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Abstract. Timely, continuous, and dynamics-based estimates of PM2.5 emissions with a high temporal reso-
lution can be objectively and optimally obtained by assimilating observed surface PM2.5 concentrations using
flow-dependent error statistics. The annual dynamics-based estimates of PM2.5 emissions averaged over main-
land China for the years 2016–2020 without biomass burning emissions are 7.66, 7.40, 7.02, 6.62, and 6.38 Tg,
respectively, which are very closed to the values of the Multi-resolution Emission Inventory (MEIC). Annual
PM2.5 emissions in China have consistently decreased by approximately 3 % to 5 % from 2017 to 2020. Signif-
icant PM2.5 emission reductions occurred frequently in regions with large PM2.5 emissions. COVID-19 could
cause a significant reduction of PM2.5 emissions in the North China Plain and northeast of China in 2020. The
magnitudes of PM2.5 emissions were greater in the winter than in the summer. PM2.5 emissions show an ob-
vious diurnal variation that varies significantly with the season and urban population. Compared to the diurnal
variations of PM2.5 emission fractions estimated based on diurnal variation profiles from the US and EU, the
estimated PM2.5 emission fractions are 1.25 % larger during the evening, the morning peak is 0.57 % smaller in
winter and 1.05 % larger in summer, and the evening peak is 0.83 % smaller. Improved representations of PM2.5
emissions across timescales can benefit emission inventory, regulation policy and emission trading schemes, par-
ticularly for especially for high-temporal-resolution air quality forecasting and policy response to severe haze
pollution or rare human events with significant socioeconomic impacts.

1 Introduction

Anthropogenic emissions have imposed essential influences
on the Earth system, from hourly air quality and human
health to long-term climate and environment. To reduce an-
thropogenic emissions, the Chinese government has enforced
the Clean Air Action (2013) since 2013 (China State Coun-
cil, 2013). Studies to date that evaluated the emission con-
trols and understood the climate responses to emission re-
ductions have often used either a fixed meteorology with

emission changes or vice versa (Li et al., 2019, 2021; Zhai
et al., 2021). Estimated emissions from empirical extrapola-
tion were commonly applied to analyse the meteorological–
chemical mechanisms and associated social–economic im-
pacts from occasional events like the 2015 China Victory
Day Parade and Coronavirus Disease 2019 (COVID-19) pan-
demic (Wang et al., 2017; Liu et al., 2020; Huang et al.,
2020; Zhu et al., 2021). But to better understand both long-
term and short-term influences from emission changes, the
continuous, up-to-date, and high-temporal- and high-spatial-
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resolution emission estimates with coherent interactions of
meteorology and emission changes are needed.

The complex contributions from energy production, in-
dustrial processes, transportation, and residential consump-
tions have imposed great challenges on accurately estimating
the emissions. The emission inventories created by the tra-
ditional bottom-up techniques were typically outdated com-
pared to the present day due to the lack of accurate and timely
statistics, and they often used coarse temporal resolutions,
from monthly to annual (Zhang et al., 2009; Li et al., 2014;
Janssens-Maenhout et al., 2015b; Zheng et al., 2018). Al-
ternatively, up-to-date emission estimates with high tempo-
ral and spatial resolutions could be provided by top-down
techniques (Miyazaki et al., 2017), but most emissions es-
timated by top-down techniques were intermittent and anal-
ysed at monthly scales or longer (Zhang et al., 2016; Jiang
et al., 2017; Qu et al., 2017; Cao et al., 2018; Müller et al.,
2018; Chen et al., 2019; Li and Wang, 2019; Miyazaki et al.,
2020). Moreover, emissions updated by the top-down tech-
niques based on satellite observations could be insufficient
to capture realistic near-surface characteristics (Li and Wang,
2019; Liu et al., 2011; Choi et al., 2020).

Given the development of observation networks and ad-
vanced data assimilation strategies, timely and dynamics-
based emission estimates with high temporal resolutions can
be achieved by harmonically constraining the atmospheric–
chemical model with dense observations of trace gas com-
pounds through an optimal assimilation methodology. The
ensemble Kalman smoother (EnKS) (Whitaker et al., 2002;
Peters et al., 2007; Peng et al., 2015), as a four-dimensional
(4D) assimilation algorithm, makes use of chemical obser-
vations from the past to the future to provide an optimal es-
timate of source emissions, and it can capture the “error of
the day” and construct fine emission characteristics with high
temporal and spatial resolutions by using short-term ensem-
ble forecasts (Kalnay, 2002). Since 2013, the fine particulate
matter pollution (PM2.5, particles smaller than 2.5 µm in di-
ameter) as the most urgent threat to public health has per-
sistently decreased, and ground-based observations of PM2.5
have progressively increased (Huang et al., 2018). Thus,
by harmonically assimilating dense surface PM2.5 observa-
tions into an atmospheric–chemical model through an EnKS,
hourly estimates of PM2.5 emissions that were continuously
cycled for the years 2016–2020 are presented in this study.

The timely estimated emissions can provide guidance for
emission inventories that usually have time lags and emis-
sion trading schemes that often require up-to-date source
emissions. Based on the dynamics-based estimated emis-
sions with harmonic combination of the model and observa-
tions, a better evaluation of the emission controls and a more
comprehensive understanding of the consequent climate re-
sponses can be obtained. The high-temporal-resolution es-
timated emissions can reveal features of emissions that are
absent from the traditional ones with coarse temporal reso-
lutions. Moreover, the timely and dynamics-based emission

estimates with high temporal resolutions are essential for re-
gional air quality modelling, especially for the occurrence
of severe haze pollution, associated with timely evaluations
of the impact on public health (Attri et al., 2001; Wang et
al., 2014; Ji et al., 2018; Wang et al., 2020; Liu et al., 2021)
and events that lead to large changes in emissions and sig-
nificant socioeconomic impacts such as the COVID-19 pan-
demic (Huang et al., 2020; Le et al., 2020).

