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Abstract. In situ measurements of liquid cloud and precipitation drop size distributions from aircraft-mounted
probes are used to examine the relationship of the width of drop size distributions to cloud drop number. The
width of the size distribution is quantified in terms of the parameter k = (rv/re)3, where rv is the volume mean
radius and re is the effective radius of the distributions. We find that on small spatial scales (∼ 100 m), k is posi-
tively correlated with cloud drop number. This correlation is robust across a variety of campaigns using different
probe technology. A new parameterization of k versus cloud drop number is developed. This new parameteriza-
tion of k is used in an algorithm to derive cloud drop number in liquid phase clouds using satellite measurements
of cloud optical depth and effective radius from the MODIS (Moderate Resolution Imaging Spectroradiome-
ter) sensor on Aqua. This algorithm is compared to the standard approach to derive drop number concentration
that assumes a fixed value for k. The general tendency of the parameterization is to narrow the distribution of
derived number concentration. The new parameterization generally increases the derived number concentration
over ocean, where N is low, and decreases it over land, where N is high. Regional biases are as large as 20 %
with the magnitude of the bias closely tracking the regional mean number concentration. Interestingly, biases are
smallest in regions of frequent stratocumulus cloud cover, which are a regime of significant interest for study of
the aerosol indirect effect on clouds.

1 Introduction

Satellite visible and shortwave infrared (VSWIR) imagers
provide measurements of cloud optical depth (τ ) and effec-
tive radius (re) using the bispectral method (Nakajima and
King, 1990). There has been an abundance of literature that
proposes a translation of these radiative properties to the mi-
crophysical properties, liquid water path (W ), and cloud drop
number (N ), using an adiabatic cloud model (e.g., Boers et
al., 2006; Bennartz, 2007; Grosvenor and Wood, 2014; Ben-
nartz and Rausch, 2017). Following the adiabatic model, the
number concentration can be expressed as (Grosvenor et al.,
2018)

N =
1

2πk

√
5fadcwτ

Qextρwr5
e
, (1)

where fad is the adiabatic fraction (constrained between 0
and 1), Qext is the extinction efficiency (commonly approx-
imated as 2 in the geometric scattering limit), cw is the con-
densation rate, and ρw is the density of liquid water.

The parameter k is defined as

k =

(
rv

re

)3

, (2)

where rv is the volume mean radius and re is the effective ra-
dius. For a given assumption regarding the shape of the drop

Published by Copernicus Publications on behalf of the European Geosciences Union.



14294 M. D. Lebsock and M. Witte: Quantifying the dependence of drop spectrum width and number

size distribution, k can be related to various measures of the
droplet spectral width. In particular, many studies evaluate
the relative dispersion of the droplet size distribution (DSD)
defined as the standard deviation normalized by the mean ra-
dius, which can be directly related to k. For realistic param-
eterization of the drop size distribution, k is inversely related
to the relative dispersion of the DSD.

Grosvenor et al. (2018) have presented a comprehen-
sive uncertainty analysis of N retrievals that use Eq. (1).
They suggest a pixel-scale uncertainty of 78 %, which is
dominated by uncertainty in the retrieved re owing to the
−5/2 power to which it is raised. Note that the parameter
with the second largest power in Eq. (1) is k, which is raised
to the−1 power. To our knowledge, all published algorithms
that derive N from τ and re have assumed a fixed value of k.
The review of Grosvenor et al. (2018) proposes k = 0.8±0.1,
whereas Bennartz and Rausch (2017) suggest a 20 % uncer-
tainty in k. The intent of this paper is to revisit the uncertainty
in remotely sensedN resulting from the assumption of a con-
stant k.

