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Abstract. Carbon dioxide (CO2) emissions from combustion sources are uncertain in many places across the
globe. Satellites have the ability to detect and quantify emissions from large CO2 point sources, including coal-
fired power plants. In this study, we routinely made observations with the PRecursore IperSpettrale della Mis-
sione Applicativa (PRISMA) satellite imaging spectrometer and the Orbiting Carbon Observatory-3 (OCO-3)
instrument aboard the International Space Station at over 30 coal-fired power plants between 2021 and 2022.
CO2 plumes were detected in 50 % of the acquired PRISMA scenes, which is consistent with the combined
influence of viewing parameters on detection (solar illumination and surface reflectance) and unknown factors
(e.g., daily operational status). We compare satellite-derived emission rates to in situ stack emission observa-
tions and find average agreement to within 27 % for PRISMA and 30 % for OCO-3, although more observations
are needed to robustly characterize the error. We highlight two examples of fusing PRISMA with OCO-2 and
OCO-3 observations in South Africa and India. For India, we acquired PRISMA and OCO-3 observations on the
same day and used the high-spatial-resolution capability of PRISMA (30 m spatial/pixel resolution) to partition
relative contributions of two distinct emitting power plants to the net emission. Although an encouraging start,
2 years of observations from these satellites did not produce sufficient observations to estimate annual average
emission rates within low (< 15%) uncertainties. However, as the constellation of CO2-observing satellites is
poised to significantly improve in the coming decade, this study offers an approach to leverage multiple obser-
vation platforms to better quantify and characterize uncertainty for large anthropogenic emission sources.
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1 Introduction

Anthropogenic carbon dioxide (CO2) emissions are domi-
nated by strong discrete point sources: power and other in-
dustrial combustion are estimated to make up 59 % of global
anthropogenic CO2 emissions with transport, buildings, and
other sources making up the remaining 20 %, 9 %, and 12 %,
respectively (Crippa et al., 2022). Fossil fuel combustion is
the largest contributor to warming trends globally since the
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preindustrial era (IPCC, 2021). However, uncertainty in the
total magnitude of emissions from these sectors remains, as
bottom-up emission estimates rely on reported emission fac-
tors and activity data, which may vary in granularity and
quality across countries and provinces (Hong et al., 2017;
Guan et al., 2012). Accurate CO2 emission quantification
is important in light of the Paris Agreement, as participat-
ing countries must develop plans and report progress with
respect to reducing their country’s greenhouse gas (GHG)
emissions (UN, 2015). Leveraging atmospheric measure-
ments, particularly satellite remote sensing, can help reduce
uncertainty in facility-level CO2 emission estimates, pro-
vided that the observations are accurate and sufficiently sam-
ple the facility in time (Hill and Nassar, 2019). Deployed
systematically with robust error characterization, this system
could be an anchor towards assessing and verifying antici-
pated CO2 emission reductions as part of national and global
GHG emission reduction plans and agreements.

Several studies have shown that atmospheric-sounding
satellites can accurately quantify some point source CO2
emissions from large individual coal-fired power plants.
First, the Orbiting Carbon Observatory-2 (OCO-2; Crisp et
al., 2017) is a space-based instrument that observes solar
backscattered near-infrared radiance in the oxygen A-band
(758–772 nm; 0.04 nm spectral resolution), the weak CO2
band (1594–1619 nm; 0.08 nm spectral resolution), and the
strong CO2 band (2042–2082 nm; 0.10 nm spectral resolu-
tion). OCO-2 views in nadir mode over land and uses sun
glint mode over water to increase signal, thereby giving mea-
surements over both land and water. The instrument also em-
ploys target mode to target specific validation or calibration
sites. With its 10 km wide swath, ≤ 1.3 km× 2.25 km pixel
resolution, and better than 1.0 ppm precision for retrievals
of the column-mean dry-air mole fraction of CO2 (XCO2)
(Taylor et al., 2023), OCO-2 is sensitive to single CO2 point
sources that emit sufficiently close to an OCO-2 orbital track
and are spatially isolated from other major CO2 sources. Us-
ing satellite observations from OCO-2, Nassar et al. (2017)
detected strong CO2 enhancements in the close vicinity of
seven large coal-fired power plants and employed a Gaus-
sian plume model emission quantification technique to es-
timate emission rates for these facilities. Further study ex-
panded the set of facilities that could be quantified by OCO-2
(Nassar et al., 2021). Other studies have leveraged the ni-
trogen dioxide (NO2) retrieval capability and wide swath
of the TROPOspheric Monitoring Instrument (TROPOMI;
van Geffen et al., 2020) to attribute and corroborate strong
CO2 signals seen in OCO-2 observations (Hakkarainen et al.,
2021; Reuter et al., 2019). The Orbiting Carbon Observatory-
3 (OCO-3; Eldering et al., 2019), the flight spare of OCO-
2, has been on board the International Space Station (ISS)
since May 2019. Like OCO-2, it has been shown capa-
ble of quantifying CO2 power plant emissions. Nassar et
al. (2022) analyzed nine successful OCO-3 acquisitions of
the Bełchatów Power Station and found that the variability

in satellite-based emission estimates agreed well with the
variability in independently reported hourly power genera-
tion. Guo et al. (2023) estimated emissions at Chinese power
plants using OCO-2 and OCO-3 and found close agreement
with emission inventories. OCO-3 is different from OCO-2
in that it has a two-axis pointing mirror assembly (PMA) for
more agile pointing, allowing it to rapidly point off-nadir and
take snapshot area mapping (SAM) mode observations over
the course of 2 min. These SAM observations are collections
of measurements over approximately 80 km× 80 km and are
typically over sites of interest, including cities, power plants,
volcanoes, and flux towers.