2 Data assimilation and experimental design

The estimate of PM2.5 emissions can be successfully con-
strained by the PM2.5 concentration observations through
an ensemble Kalman filter (EnKF; Peng et al., 2017, 2018,
2020). For a retrospective reanalysis mode, here, all avail-
able PM2.5 concentration observations, including those data
collected after the analysis time, can be used. Thus, an EnKS,
a direct generalization of the EnKF, is applied to incorporate
PM2.5 concentration observations both before and after the
analysis time, aiming to provide an optimal estimate of the
PM2.5 emission. In simple words, the emissions are updated
by current and future observations though EnKS, while the
concentrations are updated by current observations though
EnKF. Detailed procedures of the EnKS are described in
Sect. 2.1.

2.1 An ensemble Kalman smoother to update the
source emission

The ensemble priors of source emissions ef is created by
multiplying a scaling factor λf by the prescribed emission
ep (Peng et al., 2017, 2018, 2020), where the superscript f
denotes priors. Given a time-invariant ep, the update of ef is
equivalent to the update of λf. Due to a time lag, the prior
scaling factor at time t−1 (λf

t−1) is updated by chemical ob-
servations at time t (yc

t ). At time t−1, the prior scaling factor
for the ith member is written as

λf
i,t−1 =

1
M

β cf
i,t−1

cf
t−1

+ 1−β

+ t−2∑
j=t−M

λai,j |j+1:t−1

 . (1)

The first term is the concentration ratio given by the prior
of the chemical fields (cf

i,t−1) normalized by the ensemble

mean (cf
t−1), where β is an inflation factor used to compen-

sate for the insufficient ensemble spread (Peng et al., 2017).
Through using the concentration ratio, each ensemble mem-
ber of the source emissions naturally has the spatial corre-
lations given by the chemical fields. The second term is the
mean of the posterior scaling factors at previous assimila-
tion cycles, where the superscript a denotes posteriors, M is
the length of smoothing, and the subscript j + 1 : t − 1 in-
dicates that the scaling factor at time j is updated by future
observations from j + 1 to t − 1. The assimilation of future
observations will be described below.
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The ensemble square-root filter (EnSRF) (Peng et al.,
2017) is used to update λf

t−1 by assimilating yc
t . For the scal-

ing factor at time t−1, the posterior ensemble mean is given
by

λat−1 = λ
f
t−1+ ρ ◦Pec

t−1,tH
cT
t

(
Hc
t P

c
tH

cT
t +Rc

t

)−1
(yc
t −H

c
t c

f
t ), (2)

and the posterior ensemble perturbations are given by

λ′
a
i,t−1 = λ′

f
i,t−1− ρ ◦Pec

t−1,tH
cT
t[(√

Hc
tPc
tHcT

t +Rc
t

)−1
]T

[√
Hc
tPc
tHcT

t +Rc
t +
√

R
c
t

]−1

Hc
t λ
′f
i,t−1, (3)

where Pec
t−1,t denotes the background error covariance matrix

of λf
t−1 and cf

t ; Pc
t indicates the background error covariance

matrix of cf
t ; H

c
t , Hc

t , and Rc
t are the observation forward

operator, Jacobian matrix, and observation error covariance
matrix of the chemical fields at time t ; ρ is the localization
matrix; and ◦ denotes the Schur (element-wise) product.

By applying the ensemble Kalman smoother (EnKS)
(Whitaker et al., 2002; Peters et al., 2007), the chemical ob-
servation yc

t is also assimilated to update the posterior scaling
factor at previous assimilation cycles j (j = t−K, · · ·, t−2).
After assimilating the future chemical observation at time t ,
the posterior ensemble mean of the scaling factor at j is given
by

λaj |j+1:t = λ
a
j |j+1:t−1+ ρ ◦Pec

j |j+1:t−1,tH
cT
t(

Hc
tP

c
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)−1
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c
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t ), (4)

and the posterior ensemble perturbations are given by

λ′
a
i,j |j+1:t = λ′

a
i,j |j+1:t−1− ρ ◦Pec

j |j+1:t−1,tH
cT
t[(√

Hc
tPc
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t +Rc
t
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Hc
tPc
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c
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]−1

Hc
t λ
′f
i,t−1, (5)

where Pec
j |j+1:t−1,t denotes the background error covariance

matrix of λaj |j+1:t−1 and cf
t . After Eqs. (2)–(5), the updated

λaj |j+1:t , j (j = t−M+1, · · ·, t−1) will be used to construct
the prior scaling factor at the next time t+1.

As a Monte Carlo approach, the EnKS uses the fore-
cast analysis error covariances based on ensemble forecasts
and/or analyses to compute the Kalman gain matrix with time
lags in order to incorporate observations from the past to the
future. The first iteration of the EnKS is equivalent to the
EnKF that assimilates observations up to the analysis time.
The following iterations of EnKS assimilate observations in

Figure 1. Times series of hourly PM2.5 concentration biases
(µg m−3). The ensemble mean priors compared to the observed
quantities for December of the years 2016–2020 (grey and black)
and the mean biases of the years 2016–2020 (blue).

the future to update the state at the analysis time. The hourly
forecasts of PM2.5 concentration from the cycling assimila-
tion experiment matched the independent observed quanti-
ties (Fig. 1). Therefore, the ability of EnKS to retrieve the
source emissions has been demonstrated. Previous studies
also showed that simulations forced by the posterior emis-
sions could produce improved forecasts for PM2.5, SO2, and
NO2 compared to those produced with a priori emissions
(Peng et al., 2020).