The sign of the correlation between k and N is not clear in
the published literature. Some analyses of probe data suggest
a negative correlation between k andN . For example, Martin
et al. (1994) find k = 0.67 and k = 0.88 for a polluted con-
tinental cloud and a clean oceanic cloud, respectively. Simi-
larly, McFarquhar and Heymsfield (2001) find k = 0.73 and
k = 0.83 for polluted and pristine clouds, respectively. Liu
and Daum (2002) show data implying a negative k–N cor-
relation based on probe data from several field campaigns.
Other analysis of probe data shows a positive k–N corre-
lation. Lu et al. (2007) show a positive k–N relationship
in DSDs measured during the Marine Stratus/Stratocumu-
lus Experiment. Brenguier et al. (2011) evaluate data from
five field experiments, finding no discernible k–N correla-
tion while attributing some of the correlations reported by
previous studies to instrument measurement and sampling ar-
tifacts. In addition to evidence from probe data analyses, re-
trievals of the droplet spectrum width and number concentra-
tion derived from the Research Scanning Polarimeter during
the North Atlantic Aerosols and Marine Ecosystems Study
show a positive k–N correlation (Sinclair et al., 2020).

Some of the disagreement in the reported k–N correlation
can be explained by the spatiotemporal scale on which it is
quantified. For example, Pawlowska et al. (2006) show that
the relative dispersion of the DSD tends to decrease with N
within a given flight leg (implying a positive k–N correla-
tion); however, the sign of this relationship reverses when
evaluating flight averages. Hu et al. (2021) find no correla-
tion for inter-cloud correlation either within campaigns or
across the five campaigns they analyzed. However, consis-
tent with Pawloswka et al. (2006), they find when analyz-
ing the high-resolution 1 Hz DSDs that intra-cloud relative
dispersion decreases with increasing number concentration.
Hu et al. (2021) further show that the variance explained in
the relative dispersion exceeds 40 % up to scales of 10 km

and quickly decreases at scales above 30 km. There is a the-
oretical basis for the scale dependence of the k–N correla-
tion. An analytical model based purely on the condensational
growth process (Liu et al., 2006) has demonstrated that for a
fixed updraft velocity an increase in cloud condensation nu-
clei (CCN) concentration leads to an increase in N and an
increase in relative dispersion, whereas for a fixed CCN an
increase in updraft velocity leads to an increase inN but a de-
crease in relative dispersion. The former effect is interpreted
to be relevant at larger scales (inter-cloud), while the latter
effect is interpreted to be relevant at smaller scales (intra-
cloud). Data from aircraft penetrations of non-precipitating
cumulus have confirmed the positive/negative correlation of
updraft velocity with N/k, respectively, on the intra-cloud
scale (Lu et al., 2012). The focus of this paper is on the
problem of remote sensing, for which the relevant scale is
variable depending on the sensor but is generally within the
microscales (< 2 km). We call attention to the fact that many
previous parameterizations of the k–N relationship are based
on significantly larger spatial and temporal scales, which are
likely not relevant to the remote sensing problem.

The above explanations do not consider the role of the
collision–coalescence process. Recent observations that in-
corporate measurement of the radar Doppler skewness sug-
gest that 40 %–50 % of marine boundary layer clouds with
liquid water path < 50 gm−2 contain drizzle drops and
that drizzle is ubiquitous for thicker clouds (Zhu et al.,
2022), which indicates that the collision–coalescence pro-
cess cannot be ignored in explanations of drop size dis-
tribution broadening. A few studies have examined the ef-
fect of precipitation on the estimation of k from probe data.
Wood (2000) shows a reduction in k when drizzle-sized
drops are included in the calculation and the ratio of the
drizzle and cloud mode liquid water contents can accurately
parameterize this reduction. Ackerman et al. (2000) present
data from the Monterey Area Ship Track field project which
demonstrates that the correlation between k and N can take
either a positive or negative sign. They show examples in
which the sign of the correlation was negative in a non-
precipitating stratocumulus with relatively large N and pos-
itive in precipitating stratocumulus with relatively low N .
Large-eddy simulations (LESs) of stratocumulus coupled
with bin microphysics show that coalescence broadening is a
key process in the development of a positive k–N correlation
and that the k–N relationship is highly nonlinear, with the
steepest slope at low values of N in the presence of precipi-
tation (Lu and Seinfeld, 2006).

