by the model and excel-
lent performance by the satellite product. The LW correlation
between observation and ACCESS-AM2 model remains un-
changed at 0.80 before and after eliminating monthly effects.
However, this correlation rises from 0.82 to 0.86 between ob-
servation and satellite, possibly by artificially removing the
wintertime low bias. The differing capability of model and

satellite to simulate observed surface SW and LW demon-
strates the necessity for validation of satellite products in re-
producing surface radiation fluxes, including the radiative re-
trieval algorithms, before utilizing them to evaluate climate
models.

Table 1 displays the total and seasonal averages of surface
SW and LW radiation fluxes calculated using daily means
under all-sky and modeled clear-sky conditions as well as
their biases in observational, model, and satellite datasets.
Figure 3 shows the seasonal distribution of SW and LW ra-
diation fluxes in all-sky and clear-sky conditions. For the
ACCESS-AM2 model, annually there is an overestimation
of +9.5± 33.5 W m−2 in SW fluxes and a small underesti-
mation of −2.3± 13.5 W m−2 in LW fluxes in cloudy con-
ditions (Table 1). The number following the ± sign indi-
cates the daily standard deviation but not the confidence in-
terval as illustrated in the bolded brackets of the table. The
overestimation of SW radiation in the model is pronounced
in spring and becomes more so in summer, during which
season the mean SW radiation simulated by the model is
+25.0± 48.0 W m−2 higher than the observations. As illus-
trated in Fig. 3a, the model’s distribution (blue) exhibits a
large shift to higher radiation fluxes relative to the obser-
vation (red) in the summer. The differences for LW radia-
tion fluxes in the model are minor throughout all seasons,
reaching −4 W m−2 in autumn, with smaller differences in
all other seasons. The CERES product has an overestimation
of+8.0±18.0 W m−2 in SW radiation fluxes and a large un-
derestimation of−12.1±12.2 W m−2 in LW radiation fluxes
in all-sky conditions. Similar to ACCESS-AM2, the SW ra-
diation biases of the satellite product are greater in the spring
and summer than in the autumn and winter. From Fig. 3a, the
satellite’s distribution (green) shows a large shift to higher
value in comparison to the observation (red) in the summer,
which is comparable to the model. The LW radiation biases
of the satellite are much larger than those of the model, with
the highest biases occurring in autumn and winter. This is
especially evident in Fig. 3b, where there is a very signifi-
cant shift to smaller radiation fluxes in the distribution of the
satellite data compared to the observation and model.

When it comes to simulated clear-sky conditions, the
ACCESS-AM2 surface shortwave (SWcs) and longwave
(LWcs) radiation fluxes were found to have biases of −2.3±
3.7 and+4.5±5.3 W m−2 in total (Table 1), when compared
to the ERA5 clear-sky product. Non-significant negative
SWcs biases in the model are consistent across all seasons
and the distribution of SWcs of ACCESS-AM2 and ERA5 fit
well (Fig. 3c). The biases for LWcs fluxes in the ACCESS-
AM2 model are statistically significant and more notable in
spring and summer (Fig. 3d). The satellite’s LW biases and
seasonal distributions in clear-sky conditions are similar to
ACCESS-AM2 when comparing with ERA5, while the SW
biases are more negligible (Fig. 3c, d). The significant dif-
ferences of LWcs in model and satellite compared to ERA5
highlight the need for more validation and development of
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Table 1. Annual and seasonal means of downwelling SW and LW fluxes in all-sky and clear-sky conditions.

W m−2 Observation ACCESS-AM2 Bias (ACCESS-AM2) CERES Bias (CERES)

Annual

SW mean 95.9 [76.3] 105.4 [83.4] 9.5 [4.3]∗ 103.9 [81.4] 8.0 [4.2]∗
SWcs mean 189.5 [127.9] (ERA5) 187.2 [127.3] −2.3 [6.8] 189.2 [127.6] −0.3 [6.8]
LW mean 314.0 [21.8] 311.7 [19.8] −2.3 [1.1]∗ 301.9 [16.6] −12.1 [1.0]∗∗∗
LWcs mean 251.0 [14.8] (ERA5) 255.5 [15.6] 4.5 [0.8]∗∗∗ 255.3 [13.0] 4.3 [0.7]∗∗∗

Summer (DJF)

SW mean 171.5 [64.3] 196.5 [60.5] 25.0 [6.6]∗∗∗ 191.3 [60.9] 19.8 [6.6]∗∗
SWcs mean 341.5 [43.5] (ERA5) 339.2 [42.6] −2.3 [4.6] 340.9 [43.5] −0.6 [4.6]
LW mean 320.7 [21.0] 318.0 [19.7] −2.7 [2.2] 312.7 [14.6] −8.0 [1.9]∗∗∗
LWcs mean 259.7 [12.2] (ERA5) 264.8 [13.1] 5.1 [1.3]∗∗∗ 262.5 [10.7] 2.8 [1.2]∗

Autumn (MAM)

SW mean 51.9 [37.3] 52.3 [33.0] 0.4 [4.1] 52.9 [35.9] 1.0 [4.2]
SWcs mean 105.7 [59.6] (ERA5) 103.8 [59.6] −1.9 [6.9] 105.3 [60.0] −0.4 [6.9]
LW mean 317.6 [20.5] 314.0 [19.4] −3.6 [2.3] 302.9 [14.9] −14.7 [2.1]∗∗∗
LWcs mean 254.3 [14.2] (ERA5) 257.6 [14.4] 3.3 [1.7]∗ 258.8 [12.4] 4.5 [1.5]∗∗

Winter (JJA)

SW mean 26.8 [17.6] 24.6 [16.3] −2.2 [1.8] 27.1 [16.9] 0.3 [1.8]
SWcs mean 52.5 [25.5] (ERA5) 50.7 [25.1] −1.8 [2.6] 52.1 [25.5] −0.4 [2.7]
LW mean 307.3 [21.5] 307.2 [17.8] −0.1 [2.1] 290.5 [12.7] −16.8 [1.8]∗∗∗
LWcs mean 242.7 [13.4] (ERA5) 246.9 [14.3] 4.2 [1.4]∗∗ 248.6 [12.1] 5.9 [1.3]∗∗∗