2.2 WRF-Chem model, observations, and emissions

To simulate the transport of aerosol and chemical species, the
WRF-Chem model version 3.6.1 (Grell et al., 2005) that has
the meteorological and chemical components fully coupled
is used. The model parameterization schemes follow Peng
et al. (2017). Figure 2 shows the model domain that cov-
ers most east Asian regions. The horizontal grid spacing is
45 km, with 57 vertical levels and the model top at 10 hPa.

Experiments are conducted for each year from 2016
to 2020 separately. The 6 h meteorological observa-
tions, including all in situ observations and cloud mo-
tion vectors from the National Centers for Environ-
mental Prediction (NCEP) Global Data Assimilation
System (GDAS; http://www.emc.ncep.noaa.gov/mmb/data_
processing/prepbufr.doc/table_2.htm, last access: 6 Novem-
ber 2023), are assimilated every 6 h. The hourly observed
chemical quantities, which contain PM10, PM2.5, SO2, NO2,
O3, and CO from the Ministry of Ecology and Environ-
ment of China (https://aqicn.org/map/china/cn/, last access:
6 November 2023), are assimilated every hour. Figure 2
shows the assimilated chemical observation network, which
has 560 randomly chosen stations from 1576 stations in to-
tal. The thinning of observations is applied to avoid corre-
lated errors of observations. The spatial autocorrelation of the
thinning of observations is close to the original observations
(Peng et al., 2017). The observation priors are computed by
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Figure 2. Model domain and observation sites for cycling assimi-
lation. Red and blue dots denote the assimilated and unassimilated
observational sites, respectively.

the observer portion of the Grid-point Statistical Interpola-
tion system (GSI) (Kleist et al., 2009).

The hourly and time-invariantly prescribed anthropogenic
emissions are obtained from the EDGAR-HTAP (Emis-
sion Database for Global Atmospheric Research for Hemi-
spheric Transport of Air Pollution) v2.2 inventory (Janssens-
Maenhout et al., 2015b), in which the Chinese emissions
are derived from the Multi-resolution Emission Inventory
(MEIC) in 2010 (Lei et al., 2011; Li et al., 2014). Natural
emissions, including the biogenic (Guenther et al., 1995),
dust (Ginoux et al., 2001), dimethyl sulfide, and sea salt
emissions (Chin et al., 2000), are computed online.

2.3 Assimilation and ensemble configurations

The PM2.5 emission directly gives the primary PM2.5 and
then the primary PM2.5 along with other precursor emissions
that could contribute to the secondary PM2.5. The observa-
tions of PM2.5 concentrations that contain both primary and
secondary PM2.5 are used to constrain the PM2.5 emission
through data assimilation. Thus, the correlations between the
concentration observations and source emissions might be
contaminated by the secondary PM2.5. Since the secondary
formation process can be captured by the WRF-Chem model,
the impact of the secondary PM2.5 is indirectly considered.
The detailed updated state variables with the according ob-
servations follow Peng et al. (2018). The concentrations and
emissions of PM2.5 and PM2.5 precursors (SO2 and NO)
that have observations are updated by the observed quan-
tities. Besides, NH3 concentrations and emissions are con-
strained by PM2.5 observations; however, the VOCs that are

Figure 3. (a) Dynamics-based monthly PM2.5 emission estimates
(Tg d−1) summed over mainland China for each year from 2016
to 2020 (coloured) and the estimated PM2.5 emission from MEIC
(grey). (b) Ratio of PM2.5 emission changes between two adjacent
years from year 2016 to 2020 normalized by the PM2.5 emissions
of the year 2016. (c) Monthly fractions of dynamics-based PM2.5
emission estimates for years 2016–2020 (light blue); the 5-year
mean fractions of dynamics-based monthly PM2.5 emission esti-
mates, with bars denoting 1 standard deviation of the 5-year vari-
ations (dark blue); and the monthly fractions of estimated PM2.5
emissions from MEIC (grey).

also PM2.5 precursors are not updated due to the lack of di-
rect and limited observations. One possible way to untan-
gle the impact of secondary PM2.5 on the estimates of PM2.5
emissions is to jointly estimate the source emission and the
primary and secondary PM2.5 given the concentration obser-
vations.

The National Oceanic and Atmospheric Administration
(NOAA) operational EnKF system (https://dtcenter.ucar.edu/
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Figure 4. (a) Spatial distribution of dynamics-based PM2.5 emission estimates (µg m−2 s−1) for the year 2016 and spatial distributions of
dynamics-based PM2.5 emission changes for the years (b) 2017, (c) 2018, (d) 2019, and (e) 2020 compared to those of the year 2016.

com-GSI/users/docs/users_guide/GSIUserGuide_v3.7.pdf,
last access: 6 November 2023), which is an EnSRF and is
modified with the EnKS feature, is used to assimilate the
observations. The ensemble size is set to 50. To combat
the sampling error resulting from a limited ensemble size,
covariance localization and inflation are applied. The Gas-
pari and Cohn (GC) (1999) function with a length scale of

675 km is used to localize the impact of observations and
mitigate the spurious error correlations between observations
and state variables. The constant multiplicative posterior
inflation (Whitaker and Hamill, 2012), with a coefficient
of 1.12 for all meteorological and chemical variables, is
applied to enlarge the ensemble spread. The inflation β for
advancing the scale factor is 1.2. The smoothing length M
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Figure 5. (a) The differences in dynamics-based PM2.5 emission
estimates between the years 2017–2020 and 2016 and (b) the dif-
ferences normalized by the of year 2016.

for source emissions is 4, and the EnKS lagged length K
is 6. The larger the K value, the more future observations
are assimilated to constrain the current emission estimate.
But the sample estimated temporal correlations could be
contaminated by sampling errors and model errors, espe-
cially with increased lagged times. Thus, there is a tradeoff
between the amount of future observations and the accuracy
of the sample estimated temporal correlations. The choice of
K (= 6) is determined by sensitivity experiments.