Another class of remote-sensing imaging spectrometers –
sometimes referred to as hyperspectral imagers – have also
been shown to be capable of detecting and quantifying strong
CO2 signals from large point sources. Thorpe et al. (2017)
flew the Airborne Visible InfraRed Imaging Spectrometer
– Next Generation. (AVIRIS-NG) over a coal-fired power
plant in Four Corners, New Mexico, and detected strong
CO2 plumes. AVIRIS-NG observes a large range of solar
backscattered radiance (380–2500 nm) but at much coarser
spectral resolution (5 nm) and high spatial resolution (e.g.,
3 m when flown at 3 km altitude). The much finer spatial res-
olution of AVIRIS-NG allows for improved visualization of
the origin of a CO2 plume, although at the expense of fine
precision for a single observed CO2 column. Still, Cusworth
et al. (2021) analyzed a combination of AVIRIS-NG and
the identically built Global Airborne Observatory (GAO) at
over 20 power plants in the USA, quantified emission rates,
and found close agreement with continuous emission mon-
itoring system (CEMS) hourly emission observations. From
space, the PRecursore IperSpettrale della Missione Applica-
tiva (PRISMA), launched in 2019, is, like AVIRIS-NG and
GAO, sensitive to a large range of solar backscattered ra-
diance (400–2500 nm), albeit at coarser spectral and spatial
resolution (10 nm spectral resolution and 30 m spatial reso-
lution; Loizzo et al., 2018). PRISMA is a tasked satellite in-
strument potentially capable of hundreds of 30 km× 30 km
observations per day, with an equatorial crossing time of
10:30 LT (local time) and a target revisit time of 7 d, al-
though the true revisit time depends on the tasking priorities
of the system. Cusworth et al. (2021) showed a few examples
of CO2 plumes detected and quantified with PRISMA, with
quantified emissions similar in magnitude to reported CEMS
emissions.

The capacity for satellites to be leveraged as useful tools
for reducing uncertainty in the global CO2 anthropogenic
emission sector requires synthesis and routine observations
(i.e., tasking) of a critical number of facilities. Therefore,
in this study, we routinely made observations at a subset of
global coal-fired power plants over the course of 2 years to
probe detection limits, emission quantification uncertainty,
and data yields. We observed these facilities with both OCO-
3 and PRISMA. To our knowledge, this study represents
the largest satellite-based facility-scale investigation of direct
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CO2 emission quantification across a diverse set of global
power plants to date, and it is the first investigation to as-
sess the capability of PRISMA to reliably detect and quan-
tify CO2 point sources. The results, although not sufficient
by themselves to significantly reduce uncertainty relative to
bottom-up inventories on an annual basis, show a path for-
ward for data fusion and synthesis of observations from the
growing constellation of planned CO2-sensing satellites.

2 Methods

Table 1 lists the locations of all of the power plants that
we targeted during this study between 2021 and 2022 with
PRISMA. OCO-3 includes a subset of these sites as well as
other fossil fuel combustion sites as part of its list of pos-
sible targets. We identified coal-fired power plants to rou-
tinely target using a combination of bottom-up and top-down
information. Bottom-up coal-fired power plant CO2 emis-
sion estimates rely on activity data, which usually include
the permitted capacity of a power plant and its operational
state, and emission factors, which are usually estimated from
the composition of the coal that is combusted. Inventories,
like the Global Energy Monitor (GEM), include these data
for a large set of coal-fired power plants across the globe
(GEM, 2023). From the GEM database, we gathered the top
10 largest bottom-up coal-fired power plants globally. We
then gathered a list of top-down TROPOMI NO2 combustion
hotspots, as inferred by Beirle et al. (2021). We included an
additional seven unique power plants using this dataset. Be-
cause the imaging scene size of PRISMA is 30 km× 30 km,
some adjacent smaller power plants were imaged simultane-
ously along with these larger power plants. In total, outside of
the USA, we made PRISMA observations at 27 power plants.
In the USA, we chose 10 power plants to routinely target us-
ing reported Environmental Protection Agency (EPA) CEMS
information (https://campd.epa.gov, last access: 16 Novem-
ber 2023): 5 of the top 30 emitting power plants and 5 pro-
gressively lower emitters, chosen so that we could assess
satellite detection capabilities.

2.1 PRISMA observations and quantification

PRISMA is a tasked satellite instrument that is capable of
collecting around 200 30 km× 30 km targets per day with
a 20◦ off-nadir pointing capability. Authenticated users can
program single observation requests through PRISMA’s web
portal (https://prisma.asi.it, last access: 16 November 2023),
which currently allows for 13 concurrent requests at a time
per user. We specified 2-week observing windows for each
request and configured requests to collect if the scene-
averaged solar zenith angle (SZA) was less than 70◦ and the
forecast meteorology anticipated less than 20 % cloud cover.
If the orbital configuration, weather, and SZA align and there
are no other conflicting or higher-priority requests, PRISMA
images a target.

For each acquired PRISMA image, we performed XCO2
retrievals on all pixels within a 2.5 km radius around the
power plant. We retrieve XCO2 using the iterative maximum
a posteriori – differential optical absorption spectroscopy
(IMAP-DOAS) algorithm, as implemented in Cusworth et
al. (2021). This approach estimates XCO2 by decomposing
an observed radiance spectrum into high- and low-frequency
features between 1900 and 2100 nm. For high-frequency fea-
tures, we simulate atmospheric transmission of CO2, H2O,
and N2O using a Beer–Lambert approximation. For low-
frequency features (e.g., surface reflectance and aerosol scat-
tering), we use an eighth-degree polynomial. Therefore, the
forward model that drives IMAP-DOAS has the following
form:

F h(x)= I0 (λ)exp

(
−

6∑
n=1

sn

72∑
l=1

Alτn,l

)
K∑
k=0

akλ
k, (1)

where F h is simulated backscattered radiance at wavelength
λ, I0 is incident solar intensity, Al is the air mass factor at
vertical level l ∈ [1,72], τn,l is the optical depth for each
trace gas element, sn is the scaling factor applied to the opti-
cal depth, and ak is a polynomial coefficient (K = 8). Op-
tical depths are computed by querying meteorological in-
formation for pressure and temperature from the MERRA-2
(Modern-Era Retrospective analysis for Research and Appli-
cations, Version 2) reanalysis (Gelaro et al., 2017) and us-
ing that information to select proper High Resolution Trans-
mission (HITRAN) absorption cross sections for each trace
gas (Kochanov et al., 2016). To compare the model from
Eq. (1) against PRISMA observed radiance (y), we com-
pute F h(x) between 1900 and 2100 nm at a 0.02 nm res-
olution, convolve the output using the PRISMA full width
at half maximum, and sample at PRISMA wavelength po-
sitions. This results in vector F(x) that is comparable to
y. The vector x, also called the state vector, includes scale
factors for CO2, H2O, N2O, and polynomial coefficients:
x = (sCO2 , sH2O, sN2O,ao, . . .,a8).

XCO2 is retrieved from PRISMA radiance using a
Bayesian optimal estimation approach (Rodgers, 2000).
Here, the optimized state vector solution, or posterior, is
solved through Gauss–Newton iteration:

xi+1 = xA+ ( KT
i S−1

O Ki + S−1
A )−1KT

i S−1
O[

y−F (xi)+ Ki(xi − xA)
]
, (2)

where SO = [εεT ] is the observation error covariance matrix
defined by the instrument signal-to-noise ratio (SNR), xA is
the prior estimate of the state vector, and SA is the prior error
covariance matrix. The matrix K, or Jacobian matrix, repre-
sents the first derivative of the F (x) with respect to the state
vector:

Ki =
∂F
∂x

∣∣∣∣
x=xi

. (3)
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Table 1. Power plants that were targeted specifically by PRISMA in this study.

Power plant name Country Latitude Longitude No. of No. of Minimum Mean Maximum
clear-sky plume quantified quantified quantified

observations detections CO2 CO2 CO2
emission emission emission

(kt CO2 h−1)∗ (kt CO2 h−1)∗ (kt CO2 h−1)∗

Mundra – Adani India 22.82 69.55 12 7 0.49± 0.07 1.09± 0.19 1.76± 0.32
Korba – BALCO India 22.40 82.74 5 1 NA NA NA
PLN Paiton Baru Indonesia −7.71 113.57 4 2 NA NA NA
Craig USA 40.46 −107.59 5 5 0.56± 0.11 0.69± 0.16 0.8± 0.22
Cumberland USA 36.39 −87.65 1 0 NA NA NA
Dry Fork USA 44.39 −105.46 6 3 0.61± 0.09 0.65± 0.13 0.69± 0.16
H. L. Spurlock USA 38.70 −83.82 5 3 1.15± 0.32 1.26± 0.39 1.37± 0.45
Ulsan Hanju (1) South Korea 35.49 129.33 1 0 NA NA NA
Hasdeo India 22.41 82.69 5 0 NA NA NA
Hekinan Japan 34.83 136.96 6 4 0.72± 0.47 3.88± 1.09 8.35± 2.14
Baotou-1 China 40.66 109.66 5 2 0.19± 0.07 0.27± 0.07 0.35± 0.07
Kendal South Africa −26.09 28.97 7 2 0.85± 0.13 0.85± 0.13 0.85± 0.13
Korba – NTPC India 22.39 82.68 6 1 1.28± 0.27 1.28± 0.27 1.28± 0.27
Kriel South Africa −26.25 29.18 8 3 0.74± 0.15 0.82± 0.15 0.95± 0.16
Labadie USA 38.56 −90.84 4 4 0.73± 0.18 0.73± 0.18 0.73± 0.18
Martin Lake USA 32.26 −94.57 8 8 1.45± 0.31 2± 0.59 2.6± 0.98
Matimba South Africa −23.67 27.61 11 8 0.33± 0.05 0.72± 0.16 1.14± 0.32
Matla South Africa −26.28 29.14 8 3 0.33± 0.05 0.77± 0.15 1.37± 0.27
Medupi South Africa −23.71 27.56 15 12 0.33± 0.06 0.83± 0.19 1.47± 0.34
Mundra – TATA India 22.82 69.53 12 5 0.38± 0.09 0.74± 0.13 1.32± 0.21
Niederaussem Germany 51.00 6.67 1 0 NA NA NA
Oregon USA 41.67 −83.44 5 1 NA NA NA
Paiton-3 Indonesia −7.71 113.58 4 4 1.54± 0.37 3.16± 0.69 4.78± 1.02
Rihand India 24.03 82.79 8 5 0.83± 0.17 0.99± 0.26 1.36± 0.38
Baotou Sanfeng China 40.66 109.76 6 0 NA NA NA
Sasan India 23.98 82.63 9 7 0.65± 0.15 1.01± 0.24 1.51± 0.31
Sooner USA 36.45 −97.05 6 3 1.05± 0.22 1.05± 0.22 1.05± 0.22
Tuoketuo China 40.20 111.36 2 2 0.25± 0.06 0.91± 0.17 1.58± 0.27
Ulsan Hanju (2) South Korea 35.47 129.38 1 0 NA NA NA
Vindhyachal India 24.10 82.68 9 7 0.33± 0.1 0.72± 0.15 1.24± 0.23
Waigaoqiao China 31.36 121.60 6 1 NA NA NA
Yeosu Hanwha South Korea 34.84 127.69 2 0 NA NA NA
Yosu South Korea 34.83 127.67 2 0 NA NA NA
Al Zour Kuwait 28.71 48.37 12 0 NA NA NA
∗ “NA” indicates that no plumes were detected at this power plant or that the emission quantification algorithm (described in Sect. 2) failed to quantify an emission rate.