Two points are evident in the body of literature seeking
to parameterize k: (1) the spatial scale of the data is a criti-
cal determinant of the derived k–N relationship, and (2) the
effects of coalescence broadening have frequently been ig-
nored. This paper specifically addresses these issues in the
context of deriving N from passive VSWIR remote sensing
data.
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2 Data and methods

2.1 Probe data

We evaluate measurements of droplet size distribution from
three combinations of cloud microphysical probes spanning
five airborne experiments:

1. The Aerosol and Cloud Experiments in the Eastern
North Atlantic (ACE-ENA) were a deployment of At-
mospheric Radiation Measurement (ARM) Gulfstream-
1 (G-1) between June 2017 and February 2018 around
the ARM Eastern North Atlantic site (Wang et al.,
2022). The G-1 sampled primarily marine stratocumu-
lus within 50 km of the ENA site. The primary sampling
strategy was an L-shaped pattern in the horizontal with
the vertex at the ARM surface site: one leg parallel to
the mean planetary boundary layer (PBL) flow and one
leg perpendicular. The vertical sampling module con-
sisted of in-cloud level legs at cloud base, mid-cloud,
and cloud top followed by a sawtooth pattern between
cloud top and the inversion layer above. Probe data in-
clude the Fast Cloud Droplet Probe (FCDP) and the
2D Stereo (2DS) Particle Imaging Probe. The FCDP
measures drops of diameter 3–50 µm in bins 1.5–3 µm
across (increasing with drop size). The 2DS measures
drops 10< d < 3000 µm in 10 µm increments. We com-
bine the data from each probe using data from the FCDP
(d < 30 µm) and 2DS (d > 30 µm).

2. The Cloud System Evolution in the Trades (CSET; Al-
brecht et al., 2019) sampled stratocumulus and cumu-
lus clouds along Lagrangian trajectories between Cal-
ifornia and Hawaii with the National Science Foun-
dation Gulfstream-V (G-V). The focus of the cam-
paign was understanding the evolution of cloud, ther-
modynamic, and aerosol properties along the stratocu-
mulus to cumulus transition. Boundary layer sampling
modules were composed of a sub-cloud level leg, a
cloud base level leg, and a sawtooth leg between
cloud top and the inversion layer above. The G-V
microphysical probes include a Holographic Detector
for Clouds (HOLODEC) and a two-dimensional cloud
(2DC) probe. The HOLODEC samples drops 6< d <
500 µm with bins from 4–50 µm width (increasing with
drop size). The 2DC samples drops 25< d < 1550 µm
in 25 µm increments. We combine the data from each
probe using data from the HOLODEC (d < 75 µm) and
2DC (d > 75 µm).

3. The Center for Interdisciplinary Remotely Piloted Air-
borne Studies (CIRPAS) Twin Otter aircraft is fre-
quently flown in coastal stratocumulus (Sorooshian et
al., 2018). Here we examine data from two campaigns
flown off the coast of Monterey, CA, and one off the
coast of Iquique, Chile, respectively: Marine Stratus/S-
tratocumulus Experiment (MASE; Lu et al., 2007),

Figure 1. An example of merged drop size distributions from each
campaign.

Physics of Stratocumulus Top (POST; Witte et al.,
2017), and VAMOS Ocean-Cloud-Atmosphere-Lands
Study (VOCALS; Zheng et al., 2011). Level legs at
cloud base, mid-cloud, and cloud top were flown for
MASE and VOCALS, while POST primarily used saw-
tooth patterns from 100 m below cloud top to 100 m
above. Probe data include the phase Doppler interfer-
ometer (PDI) and the cloud imaging probe (CIP). The
PDI measures drops 2< d < 100 µm in logarithmically
space bins of width dlog10d = 0.0156. The CIP is es-
sentially identical to the 2DC probe used in CSET and
samples drops 25< d < 1550 µm in 25 µm increments.
We combine the data from each probe using data from
the PDI (d < 75 µm) and CIP (d > 75 µm).

Figure 1 shows an example of a merged DSD from each of
the three probe combinations.