At 00:00 UTC on 26 December of the previous year, en-
semble initial conditions (ICs) of the meteorological fields
are generated by adding random perturbations that sample
the static background error covariances (Barker et al., 2012)
on the NCEP FNL (final) analyses (Torn et al., 2006). En-
semble ICs of the chemical fields are 0, and source emissions
of each ensemble member are adopted from the EDGAR-
HTAP v2.2 inventory with random perturbations of mean 0
and variances of 10 % of the emission values. Hourly ensem-
ble lateral boundary conditions (LBCs) are generated using
the same fixed-covariance perturbation technique as the en-
semble ICs. After a 6 d spin up, ensemble data assimilation
experiments start cycling for each year.

3 PM2.5 emission for years 2016–2020

Starting from the time-invariant source emission PR2010
(Janssens-Maenhout et al., 2015b), the dynamics-based es-
timates of the PM2.5 emissions are obtained, which include
the contributions of both the anthropogenic and biomass

burning emissions. The mean annual PM2.5 emissions from
biomass burning in China (2003–2017) amounted to 0.51 Tg
(Yin et al., 2019). The annual dynamics-based estimates of
PM2.5 emissions (DEPEs) averaged over mainland China for
the years 2016–2020 without biomass burning emissions are
7.66, 7.40, 7.02, 6.62, and 6.38 Tg, respectively. The val-
ues from the Multi-resolution Emission Inventory (MEIC;
Zheng et al., 2018), which does not consider the contribu-
tions of biomass burning emissions, are 8.10, 7.60, 6.70,
6.38, and 6.04 Tg. Thus the annual DEPEs are very close to
the values of MEIC. From 2017 to 2020, the estimated an-
nual PM2.5 emissions are reduced by 3.4 %, 8.4 %, 13.6 %,
and 16.7 % compared to that of year 2016. There has been
a 3 %–5 % persistent reduction in annual PM2.5 emissions
from the year 2017 to 2020, which demonstrates the effec-
tiveness of China’s Clean Air Action (China State Council,
2013), implemented since 2013, and China’s Blue Sky De-
fense War Plan (2018), enforced since 2018 with strength-
ened industrial emission standards, phased out outdated in-
dustrial capacities, promoted clean fuels in residential sector,
and so on (Zhang et al., 2019).

The monthly DEPEs show reductions in PM2.5 emissions
nearly every month from 2016 to 2020 (Fig. 3a), which fur-
ther demonstrates the effectiveness of China’s national plan.
Compared to 2016, both the reduction amount and the reduc-
tion ratio of PM2.5 emission are more prominent for Febru-
ary, March, June–September, and November than the other
months (Fig. 3b). Given larger magnitudes of PM2.5 emis-
sions in winter than in summer, emission controls with a fo-
cus on October to May should be considered in the design
of future clean-air actions in China since total PM2.5 emis-
sions during period account for approximately 75 % of the
annual amount. Spatial distributions of the changes in PM2.5
emissions from 2017 to 2020 compared to 2016 show that
significant decreases occurred in the Beijing–Tianjin–Hebei
region (BTH), the Yangtze River Delta region (YRD), the
Pearl River Delta region (PRD), and the Sichuan–Chongqing
Region (SCR), especially for the years 2019–2020 (Fig. 4).
From 2016 to 2020, BTH, YRD, and SRC had larger reduc-
tions in PM2.5 emissions than PRD, but SCR had a larger re-
duction ratio compared to 2016 than BTH and YRD (Fig. 5).
Therefore, BTH and YRD have more potential for PM2.5
emission controls than PRD and SCR, which can give guid-
ance for future clean-air actions. More specifically, most
provinces show PM2.5 emission reductions from 2016 to
2020, and the reduction ratios generally increase from year
2017 to 2020 (Table 1), which confirms continuous and ef-
fective emission controls from Clean Air Action and the Blue
Sky Defense War Plan in China. The monthly DEPE also
demonstrates the effectiveness of strict implementations of
emission reduction policies in China, such as the coal ban for
residential heating since the 2017–2018 winter. There was a
sharp change in PM2.5 emissions, from an increase in 2017 to
a decrease in 2018. As shown by Fig. 6, spatial distributions
of the changes in PM2.5 emissions in December compared to

Atmos. Chem. Phys., 23, 14505–14520, 2023 https://doi.org/10.5194/acp-23-14505-2023
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Figure 6. Spatial distributions of dynamics-based PM2.5 emission changes in (a) December 2017 compared to November 2017 and (b) De-
cember 2018 compared to November 2018.

Table 1. Dynamics-based PM2.5 emission estimates of the year 2016 for each province whose value is larger than 0.01 µg m−2 s−1 are
shown in the second column. Ratios of PM2.5 emission changes for the years 2017–2020 compared to 2016 are shown from the third to the
sixth column, with negative (roman)/positive (italic) values indicating a decrease/increase in PM2.5 emissions.