The posterior error covariance matrix can be computed ex-
plicitly to quantify retrieval precision:

Ŝ=
(

KT
i S−1

O Ki + S−1
A

)−1
. (4)

Across the scenes that we acquired with PRISMA, using this
retrieval approach, we quantify an average 3.3 ppm precision
for an XCO2 column. Absolute biases in PRISMA XCO2
retrievals are less important for CO2 plume detection and
quantification: systematic retrieval biases are removed from a
scene through the quantification and removal of a local back-
ground, as described below. To characterize bias in emis-
sion quantification, we compare emission rates derived from
PRISMA to stack-level CEMS measurements (Sect. 3.2).

We quantified emissions for each PRISMA plume detec-
tion using the integrated mass enhancement (IME) approach

(Cusworth et al., 2021). However, we updated the masking
scheme for this analysis to produce more reliable masks for
each CO2 plume. Figure 1 shows the plume-masking pro-
cedure for a plume detected at the Hekinan power plant,
Japan, on 19 July 2021. First, we apply a background thresh-
old to differentiate candidate plume pixels from the back-
ground (method to quantify background threshold described
in Sect. 3.2). We then group enhanced XCO2 pixels into clus-
ters of at least 20 connected pixels. These groups are then
buffered with a one-pixel dilation filter to smooth edges and
any gaps that exist in a group (Dougherty, 1992). Finally,
each cluster is considered part of the plume if at least one
of its pixels is within 500 m of an exhaust stack.
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Figure 1. Example of the plume delineation and masking process performed on XCO2 retrievals derived from PRISMA observations. Panel
(a) shows the simultaneously observed RGB PRISMA imagery, panel (b) shows retrieved XCO2 above the background, panels (c)–(e) show
the plume-masking procedure to isolate enhanced pixels and remove noise, and panel (f) shows the resulting CO2 plume superimposed on
the RGB imagery.

IME is calculated for a plume using the following equa-
tion:

IME=
N∑
i=1

1�i3i, (5)

where1�i is the XCO2 mass enhancement in pixel i relative
to the background (kg m−2), 3i is the pixel area (900 m2),
and N is the number of pixels in the plume. The CO2 emis-
sion rate Q is estimated from the IME using the following
relationship:

Q=
Ueff

L
IME , (6)

where L=
√∑N

i=13i is the plume length and Ueff is the
effective wind speed. The parameter L is an operational pa-
rameter that needs to be related to the extent of the plume. As
a plume dissipates in all directions due to turbulent diffusion,
an explicit scaling function (i.e., an effective wind speedUeff)
that relates L and 10 m wind speed (U10) to the true emission
can be derived through large-eddy simulations (Varon et al.,
2018):

Ueff = 1.1logU10+ 0.6, (7)

where Ueff and U10 are in units of meters per second.
We query the ERA5-Land reanalysis using the Open-Meteo

application programming interface (https://open-meteo.com,
last access: 16 November 2023), which provides hourly wind
information globally at a 0.1◦ spatial resolution (Muñoz-
Sabater et al., 2021). Uncertainty due to winds is calculated
by generating an ensemble of U10 values assuming 50 %
error (Cusworth et al., 2021). Uncertainty due to the CO2
background is calculated by generating many emission esti-
mates and calculating a standard deviation using an ensem-
ble of background thresholds. Background thresholds are set
to vary with scene-averaged CO2 retrieval precision. Total
emission uncertainty is estimated by adding in quadrature the
contribution of wind and background uncertainties.

2.2 OCO-3 observations and quantification

OCO-3 is also a tasked mission: it can take SAM observa-
tions over any place of interest within the latitude range of the
ISS orbit (about 52◦ S to 52◦ N). In addition to the SAM lo-
cations that we supplied to OCO-3 to overlap with PRISMA
targets, there are many other power plant and fossil fuel
combustion sources that make up its set of mission targets.
However, unlike PRISMA, OCO-3 does not consider cloud
forecasts, snow cover, or viewing geometry when planning
SAM observations; thus, the majority of observations fail to
produce useful maps of XCO2. Additionally, aerosol- and
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albedo-induced XCO2 artifacts are present in many SAM ob-
servations (Bell et al., 2023) and, thus, make the detection of
plumes even more difficult.

For all cloud-free soundings, OCO-3 XCO2 concentra-
tions are derived using the Atmospheric Carbon Observa-
tions from Space (ACOS; O’Dell et al., 2012, 2018; Crisp
et al., 2012) v10 optimal estimation retrieval, which em-
ploys the Levenberg–Marquardt modification of the Gauss–
Newton method. In this work, bias-corrected XCO2 from the
OCO-3 Lite files is used, but the official data quality flag
is not applied. This was done because the quality flag often
removes XCO2 retrievals within the plume and makes emis-
sion estimation more difficult or impossible (Nassar et al.,
2022). For SAM observations where we visually identified
CO2 plumes (e.g., Fig. 2), emission rates are estimated us-
ing two approaches: (1) a Gaussian plume model and (2) the
IME method. For the Gaussian plume model approach, we
follow the algorithm outlined in Nassar et al. (2022):

V (x,y)=
Q

√
2πσy (x)u

e
−

(
1
2

)(
y

σy (x)

)2

, (8)

σy (x)= a ·
(
x

xo

)0.894

. (9)