Here we evaluate 1 Hz data, which correspond to a length
scale of approximately 100 m. It is acknowledged that the
area footprint of a remotely sensed pixel is orders of mag-
nitude larger than the linear sampling provided by the
probes. However, it is not possible to reconstruct the two-
dimensional area of a typical satellite pixel with probe data.
The scale analysis of Hu et al. (2021) shows that the DSD
dispersion relationships at scales less than ∼ 10 km have a
similar sign, so we choose to evaluate the data at the highest
possible resolution and acknowledge that as with other as-
pects of the remote sensing problem, there is likely to be a
pixel heterogeneity bias associated with nonlinearities in the
k–N relationship and the scale of the satellite footprint. For
each DSD, several microphysical quantities are calculated.
The number concentration is calculated as

N =

rmax∑
rmin

n(r)1r. (3)
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Liquid water content is calculated as

l =
4
3
ρlπ

rmax∑
rmin

n(r)r31r. (4)

The volume mean radius is calculated as

rv =

(
3l

4πρlN

)1/3

. (5)

The effective radius is defined as

re =

rmax∑
rmin

n(r)r31r

rmax∑
rmin

n(r)r21r

. (6)

Here n(r) is the discretely binned droplet size distribution
and 1r is the bin variable widths. rmin and rmax are the
bounds of the summation. Each quantity is calculated three
times with different min/max values, for the cloud mode,
precipitation mode, and total DSD. This requires the defi-
nition of an arbitrary threshold radius separating the cloud
and precipitation drops, which we choose as 27.5 µm. The
calculation of k is not particularly sensitive to this thresh-
old. For example, Brenguier et al. (2011) have shown that
the calculation of k varies by less than 2 % when varying the
cloud/precipitation threshold between radii of 25 and 40 µm,
which represents the range that is common to microphysi-
cal parameterizations in large-eddy models (Geoffroy et al.,
2010). The parameter k is further derived from the calcu-
lated rv and re. In doing so a decision must be made as to
whether to include precipitation-sized drops in the calcula-
tion. In principle, VSWIR imagers see the radiative effects of
the entire drop size distribution. However, the SWIR bands
from which the measurement of re are derived are heavily
weighted towards cloud top (Platnick, 2000). Gravitational
settling effectively removes most large drops from the cloud
top; therefore, here we make the assumption that only the
cloud-mode drops (r < 27.5 µm) contribute to the radiatively
effective k. The assumption that the radiative effects of driz-
zle mode drops do not contribute to the derived cloud top re
is consistent with the simulation study of Zhang et al. (2012).

We perform filtering of the data to ensure robust sampling
of the cloud mode DSD. We require that lc > 0.01 gm−3,
Nc > 0.1 cm−3, and at least three of the cloud mode bins
have non-zero counts. We further perform additional filter-
ing of the data to ensure that we are sampling cloudy liquid-
phase volumes as opposed to sub-cloud drizzle or ice cloud.
Specifically, we require relative humidity> 98 %, tempera-
ture> 273.15 K, and aircraft altitude> 700 m. After filter-
ing there are 157 117 DSDs including 13 205 from CSET,
90 172 DSD ACE-ENA, and 53 740 from the PDI dataset.
Of these, 31 % have precipitation water content greater than
0.01 gm−3.

2.2 Satellite data

This study uses the Moderate Resolution Imaging Spectro-
radiometer (MODIS) collection Level-2 cloud products from
the Aqua subset to a 15-pixel (∼ 15 km) swath centered on
the CloudSat ground track called MAC06S0 (Savtchenko et
al., 2008). These files contain the same data fields as their
parent product, MYD06 (Platnick et al., 2017). Data from
2007–2016 are used. Equation (1) is used to derive the cloud
drop number concentration using the effective radius derived
from the MODIS band 20 3.7 µm channel. Only single-layer
liquid phase clouds are considered. Cloud phase is deter-
mined from the MODIS cloud phase optical properties flag.
The parameter fad is set to 0.66 following Grosvenor et
al. (2018), and the condensation rate is expressed as

cw = ρair
cp

Lv
(0d−0m) , (7)

where ρair is the density of air, cp is the specific heat of dry
air at constant pressure, Lv is the latent heat of vaporization,
0d is the dry adiabatic lapse rate, and 0m is the moist adi-
abatic lapse rate. Calculation of cw requires an estimate of
cloud base temperature, which we take as the temperature at
the lifting condensation level (LCL) estimated from weather
analysis fields from the ECMWF-AUX (Partain and Cronk,
2017) pressure and temperature fields, which is a weather
analysis interpolated in space and time to the CloudSat data.
The details of this calculation are provided in Appendix A.
Two representations of k are used; we compare a fixed value
of k = 0.8 with a parameterization of k based on N derived
from probe data in Sect. 3.1.