Province PM2.5 emissions Percentage of PM2.5 Percentage of PM2.5 Percentage of PM2.5 Percentage of PM2.5
of year 2016 emission change emission change emission change emission change

(µg m−2 s−1) for year 2017 (%) for year 2018 (%) for year 2019 (%) for year 2020 (%)

Tianjin 0.2083 −14.07 −22.99 −38.70 −26.98
Shanghai 0.2067 −24.39 −30.21 −21.46 −30.05
Shandong 0.1631 −15.26 −21.02 −15.57 −19.41
Beijing 0.1598 −26.64 −25.75 −41.92 −45.27
Hebei 0.1178 −7.47 −11.98 −26.39 −22.87
Jiangsu 0.1088 −6.52 −3.98 −12.69 −28.20
Henan 0.1064 −1.41 −3.68 −12.15 −24.91
Shanxi 0.0885 6.17 7.90 −13.18 −13.85
Liaoning 0.0742 6.32 −2.58 3.22 11.42
Anhui 0.0687 1.92 −5.63 −6.23 −21.57
Hubei 0.0574 −5.87 −17.69 −19.76 −36.48
Zhejiang 0.0557 −3.62 −9.32 −9.99 −18.05
Chongqing 0.0525 −22.24 −29.81 −24.63 −38.41
Shanxi 0.0498 0.62 −1.97 −18.05 −17.85
Guangdong 0.0481 1.21 −6.01 −6.69 −14.37
Ningxia 0.0481 −8.17 −5.93 −24.46 −12.95
Hunan 0.0417 −6.40 −19.35 −9.91 −20.62
Guangxi 0.0390 −2.42 −3.52 −12.47 −22.31
Guizhou 0.0365 −4.01 −15.82 −21.74 −46.41
Jilin 0.0360 12.30 −3.22 7.37 4.76
Jiangxi 0.0353 13.22 −9.67 −7.19 −11.91
Sichuan 0.0337 −7.66 −15.66 −27.68 −37.93
Fujian 0.0244 3.13 −2.73 −8.13 −13.41
Heilongjiang 0.0231 7.30 −0.21 3.14 3.91
Yunnan 0.0221 −1.26 −7.16 −9.93 −15.35
Gansu 0.0177 −4.26 5.28 −17.89 −16.49
Hainan 0.0173 3.93 −0.41 −5.04 −4.78
Neimenggu 0.0141 −0.00 −3.63 −8.16 3.55
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Table 2. The 5-year mean diurnal fractions (%) of the dynamics-based PM2.5 emission estimates over mainland China in local solar time
(LST) for each month.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0 3.65 3.58 3.61 3.61 3.55 3.40 3.36 3.44 3.55 3.50 3.53 3.63
1 3.77 3.69 3.72 3.76 3.74 3.65 3.58 3.56 3.70 3.64 3.64 3.75
2 3.88 3.82 3.96 4.03 4.05 3.94 3.86 4.01 4.05 3.93 3.83 3.89
3 3.98 3.94 4.05 4.21 4.29 4.30 4.19 4.14 4.19 4.05 3.93 3.99
4 4.10 4.06 4.33 4.69 4.92 5.03 4.89 4.71 4.69 4.33 4.12 4.12
5 4.32 4.38 4.76 5.20 5.46 5.48 5.45 5.39 5.27 4.80 4.45 4.32
6 4.61 4.74 5.09 5.48 5.72 5.78 5.74 5.78 5.74 5.21 4.83 4.61
7 4.78 4.90 5.17 5.55 5.78 5.92 5.95 5.98 5.92 5.37 4.98 4.79
8 4.77 4.93 5.21 5.63 5.88 6.07 6.11 6.13 5.99 5.41 4.94 4.75
9 4.54 4.79 5.14 5.52 5.79 6.00 6.03 6.02 5.60 4.89 4.42 4.37
10 4.41 4.41 4.68 5.02 5.43 5.83 5.79 5.42 4.68 4.55 4.50 4.42
11 4.38 4.40 4.42 4.39 4.45 4.79 4.78 4.66 4.56 4.47 4.36 4.30
12 4.37 4.32 4.37 4.38 4.48 4.49 4.61 4.51 4.19 4.46 4.60 4.48
13 4.34 4.43 4.34 4.09 3.93 4.06 4.07 4.09 4.23 4.38 4.33 4.29
14 4.17 4.26 4.30 4.18 4.16 4.02 4.13 4.10 3.79 3.98 4.10 4.15
15 4.10 3.99 3.82 3.55 3.46 3.63 3.59 3.45 3.39 3.79 4.07 4.12
16 4.17 4.05 3.73 3.38 3.17 3.08 3.18 3.24 3.40 3.92 4.30 4.29
17 4.24 4.17 3.79 3.36 3.08 2.95 3.01 3.12 3.41 3.98 4.31 4.30
18 4.18 4.21 3.87 3.48 3.16 2.92 3.03 3.17 3.44 3.91 4.21 4.24
19 4.06 4.04 3.72 3.35 3.12 2.92 2.93 3.08 3.34 3.73 3.99 4.07
20 3.96 3.93 3.62 3.34 3.07 2.84 2.93 3.04 3.29 3.59 3.85 3.98
21 3.81 3.75 3.47 3.21 2.99 2.83 2.80 2.93 3.16 3.44 3.65 3.79
22 3.76 3.66 3.44 3.25 3.09 2.91 2.92 2.97 3.19 3.38 3.56 3.73
23 3.65 3.55 3.39 3.34 3.23 3.16 3.09 3.04 3.23 3.32 3.47 3.62

November in 2017 show obvious increases in most of China.
However, the changes in 2018 show significant decreases in
the areas of the Beijing, Tianjin, Hebei, Shanxi, Henan, and
Anhui provinces due to the implementation of the coal ban.