Spring (SON)

SW mean 127.8 [60.8] 141.1 [59.3] 13.3 [6.3]∗ 137.5 [60.0] 9.7 [6.3]
SWcs mean 249.6 [77.2] (ERA5) 246.2 [76.7] −3.4 [8.1] 249.3 [76.8] −0.3 [8.1]
LW mean 311.2 [21.6] 308.4 [20.4] −2.8 [2.2] 302.1 [15.8] −9.1 [2.0]∗∗∗
LWcs mean 248.0 [13.2] (ERA5) 253.1 [14.9] 5.1 [1.5]∗∗∗ 252.0 [11.7] 4.0 [1.3]∗∗

All values have units of watts per square meter (W m−2). The bolded biases were calculated based on mean surface fluxes (e.g.,
ACCESS-AM2− observation, CERES− observation). When present, brackets “[]” show the day-to-day standard deviation, while bolded brackets show
the standard error of the mean difference, which reflects if the biases can be considered significant at a certain confidence interval. The biases with “∗”
mean the p value< 0.1, biases with “∗∗” mean the p value< 0.01, and biases with “∗∗∗” mean the p value< 0.001.

especially the LWcs models. The SWcs models show smaller
and insignificant biases, indicating less uncertainty.

After quantifying the average biases and the seasonal dis-
tributions of radiation data from the ACCESS-AM2 model
and the satellite product, we can now further explore the
causes of these biases. Numerous studies have corroborated
the overestimation of surface SW radiation in climate mod-
els, reaching a maximum in summer (Trenberth and Fasullo,
2010; Franklin et al., 2013; Mason et al., 2015; Luo et al.,
2016). The larger quantity of solar radiation in the spring and
summer compared to the autumn and winter causes the cloud
bias in these periods to have a larger impact on the radiative
balance (Luo et al., 2016; Fiddes et al., 2022). The underesti-
mated CF and liquid water content in the model are believed
to be the major explanation for this overestimation (Mason et
al., 2015; Luo et al., 2016; Kuma et al., 2020). “Too few and
too bright” low-level clouds were identified as the cause of
this SW bias in CMIP5 models (Nam et al., 2012; Wall et al.,
2017). Nevertheless, more recently, Schuddeboom and Mc-

Donald (2021) discovered the exact contrasting result in the
CMIP6 simulations, which demonstrates the importance of
prioritizing the low-level cloud simulation to enhance the SW
radiative balance over the SO. The LW radiation biases can
be expected to also originate largely from cloud occurrence
and cloud microphysics biases and to a lesser extent atmo-
spheric temperature and humidity biases (Wild et al., 2001).
The physical reason is a high emissivity of clouds compared
to the atmosphere, so the surface is more radiatively coupled
to clouds as opposed to the thermally very cold space. For
downwelling surface radiation in clear-sky conditions, Wild
et al. (2006) suggest earlier GCMs overestimated SWcs ra-
diation due to a lack of suitable aerosol forcing and an over-
estimated water vapor absorption. The influence of aerosol
in the representation of SWcs radiation in climate models
has been confirmed by Ruiz-Arias et al. (2013). Neverthe-
less, ACCESS has been shown (unpublished) to underesti-
mate radiation-relevant aerosol over the SO, which does not
fit with the underestimated SWcs bias here. Significantly, fur-
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Figure 2. Time series of daily means of downwelling surface SW (a) and LW (b) radiation fluxes during MICRE. The dotted black line rep-
resents surface observations, the red line represents ACCESS-AM2 outputs, and the blue line represents CERES observations. The coefficient
of determination is indicated in the legend.

Figure 3. Violin plot of seasonal distributions of downwelling surface SW (a, c) and LW (b, d) radiation fluxes in all-sky and clear-sky
conditions among surface observations, the ACCESS-AM2 model, and satellite data. The white dot in the middle represents the median, the
thick gray bar represents the interquartile range, and the thin gray line represents the rest of the distribution. The width of the violin plot
represents the distribution of the radiation value.
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ther work needs to be done to understand both aerosol as well
as water vapor, which has been understudied over the SO to
solve the SWcs biases in the ACCESS-AM2 model. The con-
sistent biases in LWcs could be partially explained by the
difference in the humidity profiles and near-surface tempera-
ture according to Allan (2000), who evaluated the simulated
LWcs against ground-based observations.

For CERES data, non-negligible biases are also present.
The SW bias of+8.0±18.0 W m−2 and LW bias of−12.1±
12.2 W m−2 are slightly different to the previous study by
Hinkelman and Marchand (2020) in magnitude (+10 W m−2

for SW bias and −10 W m−2 for LW bias), which used a
co-located observational dataset collected by ARM at Mac-
quarie Island. These differences in SW and LW biases are
possibly attributed to the different temporal resolution of the
CERES SYN product (hourly output used in Hinkelman and
Marchand, 2020, and daily output used in this study) and dif-
ferent interpolation methods to collocate data to Macquarie
Island (Hinkelman and Marchand, 2020, chose the nearest
grid that contains Macquarie Island, while this study linearly
interpolated data to Macquarie Island). Other factors such
as data gaps, sampling uncertainty, calibration offsets, dif-
ferent pyranometers, and local shadowing effects may also
contribute to the biases difference. Hinkelman and Marchand
(2020) showed that the LW biases in the CERES were caused
by an inaccurately low CBH at night. Non-negligible biases
in SW and LW fluxes indicate the importance of evaluating
and improving the retrieval algorithms for surface radiation
fluxes in satellite data, with larger biases in summer for SW
radiation and in winter for LW radiation.

Excellent alignment of SWcs radiation between the satel-
lite and reanalysis is expected given the CERES product uses
ERA5 to inform its radiative transfer algorithm. While few
studies have been focused on LWcs biases, the biases of sim-
ilar magnitude for the satellite product and the model sug-
gest that more attention needs to be paid to the clear-sky
algorithms, including for the ERA5 parameterization. Once
again, we suggest the parameterization of humidity and tem-
perature, and their use in the clear-sky models, must be a
point of focus.