Here, V represents the vertical columns within the plume
(g m−2), Q is the CO2 emission rate (g s−1), y is the wind
direction perpendicular to the plume (m), u is the wind speed
at the height of the plume at its midline (m s−1) assuming
plume rise of 250 m above the stack height, σy (x) is the stan-
dard deviation of the y direction, xo is a characteristic plume
length (1000 m), and a is a stability parameter (Nassar et
al., 2021). Following Nassar et al. (2022), wind speed and
direction inputs are estimated by taking the average of the
European Centre for Medium-Range Weather Forecasts Re-
analysis Version 5 (ERA5) (Bell et al., 2021) and MERRA-2
reanalysis data. The wind direction is optimized by rotating
the plume, typically between −30 and 30◦ away from the
mean ERA5/MERRA-2 direction, and calculating the corre-
lation coefficient (R) of the modeled and observed XCO2.
The optimized wind direction is the direction that produces
the largest R. The background is typically estimated by av-
eraging OCO-3 footprints within a radius of 30 km, exclud-
ing the plume itself and a narrow 3 km buffer zone. How-
ever, if there are visible artifacts in the XCO2 background
that are unrelated to the power plant plume, the background
field is modified to avoid them – for example, by decreasing
the radius of footprints used from 30 to 20 km. The uncer-
tainty in the wind speed is calculated by taking the difference
of the emission estimate using two different models (ERA5
and MERRA2). The background concentration uncertainty is
calculated by estimating Q using three different background
radii of 30, 40, and 50 km. Q is also calculated for a 30 km
radius background but only using the left and right halves
of the background, relative to the direction of the plume.
The standard deviation of both of these methods is calculated

and the larger of the two is the background uncertainty. The
plume rise uncertainty is calculated by estimating Q using
plume rise values of 100, 200, 250, 300, and 400 m and tak-
ing the standard deviation of those values. Total uncertainty
in the emission rate Q using the Gaussian plume method is
estimated by adding in quadrature the contribution of wind
speed, background concentration, and plume rise uncertain-
ties.

To obtain another estimate of emission rate, we also apply
an IME quantification approach to the CO2 plumes, which (to
our knowledge) is the first time that the IME method has been
applied to OCO-3 SAM observations at coal power plants.
We first interpolate the XCO2 retrievals in a SAM observa-
tion to a uniform 2 km× 2 km grid to account for occasional
OCO-3 footprint overlap. Similar to Varon et al. (2018),
3 pixel× 3 pixel neighborhoods are sampled, and the dis-
tributions are compared to the background using a Student’s
t test. The default confidence level for the t test is 95 %, but
this is often lowered to visually capture most of the plume.
The plume is then smoothed using a 3 pixel× 3 pixel median
filter and a Gaussian filter with a standard deviation of 0.5.
The Ueff calculation is done using an equation approximately
equal to Eq. (7) (Ueff = 1.0logU10+0.55). Other recent stud-
ies have used various methods (Lin et al., 2023; Brunner et
al., 2023), but further research is needed to determine the
most accurate way to estimate Ueff for an OCO-3-like instru-
ment. The wind direction is the optimized direction deter-
mined by the Gaussian plume model. The background XCO2
estimate is taken from the Gaussian plume model methodol-
ogy and the plume is typically required to be within 50 km
downwind and 8 km crosswind of the source, although these
parameters are modified if the plume curves outside of the
8 km crosswind threshold or there are XCO2 artifacts that
should be avoided.

The uncertainty in the IME method is estimated similarly
to the Gaussian plume model method. The uncertainty in
wind speed is calculated by taking the standard deviation
of the emission estimates using wind speed from two dif-
ferent models (ERA5 and MERRA2). The background con-
centration uncertainty is calculated by estimating Q using
the different backgrounds calculated in the Gaussian plume
model method: a 20 km radius, 30 km radius, 40 km radius,
left half, full circle, and right half. The standard deviation of
the three radii estimates and of the left half, full circle, and
right half estimates are calculated, and the larger of the two is
the background uncertainty. The uncertainty in the Student’s
t test confidence level is also estimated. The confidence level
and −10% and +10% of the confidence level are used to
find Q. For example, if the confidence level needed to vi-
sually capture the XCO2 plume is 85 %, Q is calculated for
75 %, 85 %, and 95 % and the standard deviation of those
three values represents the confidence level uncertainty. To-
tal uncertainty in the emission rate Q using the IME method
is estimated by adding in quadrature the contribution of the
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wind speed, background concentration, and Student’s t test
confidence level uncertainties.

Figure 2 shows the IME methodology successfully iden-
tifying an XCO2 plume from an OCO-3 SAM observation
taken over the Colstrip power plant.

3 Results

3.1 Global yields from 2 years of observations

Figure 3a shows a global map of the power plants that we tar-
geted with PRISMA, with the marker for each power plant’s
location (latitude and longitude) scaled to represent the num-
ber of successful acquisitions between 2021 and 2022. In to-
tal, we acquired 181 PRISMA images, which correspond to
314 unique power plant observation scenes. Of these scenes,
210 were of sufficient quality to attempt CO2 retrieval and
plume detection, with quality mostly determined by visual
inspection for clouds and haze. Of these 210 scenes, 104
were determined to have CO2 plumes (Fig. 3b). Scenes were
marked as containing CO2 plumes through inspection of
XCO2 and visible imagery: if a large cluster of pixels with
elevated XCO2 above the background were also in the vicin-
ity of a power plant exhaust stack, an analyst would mark
the scene as containing a CO2 plume. Routine tasking ob-
servations with PRISMA resulted in an average of 6 acquisi-
tions for each power plant (maximum 15), roughly 1 image
acquired per quarter. Of these acquisitions, plumes were de-
tected on average 4 times per facility (maximum 12).

For OCO-3, 1363 power plant SAM observations were
taken during the period from September 2019 to Decem-
ber 2022. Of these, 139 XCO2 plumes emanating from power
plants were visually identified. However, only 14 were for
power plants that were also observed by PRISMA and have
CEMS validation (9 Colstrip cases, 2 Martin Lake cases,
and 3 Craig cases). The acquisition rates are low relative to
PRISMA because OCO-3 does not account for scene favor-
ability when planning its SAM observations. For example,
OCO-3 took 66 Colstrip SAM observations from 2019 to
2022 but only yielded 9 high-quality XCO2 plume cases.