Despite the trend in PM2.5 emissions from 2016 to 2020,
the DEPE of the year 2016 has similar monthly distributions
compared to MEIC2016–2020 in general (Fig. 3a). MEIC
has a pan-shaped monthly distribution, with nearly time-
invariant PM2.5 emissions from April to October. This sea-
sonal dependence of emissions is mainly contributed by the
variations in residential energy use, which are empirically de-
pendent on coarse monthly mean temperature intervals and
thus cannot reflect the realistic monthly variations (Streets
et al., 2003; Li et al., 2017). The centralized heating system
in northern China has fixed dates for being turned on and
turned off during each heating season. Therefore, a sudden
rise in emissions from October to November and a sudden
drop in emissions from March to April are shown. But the
turning-on and turning-off dates are variable in different re-
gions, which imposes a smoothing effect on the emissions.
However, the DEPE shows a V-shaped monthly distribution,
with the minimum occurring in August. The estimated PM2.5
emission is 11.8 % higher than that of MEIC2016 in April but
12.1 % lower than that of MEIC2016 in August, and these
different monthly distributions can influence the consequent
climate responses, including the radiative forcing and energy

budget (Yang et al., 2020), and can also impact on health is-
sues (Liu et al., 2018). Moreover, monthly fractions of the
DEPE are consistent across years (Fig. 3c). The absence of
interannual variations of monthly PM2.5 emission fractions
provides a basis for previous studies that follow the same
monthly changes in source emissions from different years
(Zhang et al., 2009; Zheng et al., 2020, 2021). Monthly al-
locations of PM2.5 emissions can be directly and objectively
obtained given an estimated total annual amount based on
the estimated monthly fractions of DEPE, which is valu-
able for emission inventories; air quality simulations; and,
potentially, applications for future scenarios due to more ac-
curate month fractions of DEPE. Since the hourly priors of
PM2.5 concentrations from the cycling assimilation for opti-
mally estimating PM2.5 emissions fit to the observed PM2.5
quantities (Fig. 1), the monthly DEPE provides more realistic
monthly fluctuations than the empirical estimate.

4 Diurnal variations of PM2.5 emissions

The DEPEs with high temporal resolutions given the time-
invariant prior PR2010 can reveal features that are unable
to be represented in the commonly used emission estimates.
Although the prior PR2010 has no diurnal variations, hourly
posteriors of PM2.5 emissions provide the first objectively
estimated diurnal variations for different seasons for the
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years 2016–2020. However, these estimated diurnal varia-
tions include the contributions of the time-varying boundary
layer. An observing system simulation experiment (OSSE)
is performed to investigate the effects of the boundary layer
from 00:00 UTC on 29 December 2015 to 00:06 UTC on
1 February 2016. Details of this OSSE are presented in the
Supplement. The results indicate that the magnitude of pos-
terior PM2.5 emissions from the OSSE is closer to the true
emission than the prior. Since we have hourly assimilated ob-
servations to simultaneously update the chemical concentra-
tions and source emissions, the impacts of the time-varying
boundary layer on the posterior PM2.5 emissions are limited
(Fig. S1 in the Supplement). Slightly larger estimated PM2.5
emission fractions occurred in the morning, and smaller esti-
mated PM2.5 emission fractions occurred in the afternoon in
comparison to the time-invariant true emission. Nevertheless,
the influences of the time-varying boundary layer are still im-
portant to PM2.5 emission estimates. To statistically present
the diurnal variations, the fractions of hourly PM2.5 emis-
sions divided by the daily amount are averaged over differ-
ent years and regions after excluding the impacts of the time-
varying boundary layer based on the short-term period sim-
ulation, although the influences of the boundary layer could
strongly vary with seasons or years (Figs. 7 and 8 and Ta-
ble 2). The diurnal variations of PM2.5 emissions are critical
for understanding the mechanisms of PM2.5 formation and
evolution and are also essential for PM2.5 simulations and
forecasts.

The 5-year mean diurnal variations of the estimated PM2.5
emission fraction for mainland China show that, despite the
monthly variations of PM2.5 emissions, the diurnal-variation
fractions for November, December, January, and February
are similar, while those for June, July, and August are simi-
lar (Fig. 7a). There are stronger diurnal variations of PM2.5
emissions in summer than in winter, which are represented
by larger PM2.5 emission fractions during the morning and
fewer PM2.5 emission fractions during evening. The diurnal
variations of PM2.5 emissions from March to May gradu-
ally transform from the patterns of winter to those of sum-
mer and vice versa for the diurnal variations of PM2.5 emis-
sions from September to November. The monthly changes
in diurnal variations of PM2.5 emissions are consistent with
the seasonal dependence since monthly variations of PM2.5
emissions are mainly related to the variations of residential
consumptions (Li et al., 2017) in which the space heating
has nearly no diurnal variations, and then larger PM2.5 emis-
sions during winter lead to reduced diurnal variations com-
pared to in summer. Similarly to the monthly fractions of es-
timated PM2.5 emissions for mainland China, diurnal varia-
tions of PM2.5 emission fractions are consistent across years
for a given month (Fig. 8). Table 2 gives 5-year mean diurnal
variations of the estimated PM2.5 emission fractions for each
month. Based on these high-resolution diurnal-variation frac-
tions, hourly estimates of PM2.5 emissions can be objectively
obtained for a given monthly estimated PM2.5 emission.

Figure 7. The 5-year mean diurnal variations of dynamics-based
PM2.5 emission fractions averaged over (a) mainland China,
(b) megacities with an urban population ≥ 5 million, and (c) non-
megacities with an urban population < 5 million.