Understanding the biases in the respective SW and LW
clear-sky biases is an important but often neglected compo-
nent of understanding the CREs. Here we have shown that
while the SWcs biases from ACCESS-AM2 and CERES (us-
ing similar meteorology driven by ERA5 and using the same
method of calculating the clear-sky fluxes) are very simi-
lar, the same cannot be said for the LWcs. These differ-
ences, and how they affect the CRE, require further study.
Wang et al. (2020) evaluated the cloud radiative effect of
ERA5 using ship-based measurements in the SO during
three summer seasons. Higher shortwave cloud radiative ef-
fect (+77 W m−2) and lower longwave cloud radiative effect
(−18 W m−2) were detected in ERA5 in all-sky conditions,
which are likely attributed to the higher occurrence of clouds
over the Southern Ocean compared to what was modeled and

potentially resulting from the higher transmittance of clouds
in the ERA5 (Wang et al., 2020). Regarding clear-sky con-
ditions, no notable error was found in the ERA5 LW irra-
diance, while for SW, the observed values were 33 W m−2

higher than those predicted by ERA5. More recently, Mal-
let et al. (2023) found large downwelling SW radiation bi-
ases (+54 W m−2) in the ERA5 compared with 25 years of
summertime surface measurements collected from ship and
ground stations over the SO. By employing machine learn-
ing techniques, cloud cover and relative humidity exhibited a
strong contribution to the SW radiation biases. Despite these
few studies on ERA5 radiation biases, a limited amount of
research has been dedicated to investigating this issue, par-
ticularly in relation to clear-sky conditions. We emphasize
the importance of using ground-based observations of clear-
sky radiation to evaluate the model and satellite, as well as
validating the reanalysis product.

After investigating the SW and LW radiation biases of
ACCESS-AM2 and CERES in both all-sky and clear-sky
conditions, we next assess their capability to reproduce cloud
radiative effects.

3.2 Surface cloud radiative effect (CRE) biases

The surface cloud radiative effect (CRE) determines the
role of clouds in the surface radiation budget (defined in
Sect. 2.3). A positive CRE indicates that clouds are warming
the surface, while a negative CRE implies a surface cooling.

Figure 4 shows the time series of daily average total CRE,
CRESW, and CRELW in the three datasets. The time series
of total CRE and CRESW shows an evident annual cycle in
which the value is significantly negative in the summer, re-
duces during autumn, and reaches a minimum value in win-
ter. The CRELW, similar to the all-sky condition, does not
show a clear annual cycle, being stable across the year and
ranging from 0 to +80 W m−2.

Table 2 shows the value of the total and seasonal aver-
ages and biases of surface total CRE, CRESW, and CRELW
for surface-based observations, the ACCESS-AM2 model,
and CERES product. Figure 5 shows the respective sea-
sonal distributions. For the ACCESS-AM2 model, there
is a total CRE of −23.0± 58.1 W m−2 contributed by a
SW cooling of −77.6± 58.8 W m−2 and a LW warming of
+54.6±11.7 W m−2 during the 2-year period. A CRESW bias
(+11.2±31.1 W m−2) dominates the total CRE bias (+4.8±
28.0 W m−2). Figure 5a demonstrates that the total CRE bias
is largest during the spring and summer. During winter, when
total CRE is at the most positive value, the CRELW has a
greater influence on the total CRE than the CRESW, mainly
caused by the biases in clear-sky conditions (Tables 1, 2,
and Fig. 5). In comparison to ACCESS-AM2, CERES has a
greater total CRE of−35.7±56.3 W m−2, which is attributed
to a larger SW cooling of−80.9±61.6 W m−2 and a smaller
LW warming of +45.2± 11.5 W m−2. The seasonal distri-
bution of CRESW biases in the CERES product follows the
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Figure 4. Time series of daily means of CRE (a), CRESW (b), and CRELW (c). The dotted black line represents surface observations, the
red line represents ACCESS-AM2 outputs, and the blue line represents CERES observations. The coefficient of determination is indicated
in the legend.

Table 2. Annual and seasonal means of CRE, CRESW, and CRELW.

W m−2 Observation ACCESS-AM2 Bias (ACCESS-AM2) CERES Bias (CERES)

Annual

CRE mean −27.8[69.6] −23.0[58.1] +4.8 [3.4] −35.7[56.3] −7.9 [3.4]∗
CRESW mean −88.8[70.9] −77.6[58.8] +11.2 [3.5]∗∗ −80.9[61.6] +7.9 [3.6]∗
CRELW mean +61.0[12.4] +54.6[11.7] −6.4 [0.6]∗∗∗ +45.2[11.5] −15.8 [0.6]∗∗∗

Summer (DJF)

CRE mean −101.6[51.0] −82.9[43.3] +18.7 [5.0]∗∗∗ −92.4[46.6] +9.2 [5.2]∗
CRESW mean −160.2[58.7] −134.4[50.4] +25.8 [5.8]∗∗∗ −140.9[52.1] +19.3 [5.9]∗∗
CRELW mean +58.6[12.9] +51.5[11.4] −7.1 [1.3]∗∗∗ +48.5[11.1] −10.1 [1.3]∗∗∗

Autumn (MAM)

CRE mean +10.7[34.5] +6.9[32.4] −3.8 [3.9] −5.9[28.9] −16.6 [3.7]∗∗∗
CRESW mean −50.8[34.4] −48.2[33.0] +2.6 [3.9] −48.8[30.5] +2.0 [3.8]
CRELW mean +61.5[11.0] +55.1[10.3] −6.4 [1.2]∗∗∗ +42.9[10.2] −18.6 [1.2]∗∗∗

Winter (JJA)

CRE mean +38.4[14.8] +33.7[14.6] −4.7 [1.5]∗∗ +16.5[12.0] −21.9 [1.4]∗∗∗
CRESW mean −24.2[13.5] −24.7[13.6] −0.5 [1.4] −24.1[12.5] 0.1 [1.4]
CRELW mean +62.6[11.6] +58.4[11.5] −4.2 [1.2]∗∗∗ +40.6[9.7] −22.0 [1.1]∗∗∗

Spring (SON)