The low observed average detection rate of CO2 plumes is
a result of three primary factors: (1) the observing conditions
at each facility, including solar zenith angle (SZA) and sur-
face reflectance; (2) the local meteorology; and (3) the op-
erational status at each power plant at the time of acquisi-
tion. To test how well these factors predict the presence of a
plume for PRISMA, we fit a logistic regression classification
function with a sparse (L1) penalty to our dataset (Fan et al.,
2008). This algorithm fits a logit function to the plume detec-
tion outcome of each scenes (i.e., detected plume is TRUE,
whereas no detected plume is FALSE) using a set of pre-
dictor variables that are likely candidates to explain predic-
tion results. In this setup, the statistical model is fit using
the following predictor variables: SZA, U10, average single-
sounding retrieval precision across the scene, annual bottom-

up emission estimate for the power plant using GEM, and av-
erage observed radiance between 1900 and 2100 nm within
the scene normalized by the cosine of the SZA. This last fac-
tor is a simple proxy for surface reflectance, although it does
not take into account other factors that influence radiance ob-
servations (e.g., water vapor, aerosols, and other atmospheric
constituents). We split the data so that 50 % was used to train
the model and 50 % was reserved as a test set. The predictor
variables were all standardized by their mean and standard
deviation before the model was fit. The results of classifica-
tion can be summarized using two statistics: precision (ratio
of true positives to sum of true positives and false positives)
and recall (ratio of true positives to sum of true positives and
false negatives). The results of fitting a logistic regression
model to the data show minor prediction performance, with
precision = 0.60 and recall = 0.69 for positive plume detec-
tion. The regression coefficients are shown in Fig. 4a. The
coefficient with the highest weight is normalized radiance.
Figure 4b shows the SZA against normalized radiance, with
red dots indicating no plume detection and blue dots rep-
resenting positive plume detection. Although no clear sep-
aration exists, there is a cluster of no plume detection at a
high SZA and low normalized radiance. This is a consistent
and expected relationship, as SZA and surface reflectance are
principal drivers of the quantity of light that is observed by
the satellite, and therefore the SNR of the observation.

The logistic regression model performed better on the test
dataset than predictions made at random, although the pre-
diction performance was still low. Missing from the model is
sub-annually resolved information regarding operating sta-
tus. For most of the power plants outside the USA, we do not
have information on daily operations. In many cases of non-
detects, we could simply be observing a power plant tem-
porarily not in operation. Another possibility is that some
power plants were operating at reduced capacity at the time
of acquisition, meaning that CO2 emission rates were lower
than those predicted by annual emission factors or activity
data. If the true CO2 emission rate was below the minimum
detection limit (MDL) of the PRISMA satellite, it would
show as a non-detect. However, even if the emission were
near or slightly above the PRISMA MDL, the probability
of detection would still be low, as slight variations in atmo-
spheric properties (as seen in Fig. 4) would then influence the
ability to detection a CO2 plume.

3.2 Validation of PRISMA and OCO-3 emission rates
against CEMS

For each power plant where a CO2 plume was identified,
we quantify emissions using the IME approach described by
Eqs. (5)–(7). In order to estimate the XCO2 mass enhance-
ment (1� in Eq. 1), a local background must be quantified
and subtracted from total XCO2 retrievals across the scene.
To do this, we apply a concentration threshold β to initiate
the plume-masking and segmentation process (described in
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Figure 2. The IME plume identification approach applied to an example OCO-3 SAM observation at the Colstrip Power Plant on 18 Au-
gust 2021. Panel (a) shows the OCO-3 SAM bias-corrected XCO2. In panel (b), the yellow pixels indicate the final plume mask.

Figure 3. Data yields from PRISMA continually between 2021 and 2022. Panel (a) shows the number of clear-sky acquisitions for each
power plant. Panel (b) shows the number of plumes detected by an analyst for each of the observed power plants.

Sect. 2). Once we have a plume mask, we apply another con-
centration threshold γ to the remaining XCO2 pixels that ex-
ist outside of the plume. This value γ represents the XCO2
background that we use to calculate the XCO2 enhancement
that is used in the IME formulation of Eq. (1). Thresholds β
and γ largely influence the magnitude of the emission rate
and are not known a priori. For global generalizability, we
wish to estimate β and γ such that they do not vary across
power plants, seasons, regions, etc. Therefore, we parame-
terize β and γ as percentiles under the assumption that the
local contrast between enhanced CO2 plume pixels and the
background should be similar across PRISMA scenes.

To estimate values for β and γ , we compare EPA CEMS
data for power plants in the USA with estimated emis-
sion rates from PRISMA. In total, we have 12 scenes in
the USA with CEMS information that pertain to 5 power
plants. We then optimize β and γ such that the output of
an ordinary least squares regression produces a slope near
unity. Figure 5a shows the results of this optimization which
produces an optimal β percentile of 94 % and a γ per-
centile of 62 %.The results also show a decent correlation
between CEMS data and PRISMA-derived emission rates
(R2
= 0.43). A single outlier at the Labadie power plant

(imaged 10 July 2022) shows the largest discrepancy from
CEMS data (69 %), but the remaining plumes show an aver-
age 27 % relative difference from CEMS data. If we remove
the one data point at Labadie, the R2 improves to 0.75. Al-
though a limited sample size, between PRISMA and OCO-3,
these scenes represent variability in solar geometries (20–40◦

SZA), surface reflectance (0.09–0.90 normalized radiance),
and reported emission rates (0.51–2.39 kt CO2 h−1). There-
fore, we use these optimal parameters and apply them to our
global dataset of PRISMA detections. These emission rates
are reported in Table 1. There are some instances in which
performing IME emission calculations using these thresholds
and plume-masking technique do not result in emission rates
(e.g., the plume-masking procedure produces a mask with no
pixels). In these cases, we report a detection but not an emis-
sion quantification.