Despite the high temporal resolution, the DEPE also has
the ability to analyse diurnal variations for specific cities.
The monthly changes in the diurnal variations of PM2.5 emis-
sions estimated for megacities with urban populations larger
than 5 million and non-megacities with urban populations
smaller than 5 million (China State Council, 2013) are con-
sistent with those estimated from mainland China (Fig. 7).
Compared to the diurnal variations of PM2.5 emissions esti-
mated for mainland China, the megacities have stronger diur-
nal variations, while the non-megacities have weaker diurnal
variations. These detailed descriptions of PM2.5 emissions
that are usually absent in common emission estimates can
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Figure 8. Diurnal variations of dynamics-based PM2.5 emission
fractions for the years 2016–2020 (light blue), and the 5-year mean
fractions, with bars denoting 1 standard deviation of the 5-year vari-
ations (dark blue), are averaged over mainland China for (a) Jan-
uary, (b) April, (c) July, and (d) October.

be essential for PM2.5 simulation, especially for providing
timely and realistic guidance for severe haze events.

There has been a lack of local measurements for diurnal
variations and widely adopted diurnal variation profiles of
PM2.5 emissions in China. Compared to the diurnal varia-

Figure 9. Diurnal variations of PM2.5 emission fractions for each
month based on diurnal variation profiles from the US and EU
(Wang et al., 2010).

Figure 10. Hourly (light red and blue) and daily (dark red and blue)
dynamics-based PM2.5 emission estimates (kg h−1) summed over
mainland China from January to March for the years 2019 and 2020.

tions of PM2.5 emission fractions estimated based on diurnal
variation profiles from the US and EU (Wang et al., 2010;
Du et al., 2020), the estimated PM2.5 emission fractions are
1.25 % larger during the evening, which greatly changes the
diurnal variations of DEPE. The noon and evening peaks es-
timated from DEPE have smaller PM2.5 emission fractions,
with mean underestimations of PM2.5 emission fractions of
0.40 % and 0.83 % for noon peak and evening peak, respec-
tively (Figs. 7a and 9). In fact, the smaller evening peaks of
Wang et al. (2010) occurred in November, December, Jan-
uary, February, and March, while they are almost indistinct
from April to October, similarly to those from DEPE. The
morning peak of Wang et al. (2010) is similar to that of DEPE
for spring and fall, but the former overestimates PM2.5 emis-
sion fractions by 0.57 % for winter, while it underestimates
PM2.5 emission fractions by 1.05 % for summer. Due to the
overestimated peaks, diurnal variations of Wang et al. (2010)
have a sharper appearance rate for the morning peak and a
disappearance rate for the evening peak. Compared to the di-
urnal variations based on diurnal variation profiles from the
US and EU (Wang et al., 2010), the diurnal variations of the
DEPE are constrained by the atmospheric–chemical model
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Figure 11. Spatial distributions of dynamics-based PM2.5 emission estimates (µg m−2 s−1) in (a) February and (c) March of the year 2019
and spatial distributions of dynamics-based PM2.5 emission reductions of the year 2020 compared to the year 2019 for (b) February and
(d) March.

and observed PM2.5 concentrations, which can objectively
determine the diurnal variations of PM2.5 emissions for spe-
cific regions and seasons.

5 Impact of COVID-19 on PM2.5 emissions

The abrupt changes in PM2.5 emissions during the initial
stage of COVID-19 in China provide a natural case study
to validate the ability of the dynamic-based data assimilation
method to obtain high-temporal-resolution PM2.5 emission
estimates. The abrupt outbreak of the COVID-19 pandemic
has produced dramatic socioeconomic impacts in China. To
prevent the virus from spreading, a lockdown was first imple-
mented on 23 January 2020 in Wuhan, Hubei Province, and
subsequently, the national lockdown was enforced in China
(Liu et al., 2020; Huang et al., 2020; Zhu et al., 2021). Con-
sequently, the total PM2.5 emissions of February 2020 for
China show an obvious decrease compared to those of pre-
vious years (Fig. 3). The high=temporal-resolution DEPE
reveals the detailed changes of PM2.5 emissions with time

(Fig. 10). The PM2.5 emissions started to decrease right
around the COVID outbreak and had been smaller than those
of the year 2019 till early March. The emissions in the fol-
lowing months of 2020 were similar to those of 2019 due
to the epidemic prevention and control policies enforced by
the Chinese government. During February 2020, the DEPE
showed significant reductions at the North China Plain and
northeast of China, where prominent PM2.5 emissions oc-
curred, while spotted PM2.5 emission differences with small
magnitudes were shown in the other regions (Fig. 11a–b).
Along with recovery from COVID-19, the estimated PM2.5
emissions rebounded in March (Figs. 3a, 10, 11c–d), which
is ascribed to the national work resumption. Thus, the DEPE
is able to timeously reflect the dynamic response of PM2.5
emissions to COVID-19. Although similar emission reduc-
tions and emission trends are obtained from the bottom-up
technique (Zheng et al., 2021), the reduction amount and ra-
tio from the bottom-up technique are larger than those esti-
mated from DEPE (Fig. 10 and Table 1). This is possibly due
to significant reductions in PM2.5 emissions from the resi-
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Figure 12. Mean spatial distributions of PM2.5 emission differences (µg m−2 s−1) between the years 2020 and 2019 for 9 weeks starting on
9 January 2020. Negative (positive) values indicate that the PM2.5 emissions of the year 2020 are smaller (larger) than those of the year 2019.
The numbers in (a) denote provinces as follows: (1) Heilongjiang, (2) Neimenggu, (3) Xinjiang, (4) Jilin, (5) Liaoning, (6) Gansu, (7) Hebei,
(8) Beijing, (9) Shanxi, (10) Tianjin, (11) Shanxi, (12) Ningxia, (13) Qinghai, (14) Shandong, (15) Xizang, (16) Henan, (17) Jiangsu,
(18) Anhui, (19) Sichuan, (20) Hubei, (21) Chongqing, (22) Shanghai, (23) Zhejiang, (24) Hunan, (25) Jiangxi, (26) Yunnan, (27) Guizhou,
(28) Fujian, (29) Guangxi, (30) Guangdong, (31) Taiwan, (32) Hong Kong, (33) Macao, (34) Hainan.