CRE mean −53.9[55.4] −45.7[44.3] +8.2 [5.3] −57.1[45.4] −3.2 [5.3]
CRESW mean −115.1[60.0] −99.3[49.8] +15.8 [5.8]∗∗ −105.7[51.8] +9.4 [5.9]
CRELW mean +61.2[13.3] +53.6[12.4] −7.6 [1.3]∗∗∗ +48.6[12.5] −12.6 [1.4]∗∗∗

All values have units of watts per square meter (W m−2). The bold values indicate the biases, which were calculated based on mean surface fluxes
(e.g., ACCESS-AM2− observation, CERES− observation). When present, brackets “[]” show the day-to-day standard deviation, while bolded
brackets show the standard error of the mean difference. The biases with “∗” mean the p value< 0.1, biases with “∗∗” mean the p value< 0.01,
and biases with “∗∗∗” mean the p value< 0.001.
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same pattern as the ACCESS-AM2 model (Table 2, Fig. 5b).
However, larger negative biases of CRELW in autumn and
winter than the model can be attributed to the large LW
bias during these seasons in the satellite measurements (Ta-
ble 1, Fig. 5c). The overestimation of surface total CRE in
ACCESS-AM2 is consistent with a series of studies (Allan,
2000; Protat et al., 2017; McFarquhar et al., 2021), with the
source of overestimated surface SW radiation attributed to
poor simulation of low-level cloud fraction and cloud liquid
water content.

The diurnal cycle of CRE biases in summer was inves-
tigated in Appendix B. For ACCESS-AM2, the prevalent
CRESW biases contribute to the majority of the CRE bias,
which peaks at noon and presents no bias at night. The
CRELW biases have a lower magnitude than CRESW and
show no obvious variability (Fig. B1). For CERES, CRESW
biases are comparable to ACCESS-AM2, while the negative
CRELW biases are substantial at local night (Fig. B1), which
has been attributed to wrong cloud base height (Hinkelman
and Marchand, 2020). The diurnal cycle highlights that in
summer the ACCESS-AM2 model is able to more accurately
capture the characteristics of LW radiation than it can for
SW radiation, and most of the cloud radiative biases can
be attributed to poor simulation of SW radiation. While in
CERES, poor SW simulation during the day and LW simula-
tion during the night both contribute to the total cloud radia-
tive biases.

4 CF biases and their connection to radiative biases

After finding non-negligible radiative biases in the surface
radiation and CRE in the ACCESS-AM2 model and CERES
product, we now examine the cloud conditions associated
with these biases. In line with theoretical expectation and
previous studies that suggest the CF has a significant influ-
ence on the downwelling surface radiation (Luo et al., 2016;
Protat et al., 2017), we evaluate the distribution of the CF and
its relationship with radiative bias using daily observational
data collected by cloud camera during MICRE from April
2016 to March 2018.

4.1 CF distribution

The annual (a) and seasonal (b–e) CF distributions are shown
in Fig. 6. In the left panel, the daily averaged CFs for the
observations and model are, respectively, 0.81± 0.19 and
0.82± 0.17. The number following the ± sign here indi-
cates the daily standard deviation of the CF. The mean bias
(ACCESS-AM2− observation) is the integrated effect of an
underestimated frequency of the CF between 0.2 and 0.6 and
an overestimated frequency of the CF between 0.6 and 0.9
(Fig. 6a). As shown in Fig. 6e, the model accurately sim-
ulates the mean CF in the spring, but it still overestimates
the CF frequency between 0.6 and 0.9. In both autumn and
winter, the model overestimated the mean CF, with a more

pronounced overestimation occurring in winter (Fig. 6c, d).
Unlike spring, autumn, and winter, the summer mean CF in
the model is lower than observed (Fig. 6b).

Several previous studies examined the CF simulated by
climate models or reanalysis in the SO and Antarctic re-
gions during austral summer (Mason et al., 2015; Protat et
al., 2017; Wang et al., 2020; McFarquhar et al., 2021). In
the ACCESS1.3 model for the high-latitude SO (50–65◦ S),
Mason et al. (2015) found an overall CF deficit. Protat et
al. (2017) discovered that the regional NWP version of the
ACCESS model overestimates the frequency of intermediate
CF but underestimates the frequency of an extremely low or
extremely high CF over the SO. Wang et al. (2020) found
an underestimation of the daily averaged CF in the ERA5
datasets. In McFarquhar et al. (2021), the radiation bias in
the NWP version of ACCESS was shown to link mostly to
low-level clouds.

During MICRE, the sky was overcast over almost the en-
tire observation period (bar 4 d). As mentioned in the pre-
vious section, our study also finds a total overestimation for
average downwelling surface SW radiation in the ACCESS-
AM2 model. However, here we show mean overestimations
in the CF by the model in autumn and winter, a result of both
an overestimation in the frequency of the CF between 0.6 and
0.9 and an underestimation of other CFs. In the winter, when
the SW bias is negative, there is a positive bias in the CF. In
summer we find an underestimation of the CF, when the pos-
itive SW bias is particularly evident, which agrees with the
previous studies’ conclusions. Nevertheless, the overall over-
estimated CF and positive surface SW biases in the model in-
dicate that the CF alone does not control the cloud radiative
effect, but also properties such as cloud phase, cloud base
height, and cloud geometrical or optical thickness are likely
to play a significant role (Viúdez-Mora et al., 2015; Cesana
and Storelvmo, 2017; Fiddes et al., 2022). In addition, cloud
microphysics such as ice crystal shape and size distribution
and direct and indirect effect of aerosols could also have an
effect on radiation biases (Bohren and Huffman, 2008; Kuma
et al., 2020). Our results here are in agreement with the work
done by Schuddeboom and McDonald (2021), which found
an overestimated low-level CF and a reduced reflectivity of
low-level cloud over the SO in CMIP6 models, highlighting
the significance of correctly representing low-level clouds to
simulating radiative balance over the SO. In the next section,
we examine how the CF influences the radiation and, as a
result, the CRE.

4.2 CF distribution with respect to different radiation
biases

Figure 7 shows the CF distribution divided into different ra-
diation bias cases over the entire time series. Figure 7a shows
where the SW bias is large and negative, represented by
the 10th percentile (smaller than −20 W m−2). Figure 7b is
where the SW bias is small, between the 30th and 70th per-
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Figure 5. Same as Fig. 3 but for CREs among surface observations, the ACCESS-AM2 model, and satellite observations.