3 Results

3.1 Drop size distribution properties

We begin by showing the distributions of microphysical
variables for the three datasets in Fig. 2. The range of
cloud drop number spans 0–500 cm−3. The PDI dataset is
weighted towards higher N , while the FCDP and especially
the HOLODEC datasets are weighted towards the lowest
N . These differences are a consequence of the geographic
regimes sampled by the different campaigns: the CIRPAS
Twin Otter is constrained to fly near the coast and the associ-
ated natural and anthropogenic aerosol sources, while much
of the boundary layer sampling in CSET took place over ex-
tremely clean, remote oceanic regions. The corresponding
effective radii distributions range between roughly 5–25 µm.
Cloud liquid water content distributions are similar across the
datasets, with a broad range of values from the artificial cut-
off at 0.01 gm−3 to greater than 1 gm−3. The distributions of
k show that the PDI has the largest k followed by the FCDP
and then the HOLODEC. The mean value of k is 0.8, which
is consistent with the recommended value of Grosvenor et
al. (2018). The negatively skewed distribution, with values
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Figure 2. Distribution of cloud drop number (a), cloud liquid water content (b), effective radius (c), and k (d) for the three datasets.

below 0.6 not uncommon, is consistent with the multi-angle
polarimetric remote-sensing-derived distributions of k shown
in Grosvenor et al. (2018) (their Fig. 12).

We now turn to the relationship betweenN and k. Figure 3
shows the mean DSDs for each dataset sorted by the cloud
drop number concentration. Here we include two filters ap-
plied to the data: the first includes all DSDs (Fig. 3a–c), while
the second includes only DSDs that have no water in the pre-
cipitation mode (Fig. 3d–f). Note that the calculation of k
is only based on the cloud mode drops (r < 27.5 µm) even
for the DSDs that do have precipitation-sized drops. Includ-
ing precipitation-sized drops in the calculation (not shown)
results in significantly smaller values of k that are consis-
tent with Wood (2000); however, as discussed in Sect. 2.1
we believe that including precipitation-sized drops is not ap-
propriate in the context of the remote sensing application.
There are some clear biases in the data. First, the FCDP data
from ACE-ENA show consistently low counts in several bins
around 6 µm radius. This minimum is not observed in the
DSDs from the other datasets, nor is there any microphysical
reason to expect this feature. Second, the CSET DSDs are
limited by an inability to sample the smallest drops. Third,
the PDI data show noisiness in the smallest bins. Despite
these artifacts, there is a clear broadening signature as N de-
creases in all of the DSDs, which use completely different
probes and sample different cloud regimes. The broadening
is most obvious in the drizzle-sized drops but is also clearly
present in the cloud-sized drops (Fig. 3a–c). It is also appar-
ent in the DSDs that have no precipitation water (Fig. 3d–f).
Furthermore, these results are robust in the Supplement.

Figure 4 shows the dependence of k on N for each of
the three datasets. Figure 4a shows the results for non-

precipitating DSDs, while Fig. 4b is filtered for only pre-
cipitating DSDs. The increase of k with N is clear across
all three datasets. The median values increase from around
0.6 to 0.9 across the range of N from 0–500 cm−3. The vari-
ability around this mean value is large for small N but de-
creases consistently as N increases. The general relation-
ship is consistent across all three datasets; however, there
are some quantitative differences especially for the lowest N
where the HOLODEC data have smaller k values than either
the FCDP or the PDI data. It is possible that this low bias in
HOLODEC results from the inability to sample the smallest
drops; however, this is not guaranteed. For example, revisit-
ing Fig. 3, it is clear that the smallest drops increase the DSD
width for the FCDP data but decrease it for the PDI data.
More work is warranted to resolve the differences between
the probes with regards to the N dependence of the sampling
of smallest drops. Returning to Fig. 4, the dependence of k
on N appears regardless of the presence of precipitation in
the DSDs; however, there is a tendency for k to be larger
(narrower DSD) when the precipitating DSDs are removed,
which is particularly evident at low values ofN . This effect is
especially evident in the CSET HOLODEC data which hap-
pen to be the dataset with the lowest number concentration.
This suggests that although collision–coalescence is not nec-
essary to explain the observed k–N correlation, it likely plays
a role in strengthening that correlation.