dential sector, as in the bottom-up technique (Zheng et al.,
2021); however, PM2.5 emissions from the residential sec-
tor might not have significantly changed around the COVID
outbreak.

To avoid fluctuations due to diurnal variations and monthly
changes in PM2.5 emissions, 7 d averaged PM2.5 emission
differences between the years 2020 and 2019 are used to
analyse the dynamic impact of COVID-19 on PM2.5 emis-
sions (Fig. 12). Before the lockdown, there were slight PM2.5
emission differences over several provinces (Fig. 12a–b).

During the first week of lockdown, PM2.5 emission reduc-
tions larger than 5×10−2 (µg m−2 s−1) – that is about 60 %–
70 % emission reductions – occurred in the Hubei, Hu-
nan, Guangdong, Anhui, and Zhejiang provinces (Fig. 12c).
The PM2.5 emission reduction extended to BTH and the
Shandong Province during the second week of lockdown
(Fig. 12d) and continuously spread to the three northeast
provinces of China during the third week of lockdown
(Fig. 12e). During the third week of lockdown, the increased
PM2.5 emissions for BTH and SCR were possibly caused
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by the long national vacation of the spring holiday of the
year 2019 (Ji et al., 2018). The inhomogeneous spatial vari-
ations of PM2.5 emissions possibly relate to different tradi-
tions and policy enforcements for different provinces. The
PM2.5 emission reduction had been maintained over the cen-
tral and northern parts of China till early March when the
lockdown was lifted (Fig. 12f–i). Though it is hard to see
continuous and consistent signals of lockdown for the whole
China, the timely DEPE can provide up-to-date guidance for
quantifying the socioeconomic impacts of rare events with
large emission changes such as the COVID-19 pandemic.

6 Discussion

High-temporal-resolution and dynamics-based estimations
of PM2.5 emissions can be objectively and optimally ob-
tained by assimilating past and future observed surface PM2.5
concentrations through flow-dependent error statistics. This
advanced assimilation strategy can be applied for emission
estimates of other chemical species when corresponding ob-
servations are available and can extend to observation types
besides the surface concentrations, like the aerosol optical
depth (Liu et al., 2011; Choi et al., 2020). Moreover, cur-
rent estimates of PM2.5 emissions are lacking in terms of ex-
plicit representations of primary and secondary PM2.5, which
could be resolved by joint estimation of the source emissions
and primary and secondary PM2.5 given the concentration
observations. Another deficiency of this top-down technique
is that it cannot directly determine dynamics-based PM2.5
emissions for different sectors and contributions from dif-
ferent policies, although the bottom-up technique has the
potential to untangle the different contributions from differ-
ent policies and quantify the different impacts on different
sectors. However, this top-down technique can be integrated
into the bottom-up technique to retain the advantages of both
methods. One future work is to integrate the top-down tech-
nique with the bottom-up one, through which the emission
estimates for different sectors and polices could be quan-
tified. The annual emission estimates from the bottom-up
technique can be further downscaled to hourly estimates by
first distributing the annual amount to each month through
the monthly allocations estimated from the top-down tech-
nique, then assuming evenly daily distribution and finally
applying the fractions of diurnal variation estimated from
the top-down technique. The information collected by the
bottom-up technique is retained, while the common draw-
back of a coarse temporal resolution for the bottom-up tech-
nique is remedied. The integrated bottom-up and top-down
techniques can improve spatiotemporal representations of
source emissions across timescales and sectors, which is ben-
eficial for emission inventories, air quality forecasts, regula-
tion policies, and emission trading schemes.

Data availability. The meteorological data used for meteorolog-
ical initial conditions and boundary conditions are available from
the University Corporation for Atmospheric Research (UCAR) Re-
search Data Archive (https://rda.ucar.edu/datasets/ds083.3, NCEP,
2015). The assimilated meteorological observations are avail-
able from the UCAR Research Data Archive (https://rda.ucar.edu/
datasets/ds337.0/, NCEP, 2008), and the assimilated chemical ob-
servations are available from https://aqicn.org/map/china/cn/ (last
access: 6 November 2023). The prescribed time-invariant anthro-
pogenic emissions are available from the Emission Database for
Global Atmospheric Research for Hemispheric Transport of Air
Pollution (EDGAR-HTAP) inventory (https://data.jrc.ec.europa.eu/
dataset/jrc-edgar-htap_v2-2, Janssens-Maenhout et al., 2015a) and
the Multi-resolution Emission Inventory (MEIC Team, 2018).

The WRF-Chem model version 3.6.1 is available from
https://www2.mmm.ucar.edu/wrf/users/download/get_sources.
html#WRF-Chem (WRF-Chem, 2014; Grell et al., 2005). The
NOAA operational EnKF system is available from https://dtcenter.
org/community-code/gridpoint-statistical-interpolation-gsi (Hu et
al., 2018).
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