Figure 6. The total CF distribution (a) and seasonal CF distribution (b, c, d, e) of ACCESS-AM2 model and surface observations from April
2016 to March 2018. The vertical dashed lines indicate the mean of the datasets corresponding to their color. Averages are shown in the
brackets in the legend.

centile (within ±10 W m−2), and Fig. 7c is where the SW
difference is large and positive, represented by the 90th per-
centile (larger than 50 W m−2). For LW cases on the right
panels, the selection criterion is identical in terms of per-

centiles to the SW cases, but with different thresholds as in-
dicated.

In Fig. 7a, showing the negative SW bias condition, an
evident overestimation of the CF in the model is found, par-
ticularly at higher frequencies of CFs above 0.8. For Fig. 7b,
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Figure 7. Daily averaged CF distributions from the ACCESS-AM2 model (red) and observation (black), restricted to cases where down-
welling surface (a) 1SW (ACCESS-AM2− observation) <−20 W m−2, (b) −10 W m−2 <1SW < 10 W m−2, (c) 1SW> 50 W m−2,
(d) 1LW (ACCESS-AM2− observation) <−15 W m−2, (e) −5 W m−2 <1LW <−5 W m−2, and (f) 1LW> 15 W m−2. The amount of
data in each case is annotated on the top right of the panel. The vertical dashed lines indicate the mean of the datasets corresponding to their
color. Averages are shown in the brackets in the legend.

the CF in the model conforms well to the observation with a
0.02 difference on average. When the SW bias corresponded
to a strong positive value (Fig. 7c), the model largely under-
estimated the CF by overestimating the frequency of low CF
(smaller than 0.4) and underestimating the frequency of high
CF (larger than 0.8).

For panels on the right depicting the conditions restricted
by the LW bias, Fig. 7d shows that when there was a strong
negative LW bias, the CF simulated by the model was sig-
nificantly lower than the observations, influenced by a large
underestimation of the CF frequency of above 0.8. When the
LW bias is relatively low (Fig. 7e), the simulated CF was
comparable to the observation, with a bias of 0.03 on aver-
age. During large and positive LW bias conditions (Fig. 7f),
the model overestimated the CF by simulating too much high
CF.

The analysis above demonstrates that the radiative biases
at the extremes can be associated with biases in the CF, where
SW radiation is underestimated with a greater CF and is over-
estimated with a lower CF. LW radiation appears to con-
sistently respond by following the opposite mechanism. For
the majority of the time, however, when radiative biases are
small, we find that the model performs surprisingly well with
respect to the CF. This result suggests more attention should
be paid to instances when the radiative biases are strongly
positive or negative to understand what type of cloud con-
ditions are contributing to these biases (e.g., cloud top pres-
sure, cloud optical and geometrical depth). Moreover, it is
worth noting that limitations exist in comparing the CF de-
rived from a camera versus a model as they have different
spatial coverage. While much of that is smoothed out by tak-
ing daily averages, the statistics could still be affected.
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Figure 8. CFO histogram against height above the mean sea level
observed at Macquarie Island (black) and simulated by the lidar
simulator based on atmospheric fields for ACCESS-AM2 model
(red), from September 2017 to February 2018. The total CF is
shown in the legend. The height of this plot is limited to 10 km as
there was no significant amount of cloud detected above this level.

5 Cloud frequency of occurrence

The ALCF product was operated using the hourly data from
the ACCESS-AM2 model and ceilometer data from Septem-
ber 2017 to February 2018. Figures 8 and 9 show the like-
lihood of cloud occurrence with height over this period of
time. The CF in the figure caption denotes the overall CF
collected by the ceilometer over the 6-month period as cal-
culated by the ALCF, which might include both fog and pre-
cipitation. The averaged CFO and CF of 10 subcolumns are
chosen to represent the model’s statistics. The results in this
section can be seasonally biased as the date range is not an
integer number of years. The different magnitudes of overes-
timation or underestimation of the CF compared with previ-
ous results in Sect. 4.2 may be attributed to the different time
period of the data. Additionally, different viewing geometry
(the ceilometer only sees directly overhead, whereas the cam-
era sees a much larger part of the sky), detection thresholds,
any errors in cloud detection (incomplete overlap near the
surface in the ceilometer), or precipitation misidentified as
cloud could cause the differences in the CF measured by the
cloud camera and ceilometer.

Figure 8 shows the histogram of CFO, measured by the
ceilometer at Macquarie Island, versus height above the
mean sea level. It demonstrates an observed predominant
low-level cloud between the surface and 2 km height. Cloud
occurrence was found 35 % of the time near the lowest level
(around 50 m) provided by the ALCF. As the altitude in-
creases, cloud occurrence declines rapidly, reaching close
to zero above 6 km, which could be partially due to the
backscatter attenuation caused by low-level clouds (McEr-
lich et al., 2021). In comparison, the model has a large un-

derestimation of cloud occurrence at the lowest level where
only about 13 % of the cloud occurrence is detected near the
surface. It reaches a peak at around 500 m and then grad-
ually diminishes with height. In contrast to the ceilometer,
the model detected small cloud occurrences above 6 km. The
overall CF for this period (spring and summer) observed by
the ceilometer was 89 %, which the model underestimated by
2 %.