Given these results, we propose the following parameteri-
zation for the N dependence of k for clouds:

k(N )= k1+ (k2− k1)
(

N

N +N∗

)
, (8)
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Figure 3. The mean probability density function (pdf) of the drop concentration sorted by the cloud mode drop number concentration for
the three datasets. Panels (a)–(c) show results for all DSDs, and panels (d)–(f) show results filtered for DSDs with no precipitation water.
The parameter k is calculated using only the cloud-sized drops even when precipitation is present in the DSD. The gray bar shows a notional
range of radius 20–30 µm separating cloud from precipitation-sized drops.
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Figure 4. Box-and-whisker plot shows the distribution quartiles and outliers of k as a function of N for the three different instruments. Panel
(a) shows results for non-precipitating DSDs, and panel (b) shows results filtered for DSDs with precipitation water. The parameter k is
calculated using only the cloud-sized drops even when precipitation is present in the DSD.

with 0≤ k1 < k2 ≤ 1, N∗ > 0. This functional form is ad
hoc; however, it has two important properties: (1) it is
bounded between 0 and 1, which is expected from physi-
cally realistic size distributions, and (2) it increases mono-
tonically and nonlinearly while saturating for larger values
of N , as we observe in the data. We use the Python curve

fit package to implement the Levenberg–Marquardt method
to perform a nonlinear least-squares regression to fit the pa-
rameters of Eq. (8) for each dataset individually and for a
weighted-combined dataset. Fitting parameters are shown in
Table 1. The weighting in the combined data is given by
1/
√
M , where M is the sample count for each dataset. In the

https://doi.org/10.5194/acp-23-14293-2023 Atmos. Chem. Phys., 23, 14293–14305, 2023
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Figure 5. Curve fits for Eq. (7) to the data from each of the three
datasets as well as a weighted combined dataset. The weighting nor-
malizes the influence of each of the three datasets due to the dramat-
ically different number of data points in each dataset.

Table 1. Fitting parameters for Eq. (7).

k1 k2 N∗

Combined 0.61 0.90 43
HOLODEC: CSET 0.53 0.85 22
FCDP: ACE-ENA 0.69 0.94 73
PDI: MASE/POST/VOCALS 0.68 1.0 163

absence of this weighting, the combined fit is nearly identical
to the ACE-ENA fit, which has the largest sample size. The
raw data and the curve fits are shown in Fig. 5. All of the fits
show a clear positive correlation between N and k; however,
the PDI and FCDP k values are larger than the CSET values,
particularly for the smallest N . In contrast, the PDI data and
the ACE-ENA have larger values of k at large N . By design,
the combined fit falls in the middle of the distributions. Given
the limitations of each of the probe datasets (e.g., Fig. 3) and
the limited sampling of the datasets used here, we take this
combined fit as our best-estimate parameterization of k(N ).

3.2 Satellite retrievals

Here we incorporate the new parameterization of k into re-
trievals of N . To begin, we write Eq. (1) as

N =
φ (τ,re)
k(N )

. (9)

Plugging in Eq. (8) for k(N ) and rearranging terms result in
the quadratic equation

kTN
2
+
(
kBN

∗
−φ

)
N −φN∗ = 0. (10)

Employing the quadratic formula and taking the positive root
gives the following solution for N :

N =
φ− kBN

∗
+

√
(kBN∗−φ)2

+ 4kTφN∗

2kT
. (11)

Equation (11) is specific to the parametric form of k(N ) pro-
vided in Eq. (8); however, we note that if k is an arbitrary

monotonic function of N , an iterative solution can also be
employed to solve for N . In the results that follow, we use
the parameters for the combined fit for k(N ) given in Table 1.

Figure 6 shows N as a function of τ and re derived from
Eq. (11), along with the bias in the derived N caused by ig-
noring the parameterized k–N correlation. The parameteriza-
tion decreasesN for the largest values and increases it for the
smallest values. Over the range of τ and re shown, the bias
varies between roughly−10 % and 30 %. The sign of the bias
switches near the value of 81.7 cm−3. The co-distributions of
the observed MODIS re and τ that are used in this study are
also overlaid on these plots. Note in Fig. 6b that these ob-
served distributions span the range of positive and negative
bias, with a tendency to lie near the zero-bias ridge. A result
is that the mean bias in derived N caused by ignoring k–N
correlation will be small even if it can be significant in the
case of the extreme values.