Figure 5b and c show the comparison between OCO-3 and
CEMS at some power plants that overlap with PRISMA ob-
servations (14 scenes total). OCO-3 Gaussian plume model
emission rates (Fig. 5b) have an improved correlation com-
pared with PRISMA (R2

= 0.51), although with greater bias
(average 47 % relative difference from CEMS). The OCO-3
IME estimates (Fig. 5c) have a worse R2 (0.32) but a better
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Figure 4. CO2 plume prediction using various atmospheric, retrieval, and bottom-up information. Panel (a) shows the results of fitting a
logistic regression classification model to the set of PRISMA acquisitions where an analyst identified the presence or lack of a plume. Panel
(b) shows the top two explanatory variables (SZA and normalized radiance) along with plume classification.

Figure 5. Comparison of emission rates in the USA between satellite-derived estimates and CEMS information. Panel (a) shows a compari-
son between PRISMA-derived emission rates and CEMS (R2

= 0.43), panel (b) shows a comparison between OCO-3 and CEMS using the
Gaussian plume model (R2

= 0.51), and panel (c) shows a comparison between OCO-3 and CEMS using IME (R2
= 0.32).

RMSE (0.45 kt CO2 h−1) compared with the Gaussian plume
model estimates (0.84 kt CO2 h−1), with 9 of the 14 cases be-
ing within 30 % of the reported CEMS emission and an aver-
age relative difference of 30 % for all 14 cases. Additionally,
the least squares fit for IME is closer to the one-to-one line
than for the Gaussian plume model.

Unique sources of error for OCO-3 emission estimates in-
clude geolocation errors in the XCO2 product. These errors
are typically less than 1 km but can be up to 2 km (Taylor
et al., 2023). Errors of this magnitude, about the size of an
OCO-3 footprint (∼ 2 km× 2 km), may mean that an entire
footprint is not included when estimating emissions using the
Gaussian plume method, which assumes that the plume only
extends downwind of the known source location. The Gaus-
sian plume model is also susceptible to wind direction errors
and requires the plume to be Gaussian in shape, the latter of
which is often not true. IME, while not suffering from wind-
direction- or geolocation-induced errors, assumes that the en-

tire plume is captured in a given SAM observation, which is
sometimes not true and results in an underestimation of emis-
sions. IME is also sensitive to errors inUeff parameterization.

3.3 Comparison and fusion of PRISMA and OCO

Outside the USA, PRISMA observed the Matimba power sta-
tion in South Africa 11 times and quantified emission rates 7
times. Emissions from Matimba have previously been quan-
tified and validated using OCO-2 (Hakkarainen et al., 2021).
This station does not report hourly emission rates, but it does
report daily power generation (Eskom, 2023). Although not
a direct comparison, we can use this information to check
if the emission quantification approach that we describe
above captures some variability in activity at this power
plant. Figure 6a shows the emission rates that we quanti-
fied compared against reported power generation. We see
rough agreement in variability: the high power generation re-

https://doi.org/10.5194/acp-23-14577-2023 Atmos. Chem. Phys., 23, 14577–14591, 2023



14586 D. H. Cusworth et al.: Two years of satellite-based carbon dioxide emission quantification

Figure 6. Emission rates and reported power generation at the Matimba and Medupi power plants in South Africa. Panel (a) shows the
CO2 emission rates derived from PRISMA and the reported daily power generation for the day of PRISMA overpass, panel (b) shows the
locations of the Medupi and Matimba power plants (base imagery provided by Google Earth; © Google Earth 2023), and panels (c) and
(d) show plume imagery and emission rates for a PRISMA overpass on 5 April 2021.

ported between April and July 2021 (70 000–85 000 MW h)
drops for subsequent dates (47 000–66 000 MW h) between
September 2021 and September 2022, a drop which is also
seen in the PRISMA-derived CO2 emission rate. Across
all observations, we estimate an emission rate range of
0.30–1.04 kt CO2 h−1 (average of 0.66 kt CO2 h−1). This av-
erage emission rate is substantially lower than the average
2.50 kt CO2 h−1 emission rate estimated from OCO-2 and
TROPOMI between 2018 and 2020, but it is within the
range of emissions estimates directly quantified with OCO-2
(0.30–7.20 kt CO2 h−1; Hakkarainen et al., 2021). However,
this discrepancy could be result of (1) changes in activity
or variability or (2) the existence of other nearby emission
sources. For changes in activity, during August 2020, the Ma-
timba reported a large range of power generation (65 000–

94 000 MW h), and emission estimates derived directly from
OCO-2 were also highly variable (0.88–4.33 kt CO2 h−1).
Given that maximum power generation at the time of a
PRISMA observation was 85 000 MW h, some of the dis-
crepancy in maximum CO2 quantification between PRISMA
and OCO-2 could be due to activity.

Near (7 km) the Matimba Power Station is the Medupi
Power Station (Fig. 6b). Figure 6c shows the Medupi CO2
plume observed during the same PRISMA overpass on
5 April 2021. The PRISMA-derived emission rate is 0.64±
0.26 kt CO2 h−1 for Medupi and 0.73± 0.30 kt CO2 h−1 for
Matimba. Given the proximity of the two power plants, the
higher derived emission rate reported for Matimba from pre-
vious studies could actually be a result of a net emission
from these two facilities. The OCO-2 flight track is located
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tens of kilometers downwind of Matimba and Medupi, mak-
ing a clear delineation between potentially co-emitted dis-
tinct emission plumes almost impossible. If we sum emission
rates from both Medupi and Matimba, we quantify a range
of 0.89–1.73 kt CO2 h−1 (average of 1.30±0.28 kt CO2 h−1),
which, although still lower, is closer to the average emissions
quantified by OCO-2.