Ceilometers determine the CBH from the backscatter pro-
file, and higher clouds can be obscured by optically thick
low-level water clouds, rendering high-level clouds invisible
in the profile (Klekociuk et al., 2020; Kuma et al., 2021b;
McErlich et al., 2021). The limitation of the ceilometer is
likely the explanation for why clouds above 6 km are unac-
counted for in these observations. A multilayer cloud occur-
rence of 19.5 % was obtained by Protat et al. (2017) within
a span of 10 d between latitudes of 43 and 48◦ S. Klekociuk
et al. (2020) found a 26 % occurrence of multilayer cloud
during a 2-month campaign from latitudes 44.7 to 67◦ S. By
examining these previous observations, we can have an ap-
proximation of the frequency at which the ceilometer expe-
riences the limitation of high cloud obscurity over the SO.
As the ACCESS-AM2 outputs are passed through the ALCF,
the same limitation applies to the modeled data. Therefore,
we can fairly compare the characteristics of low-level clouds
between the ceilometer and model. When using the ALCF
to replicate what the model “observes” if it were a ceilome-
ter, Fig. 8 highlights that the ACCESS-AM2 model tends
to underestimate the total CF and can only partially repro-
duce low-level cloud below 300 m while slightly overesti-
mating the cloud occurrence between 300 m and 3 km, with
the largest overestimation of 5 % observed at 800 m. In Fid-
des et al. (2022) it was found that the ACCESS-AM2 model,
when compared to COSP satellite products, underestimates
low clouds at the expense of mid-level clouds. The NWP
version of the ACCESS model underestimated the low-level
cloud occurrence below 1.5 km and largely overestimated the
frequency of multilayer cloud, consistent with the excess sur-
face SW radiation in the model (Protat et al., 2017). Different
from prior studies that demonstrated an overall underestima-
tion of low-level clouds below 2 km in the ACCESS model,
our findings suggested a specific underestimation of low-
level clouds below 300 m and an overestimation for other
low-level clouds above this altitude. The general underesti-
mation of the total CF conforms to previous studies that used
the ALCF to assess the performance of several climate mod-
els and reanalysis products (Kuma et al., 2020, 2021b).

Nevertheless, it is crucial to note that limitations exist in
the ALCF for reproducing CFO. As mentioned in Sect. 2.6,
the ALCF does not identify precipitation, which could be
classified as cloud in the ceilometer while ignored in the
model (Kuma et al., 2021b). This may cause an overestima-
tion of CFO near the surface in the ceilometer and poten-
tially amplify the underestimation of low-level CFO in the
model. Upon visually inspecting the time series of ceilome-
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Figure 9. Same as Fig. 8 but restricted with different bias conditions, where (a) 1SW (ACCESS-AM2− observation) <−100 W m−2,
(b) 1SW> 160 W m−2, (c) 1LW (ACCESS-AM2− observation) <−30 W m−2, and (d) 1LW> 40 W m−2. The lighter shaded lines
indicate the total cloud occurrences as in Fig. 8.

ter backscatter profiles, certain layers beneath stratocumu-
lus clouds at around 500 m are identified as clouds, poten-
tially consisting of drizzle, snow, or fog. Tansey et al. (2022)
has reported an occurrence of 34 % and 19 % of drizzle in
2016–2017 spring and summer at Macquarie Island. More-
over, Stanford et al. (2023) found that ceilometer observa-
tions on Macquarie Island were obscured 18 % of the time
because of fog, which is also likely to influence the CFO
near the surface. Hence, low-level CFO below 500 m should
be interpreted cautiously as it could be influenced by the
combination of precipitation and fog. Further research that
combines lidar/ceilometer with precipitation measurements
will be beneficial to the model evaluation. Moreover, more
sophisticated algorithms to classify precipitation, fog, and
aerosol are suggested to be developed within the ALCF.

To further explore the relationships of cloud occurrence
with the radiative biases, we next evaluate the cloud occur-
rence under different radiation bias conditions, as described
in the previous section. Figure 9 shows the histograms of
cloud occurrence and the total CF in different radiation bias
conditions, noting that we are not showing the cloud occur-

rence profiles under neutral bias conditions, as the model per-
formed very similarly to the mean shown in Fig. 8 for both
SW and LW conditions.

When SW biases are large and negative, as per the 10th
percentile, the model generates 16 % higher total CF than the
observations and simulates the same cloud occurrence of 8 %
near the surface (Fig. 9a). There is a persistent overestimation
of cloud occurrence between the surface and 2.5 km in the
model, compensated for by the underestimation of cloud oc-
currence between 2.5 and 6 km. The observed CFO in these
conditions is smaller than that observed under average condi-
tions at lower levels, as seen in Fig. 8 and replotted in Fig. 9
in lighter colors. The model, however, sees an increase in
CFO above 1 km altitude. When the SW bias is large and
positive (Fig. 9b), as per the 90th percentile, the model un-
derestimates the cloud occurrence below 1.5 km but up to
32 % near the surface. The model’s low-level cloud occur-
rence below 1 km decreased from the mean (Fig. 8), while
the observed low-level CFO has clearly increased. The total
CF simulated by the model was lower than observed by 15 %
in these cases.
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Figure 9c, in which cases of large negative LW biases were
selected by the 10th percentile, demonstrates a strong un-
derestimation by the model of cloud occurrence below 1 km
and a significant overestimation between 1.5 and 3 km. The
ALCF model output overestimates clouds above 4 km, pos-
sibly offset by the scarce simulated low-level clouds. The
model output is also clearly different to that of the mean mod-
eled occurrence profile, where low-level cloud below 1 km
occurred less frequently. This is in contrast to the observed
profile, where we see more frequent cloud occurrences be-
tween the surface and approximately 1.5 km. The total mod-
eled CF was lower than the observed values by 31 %. When
the LW bias is large and positive (Fig. 9d), as per the 90th
percentile, the model tends to overestimate the cloud occur-
rence below around 3 km and significantly overestimate the
total CF by 41 %. The observed low-level CFO is lower than
the average conditions in these cases, with a similar profile
to that of the underestimated SW bias profile (Fig. 9a). Be-
low 500 m, the modeled cloud occurrence is lower than the
average, but greater between this level and 2 km.

Combining the cloud occurrence and CF over different
bias conditions above, excessive downwelling surface SW
radiation in the model was associated with a lower low-level
cloud occurrence and lower CF, which aligns with our expec-
tations. The mid- and high-level clouds can be simulated by
the model even though the model underestimates low-level
clouds. The minor changes in the modeled cloud occurrence
profiles between both SW conditions and the mean demon-
strate the model’s inability to capture a diverse range of cloud
types, as found in Fiddes et al. (2022). However, this rela-
tive consistency in vertical cloud profile appears to be less
apparent when considering the LW conditions. For the LW
bias conditions, larger differences in the modeled low-level
cloud occurrence profiles are observed, when compared to
the mean. This may suggest that the CFO of low-level clouds
has a larger controlling factor over the LW biases than that of
the SW biases.