Figure 7 shows the regional pattern of N derived using
the k–N parameterization in Fig. 7a. Implementing the pa-
rameterization makes essentially no difference in the qual-
itative understanding of the distribution of N globally. The
mean N tends to be lowest over remote ocean areas, increas-
ing in regions of low-altitude stratocumulus over ocean, and
highest over populated regions over land. Nevertheless, there
are subtle quantitative differences in the retrieved N when
using the parameterized k. The root mean square deviation
(RMSD) can be as large as 20 % in regions of low mean N .
Importantly, the RMSD is smallest in the regions of stratocu-
mulus off the west coasts of the continents and in the mid-
latitude storm tracks. This results from the fact that the k–N
parameterization is near k = 0.8 given the mean N in these
cloud regimes. This result explains why assuming a constant
k = 0.8 tends to work reasonably well, since these are the
regimes that contribute the bulk of the observed low-cloud
retrievals by the VSWIR sensors. Finally, the regional distri-
bution of uncertainties is reflected in a bias in the mean which
approaches −20 % in remote ocean areas and is smaller than
about 5 % in polluted areas over land.

4 Summary and discussion

We have quantified the dependence of a parameter describing
the droplet spectrum width (k) on the cloud droplet number
concentration (N ). We specifically address this dependence
at the small spatial scales relevant to cloud remote sensing by
using 1 Hz data that corresponds to an approximately 100 m
spatial scale. We find that, using the high-frequency data, k
and N are positively correlated, which is in agreement with
a number of recent studies. This finding is robust across five
different campaigns employing three different drop measure-
ment technologies. The sign of this correlation is consistent
with theoretical expectations that at the microscale (< 2 km),
variations in vertical velocity within a cloud affect the super-
saturation in a manner that induces a positive k–N correla-
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Figure 6. DerivedN using the parameterized k and cw = 0.004 gm−4 (a) and bias between the parameterized k and constant k retrievals (b).
The black contours show the base 10 logarithm of the counts of the observed MODIS effective radius and optical depth used in the study.

Figure 7. Mean value of the k parameter (a), derived N using the parameterized k (b), root mean square deviation (RMSD) between
parameterized and constant k retrievals (c), and mean bias between the parameterized k and constant k retrievals (d). Here bias is defined as
a bias of the constant k retrieval relative to a variable k retrieval.

tion (Liu et al., 2006). We have further shown here that when
the drop size distributions are sorted by the presence of pre-
cipitation, the distribution of k broadens, and the slope of the
k–N correlation increases. This finding points to the added
importance of the collision–coalescence process in droplet
spectrum broadening, which is consistent with large-eddy
simulations coupled to bin microphysics (Lu and Seinfeld,
2006).

Based on these findings, a parameterization of k given N
is presented for use in satellite remote sensing of the droplet
number concentration. This parameterization can easily be
incorporated into the existing techniques to derive N from
VSWIR imagery. We show that imposing the positive k–N
correlation tends to narrow the distribution of retrieved N by
increasing the smallest values and decreasing the largest val-
ues. The parameterization is applied to retrievals of N using