The ability to differentiate the contribution of unique point
sources to a regional total is an application made possible
by joint observations from imaging spectrometers and at-
mospheric sounders. Figure 7 shows observations that were
made at the Mundra TATA Ultra Mega Power Plant and the
Mundra Adani Thermal Power Project: two power plants
less than 3 km apart. Both OCO-3 and PRISMA imaged
the power plants on 9 April 2022. Figure 7b shows the
OCO-3 SAM observation (taken at 04:41 UTC): large CO2
enhancements appear along the coastline, likely associated
with emission from these power plants. PRISMA imaged
the power plants less than 2 h later (at 06:02 UTC) and de-
tected CO2 plumes at each facility (Fig. 7b, c). The OCO-
3-derived emission rate using Gaussian plume approaches
is 5.5± 0.7 kt CO2 h−1, but the emission rate derived us-
ing the IME approach is much lower (3.0 kt CO2 h−1). For
this case, the IME approach may be more appropriate, as
the shape of the OCO-3 plume (Fig. 7b) is more diffuse in
nature and does not visibly resemble a Gaussian structure.
The PRISMA emission rate is 1.07±0.17 kt CO2 h−1 for the
Adani plant and 0.53±0.08 kt CO2 h−1 for the Mundra TATA
plant. We can use this information to estimate that 67 % of
the net CO2 emission was from Adani and the remaining
33 % was from the TATA plant. The combined emission rate
(1.60±0.25 kt CO2 h−1) is lower than the OCO-3 IME emis-
sion rate. Like the Matimba power plant, some of this dis-
crepancy may partially be explained by bias or uncertainty
in retrievals, background, and wind information. Also, lower
estimates of CO2 emissions from PRISMA are consistent
with the fact that PRISMA is only sensitive to emissions at
two exhaust stacks, while the OCO-3 observation includes
all CO2 sources in the industrial area around Mundra. Con-
tinued validation of retrieved emission rates against ground
standards (e.g., CEMS) will help better quantify bias and un-
certainty. However, even with lingering uncertainty, the near-
simultaneous observations of OCO-3 and PRISMA can help
us disentangle the relative contributions from each power
plant.

4 Conclusions

We observed a global set of power plants for 2 years between
2021 and 2022 with both PRISMA and OCO-3 to test the
ability of these satellite platforms to carry out routine oper-
ational monitoring of CO2 emissions. When PRISMA ob-
servations were of sufficient quality to perform XCO2 re-
trievals, we detected CO2 plumes nearly half of the time. We

fit a logistic regression classification using plume detections
and find that there is some relationship between the SZA
and surface reflectance that partially explains plume predic-
tion; this is consistent with the fact that these factors are ma-
jor drivers of the SNR. The remaining non-plume detections
may be due to the operational status of a power plant at the
time of observation. We compared emission rates from both
PRISMA and OCO-3 to power plants in the USA, where
we have access to hourly in situ CEMS emission informa-
tion. We find a significant correlation between satellite and
in situ estimates, although some significant biases may exist
for some of the observations for both PRISMA and OCO-3.
Also, the quantity of CEMS observations was limited (∼ 10
for each instrument), so robust calibration is not yet possible.
Still, early results show that under the right conditions, satel-
lites can provide reliable estimates of CO2 emissions at dis-
crete point source locations. This is consistent with the close
agreement between airborne imaging spectrometer emissions
and CEMS information (Cusworth et al., 2021).

Fusion of information from atmospheric sounders, like
OCO-3, and imaging spectrometers, like PRISMA, is valu-
able for cross-validation and source attribution. We see this
particularly for our examples at the Matimba and Medupi
power plants in South Africa and the TATA and Adani power
plants in Mundra, India. In these cases, and particularly at
Mundra where near-simultaneous PRISMA and OCO-3 ob-
servations were taken, OCO-2 and OCO-3 provide a local
but coarse-resolution emission constraint for a complex of
facilities that emit large CO2 quantities. PRISMA, with its
30 m pixel resolution, can then help refine the relative con-
tributions of single emitters against the net emission flux.
More work is needed to refine cross-validation between in-
struments, but initial observation shows one avenue for data
from multiple observing systems to be combined and ana-
lyzed.

Even when combining information from both satellites,
there are still too few samples to constrain facility emissions
within low uncertainties. Cusworth et al. (2021), using argu-
ments from Hill and Nassar (2019), suggested that nearly 30
unbiased observations from a PRISMA-class instrument are
needed per year at each power plant to reduce annual uncer-
tainties below 14 % (i.e., reduce emission uncertainty from
Non-Annex I countries to below 1 Gt CO2 yr−1). No power
plant in this study met this minimum sampling require-
ment. However, there will be a significant increase in data
volumes and observation performance of satellite remote-
sensing capabilities for CO2, from both recently launched
and planned imaging spectrometers, including the Earth sur-
face Mineral dust source InvesTigation instrument (EMIT –
launched 2022; Thorpe et al., 2023), the Environmental Map-
ping and Analysis Program instrument (EnMAP – launched
2022; Guanter et al., 2015), and the Carbon Mapper/Tanager
1–2 (planned launch in 2024; Duren et al., 2021), and atmo-
spheric sounders, including the Copernicus Carbon Dioxide
Monitoring mission instrument (CO2M; Sierk et al., 2019).
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Figure 7. Near-simultaneous observation of two power plants in Mundra, India, on 9 April 2022. Panel (a) shows the locations of two power
plants, Mundra –TATA and Mundra – Adani, spaced less than 3 km apart (base imagery provided by Google Earth; © Google Earth 2023);
panel (b) presents the OCO-3 SAM observation, with a red dot showing the location of the power plants; and panels (c) and (d) show the
PRISMA acquisition (less than 2 h after OCO-3) over the two power plants with the associated emission rates.

Improved observation of global power plants and emission
quantification with robust error characterization will be vi-
tal to reduce global uncertainty in anthropogenic emissions
from fossil fuel combustion sources.
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ucts are publicly available from the NASA Goddard Earth Science
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