Despite the large influence of cloud macrophysical charac-
teristics such as the CF and CFO on cloud radiative proper-
ties, it is essential to acknowledge the crucial role played by
cloud microphysical properties such as cloud phase, cloud
droplet number concentration, and cloud effective radius.
Vergara-Temprado et al. (2018) emphasized the significance
of incorporating the spatial and temporal variations of ice-
nucleating particle (INP) concentrations in the cloud micro-
physics scheme. More realistic INP distributions and cloud
microphysical properties are crucial to accurately simulate
cloud phase, cloud reflectance, and thus radiation (Tan and
Storelvmo, 2016; Furtado and Field, 2017). Gettelman et
al. (2020) compared cloud microphysics in a nudged global
climate model (the Community Atmosphere Model, CAM)
with aircraft observations (the Southern Ocean Clouds, Radi-
ation, Aerosol Transport Experimental Study, SOCRATES)
collected over the SO. An improved simulation of SW
CRE was shown by implementing a revised autoconversion

scheme that reduces both liquid and ice water path but in-
creases cloud fraction and effective radius, maintaining more
supercooled liquid water. Nevertheless, the model still fell
short of matching the droplet numbers observed in aircraft
measurements, which suggests that higher concentrations of
cloud condensation nuclei (CCN) and greater droplet num-
bers may be required to achieve better agreement (Gettel-
man et al., 2020). In light of these preceding studies, a more
detailed understanding of cloud macro- and microphysical
properties is necessary to correctly simulate the radiation bal-
ance in climate models.

6 Conclusions

In this work, we provided an evaluation of the radiation
fluxes, CRE, CF, and cloud occurrence for the ACCESS-
AM2 model using surface-based observations between April
2016 and March 2018 at Macquarie Island. In addition,
we evaluated the radiation fluxes and CRE for the CERES
SYN 1◦ surface-based product over the same period. More-
over, we used the newly developed lidar simulator, the ALCF,
to quantify the relationship between cloud occurrence and ra-
diation biases in the model.

For the ACCESS-AM2 model, there was an overestima-
tion of +9.5± 33.5 W m−2 for downwelling surface SW ra-
diation fluxes and an underestimation of −2.3±13.5 W m−2

for LW radiation fluxes in all-sky conditions. The SW bias
was more pronounced in spring and summer on account of
the reduced low-level CF in the model, as well as strong solar
radiation during these seasons. The slight LW bias suggests
a good performance of the model in simulating LW radiation
on average. Compared to ERA5, a small underestimation of
−2.3±3.7 W m−2 for SWcs radiation and a significant over-
estimation of +4.5±5.3 W m−2 for LWcs were found in the
model, despite also being nudged to ERA5. The combina-
tion of radiation biases in all-sky and clear-sky conditions
contributes to an overestimation of +4.8± 28.0 W m−2 for
total CRE in the model, dominated by the SW CRE bias
of +11.2± 31.1 W m−2. The total CRE bias was more pro-
nounced in summer, which can be attributed to the SW CRE
bias. In winter, the LW CRE bias contributes most of the total
bias. For the CERES product, there was an overestimation of
+8.0± 18.0 W m−2 for SW radiation fluxes and an underes-
timation of −12.1± 12.2 W m−2 for LW radiation fluxes in
all-sky conditions, with the SW bias dominating in summer
and LW bias dominating in winter. These results agree with
Hinkelman and Marchand (2020), who showed a poor simu-
lation of low-level CBH at night contributing to the LW bias
in the satellite measurements. For clear-sky conditions, the
SWcs is well captured by CERES, while the biases of LWcs
are significant (despite also using ERA5 to inform the radia-
tive model) and very similar to the model. We speculate that
temperature and humidity representation play an important
role in causing the LWcs bias in CERES and suggest that
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further research should be conducted to evaluate clear-sky
radiation properties in CERES and ERA5.

The average CF distribution simulated by the model is
comparable with the observations with a bias of 0.01. How-
ever, this is caused by an underestimated frequency of the
CF between 0.2 and 0.6 and an overestimated frequency of
the CF above 0.6. Unlike prior summer-focused studies that
found an underestimation of the CF in the model, in this
study we found an overestimation of the mean CF across the
year (0.01) with the exception of a slight underestimation in
summer (0.02). This highlights the need for greater model
evaluation throughout the seasons as the summer biases may
not be representative throughout the year. When restricting
the CF to different radiation bias conditions, an overestima-
tion of surface SW radiation was associated with an under-
estimation of the CF, and an underestimation of surface SW
radiation was associated with an overestimation of the CF.
The opposite was found for LW cases.

By using the ALCF we can compare ceilometer data with
the model data directly. Overall, the results highlighted an
underestimation of low-level cloud occurrence below 300 m
and the total CF, which may be biased due to the presence of
precipitation and fog. When evaluating cloud occurrence un-
der different radiation bias conditions, it was demonstrated
that an overestimation of SW radiation is associated with an
underestimation of the low-level cloud occurrence and CF,
and negative SW radiation biases were associated with an
overestimated low-level cloud occurrence. For different LW
bias conditions, the results are opposite to the SW bias con-
ditions, as expected. An overestimation of LW radiation is
associated with an overestimation of low-level cloud occur-
rence below 3 km, while the model severely underestimates
low-level cloud occurrence for negative LW bias conditions.
We suggest that the larger differences in the modeled low-
level cloud occurrences between the LW conditions demon-
strate the greater dependence on low-level CFO of the LW
biases than SW biases.

Aside from the erroneous cloud representation in the
model, radiative biases could also arise from data collec-
tion and processing, which must be considered. For exam-
ple, observed missing data on specific days have been ig-
nored. The simulated clear-sky radiations are based on the
modeled ERA5 product, which will include inaccuracies on
clear-sky radiation estimation due to inaccurate temperature
and humidity profiles. The calculation of the all-sky CF is
influenced by the presence of sun in the cloud images. This
results in a saturation of a portion of the fisheye image, re-
sulting in uncertainty in the estimated CF. Additionally, the
limitation of the ceilometer (in both the observations and the
ALCF-derived product) in detecting high-level clouds adds
difficulty for complete model comparison. For the ACCESS-
AM2 and CERES, the Macquarie Island location is inter-
polated from coarse-resolution grid boxes, which will also
bring about some unavoidable biases.