data from Aqua-MODIS. The fractional bias in the remotely
sensed number concentration approaches −20 % in areas of
the remote ocean where number concentrations are low. A
smaller positive bias is found over polluted land regions. We
do emphasize that the absolute magnitude of the bias in N
tends to be relatively small, on the order of 1–2 cm−3. Nev-
ertheless, the data are robust in showing that there is a pos-
itive k–N correlation, and employing this dependence in re-
trievals is relatively straightforward. Therefore, we argue that
these findings inform the implementation of future retrievals
of drop number concentration from satellite remote sensing.
We provide the k–N relationship at the highest possible spa-
tial resolution with the understanding that this may introduce
bias due to sub-pixel inhomogeneity. Knowledge of the sub-
pixel distribution ofN could be used to correct any such bias.
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While it is straightforward to implement the parameteri-
zation presented here for the derivation of N from existing
τ and re retrievals, it is important to realize that there is a
physical inconsistency between the parameterized k and the
k assumed in the original retrieval of τ and re. The MODIS
retrievals assume a constant value of k = 0.72 (Grosvenor et
al., 2018). It has been shown that bias in the retrieved re is
inversely related to the bias in k (Zhang, 2013). That is to say
that if the assumed k in the τ/re retrieval is too large, then the
retrieved re will be too small. An implication of this work is
that the MODIS re may contain a bias related to the relation-
ship between k and N . Since the average k in the probe data
is 0.8, on average this will bias MODIS re low and the re-
sultant N high; however, the opposite would be true for very
low N clouds. One solution to this inconsistency would be
to build τ/re lookup tables using an adiabatic model with
input N , cloud thickness, and condensation rates in a man-
ner similar to Schüller et al. (2003), while also including the
k–N parameterization used in this paper. One could further
increase the realism of the lookup tables by including a pa-
rameterization of the cloud subadiabaticity as a function of
cloud thickness as in Schulte et al. (2023). In this manner a
complete and physically consistent description of the cloud
microphysical profile can be constructed from the initial in-
version of the radiances.

The emphasis of this paper is on the k–N correlation on
the microscale (≤ 2 km), which is relevant to the problem of
remote sensing. Many previous studies have focused on the
k–N correlation at the mesoscale to betascale (20–200 km),
with a science focus on parameterizing the aerosol indirect
effect in climate models (e.g., Rotstayn and Liu, 2003; Xie et
al., 2017). While this study finds a positive k–N correlation,
most studies exploring the aerosol indirect effect find or as-
sume a negative correlation. Liu et al. (2006) have suggested
that the positive microscale correlation is a result of varia-
tions in updraft velocity, whereas the negative mesoscale cor-
relation is a result of variation in aerosol number concentra-
tion. Therefore, the correlations found here may not be ap-
plicable to evaluation of the aerosol indirect effect in climate
simulations. We recommend that more work is necessary to
fully resolve the scale dependence of the k–N relationship
and its implications for aerosol indirect effects.

Appendix A

Calculation of the moist adiabatic condensation rate requires
an estimate of the difference between the dry and moist adi-
abatic lapse rates and the density of air. The dry adiabatic
lapse rate is

0d =
g

cp
, (A1)

where g is the gravitational acceleration and cp is the specific
heat at constant pressure of dry air. The moist adiabatic lapse
rate is given by

0m = g
1+ Lvrv

RdT

cp+
L2

vrvε

RdT 2

, (A2)

where Lv is the latent heat of vaporization, rv is the mixing
ratio of water vapor, T is the temperature, and Rd is the gas
constant for dry air. To include the temperature dependence
in gamma, we estimate cloud base temperature as the tem-
perature at the LCL. We calculate the LCL height (ZLCL)
following Bolton (1980) from the surface relative humid-
ity (RH):

ZLCL =
1
0d

(
T − 55−

(
1

T − 55
−

ln(RH)
2840

)−1
)
, (A3)

where the RH varies between 0 and 1 and the T is in K. The
surface RH is calculated from the ECMWF specific humid-
ity (q):

RH=
q

qsat
, (A4)

and the saturation specific humidity (qsat) is calculated from
the saturation water vapor mixing ratio (rsat):

qsat =
rsat

1+ rsat
, (A5)

which in turn is calculated from the saturation vapor pressure
(esat) and the surface pressure (P ):

rsat = ε
esat

P − esat
, (A6)

where ε = 0.622. The saturation vapor pressure is calculated
following the Tetens formula:

esat = 6.1078e
17.269388T
T+237.3 , (A7)

where T is in degrees Celsius and esat in millibars. The tem-
perature at the LCL is calculated assuming a dry adiabatic
lapse rate using the ECMWF 2 m temperature:

TLCL = T2 m−0dZLCL. (A8)

The pressure at the LCL is calculated using the surface pres-
sure and a scale height (Z∗ = 8 km):

PLCL = P0e
−ZLCL/Z

∗

. (A9)

The air density at the LCL is calculated as

ρair,LCL =
PLCL

RdTLCL
. (A10)

Finally, the water vapor mixing ratio at the LCL, needed in
Eq. (A2), is assumed to be the saturated mixing ratio and is
calculated in Eqs. (A6) and (A7) using the TLCL and PLCL.
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