Overall, this study reinforces the finding of excess down-
welling surface SW radiation in the ACCESS-AM2 model.
The significant bias of surface radiation fluxes in the SO in
CERES, which can lead to an underestimation of model bias,
indicates the requirement to also continually evaluate satel-
lite products using ground-based observations. We also high-
light the need to investigate what an accurate representation
of clear sky is in the SO, given the difficulty in validating
current clear-sky models due to consistent cloudiness and its
necessity in calculating the CRE. Moreover, this work con-
firms that the CF and cloud occurrence have a large impact
on the surface radiation, though with differing importance for
the SW and LW biases. We suggest that this demonstrates
the lack of diversity of clouds represented by the model, as
suggested by Fiddes et al. (2022), and also that other cloud
microphysical properties, such as cloud phase, cloud effec-
tive radius, and cloud droplet size distribution, may be more
important than the vertical profile for the SW biases. We em-
phasize that the correct representation of supercooled liquid
water over the SO is important for modeling the radiation
in the region, as inadequate supercooled liquid water content
will cause less reflectivity of clouds and result in positive
downwelling surface SW biases (Luo et al., 2016; Vergara-
Temprado et al., 2018; Gettelman et al., 2020).

For future studies, further evaluation of the climate mod-
els at more locations over the SO is suggested to comprehen-
sively investigate the radiation biases over this region. In the
latest Guyot et al. (2022) study, the ALCF can now be used to
detect the cloud phase, enabling future studies to address the
role that cloud phase plays in influencing the radiation biases
by further utilizing this tool. In addition, satellite products
which showed non-negligible biases require further evalua-
tion and development in surface radiation retrievals since this
is still the primary tool in use for evaluating the model.

Appendix A: Validation of the measurements of
AAD’s radiometers against the colocated ARM
radiometers

Here we compare radiation measurements derived from ra-
diometers deployed by AAD against co-located radiome-
ters deployed by ARM (McFarquhar et al., 2021) to validate
both datasets. Seasonal comparisons were made for SW ra-
diation (Fig. A1, left) from 4 April 2016 to 6 March 2018
and LW radiation (Fig. A1, right) from 15 August 2016 to
6 March 2018. The linear regression coefficients range from
0.94 to 1.01 with no obvious seasonal differences, which de-
picts a good consistency between two datasets. Additionally,
hourly comparisons were also plotted for two datasets with
their 95 % confidence intervals (Fig. A2). Both datasets ap-
pear to agree and are for the majority of the time within the
95 % confidence intervals. This analysis suggests there is lit-
tle meaningful difference between the two co-located instru-
ments, giving us confidence in our results.
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Figure A1. The seasonal comparisons of radiometers between AAD and ARM for 4 April 2016 to 6 March 2018 (pyranometer) and for
15 August 2016 to 6 March 2018 (pyrgeometer). Radiation data are averaged daily, and linear fit parameters are detailed.
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Figure A2. Hourly plots of SW (a) and LW (b) radiation data for AAD and ARM measurements, with the shaded areas showing the 95 %
confidence intervals.

Appendix B: Diurnal cycle and bias of total CRE,
CRESW, and CRELW

In this section the CRE biases over the diurnal cycle were ex-
plored. We now consider only the period of September 2017
to February 2018 where hourly instantaneous output was
available from the ACCESS-AM2 model. Figure B1 shows
the diurnal cycle of total CRE, CRESW, and CRELW (top)
and the associated biases compared with ground-based ob-
servations (bottom).

Figure B1. Diurnal cycle of the ACCESS-AM2, CERES, and observational CRE (a), CRESW (b), and CRELW (c) in the top row associated
with the biases (ACCESS-AM2− observation; CERES− observation) in the bottom row (d, e, f), based on data from September 2017 to
February 2018. The shaded areas of the panels above represent the 95 % confidence interval of the value.

For ACCESS-AM2 total CRE (Fig. B1a, d), small neg-
ative biases are found during the nighttime due to the lack
of incoming solar radiation, contributed by the biases in
CRELW. The highest difference for total CRE occurs around
01:00 UTC (approximately local solar noon), when the dif-
ference is roughly +57 W m−2. CRESW has a similar diur-
nal cycle to the total CRE’s, with the bias peaking at the
same time as total CRE’s. Throughout the day, the CRELW
is comparable with surface observations and shows no diur-
nal variability (see y-axis scale in Fig. B1c). The CERES
CRESW bias exhibits similarities to ACCESS-AM2, while
it is larger during specific periods, such as 04:00 UTC and
19:00–21:00 UTC (Fig. B1e). Different to ACCESS-AM2,
the CERES CRELW has notable negative biases at night lo-
cal time (07:00–18:00 UTC), with biases ranging from −20
to−15 W m−2. The significant underestimation of CRELW in
CERES, as highlighted in Hinkelman and Marchand (2020),
is attributed to incorrect cloud base height during local night-
time periods (Fig. B1c, f).
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Data availability. The ARM radiometer data collected dur-
ing MICRE are available via the ARM data archive at
https://doi.org/10.5439/1377836 (Sengupta et al., 2016). The
AAD radiometer and all-sky cloud camera data are avail-
able from the Australian Antarctic Data Centre (AADC) at
https://doi.org/10.26179/6seh-er53 (French et al., 2023). The Uni-
versity of Canterbury’s Vaisala CL51 ceilometer data are available
at AADC (https://doi.org/10.26179/5d91835e2ccc3, Alexander and
McDonald, 2020). The code for this paper and source of ACCESS-
AM2 data is available at https://doi.org/10.5281/zenodo.10082306
(Pei and Fiddes, 2023). The satellite data (CERES SYN1deg) are
available via the CERES data products at https://ceres.larc.nasa.
gov/data/ (NASA, 2023). The ERA5 data are available via the
Copernicus data portal at https://doi.org/10.24381/cds.adbb2d47
(Hersbach et al., 2023). The ALCF is open source and available at
https://github.com/alcf-lidar/alcf (last access: 21 January 2023) and
on Zenodo at https://doi.org/10.5281/zenodo.4411633 (Kuma et al.,
2021a).
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