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Abstract. This study assimilates for the first time polarimetric C-band radar observations from the German
meteorological service (DWD) into DWD’s convective-scale model ICON-D2 using DWD’s ensemble-based
KENDA assimilation framework. We compare the assimilation of conventional observations (CNV) with the
additional assimilation of radar reflectivity Z (CNV+Z), with the additional assimilation of liquid or ice water
content (LWC or IWC) estimates below or above the melting layer instead ofZ where available (CNV+LWC/Z
or CNV+ IWC/Z respectively). Hourly quantitative precipitation forecasts (QPF) are evaluated for two strati-
form and one convective rainfall events in the summers of 2017 and 2021.

With optimized data assimilation settings (e.g., observation errors), the assimilation of LWC mostly improves
first-guess QPF compared with the assimilation of Z alone (CNV+Z), whereas the assimilation of IWC does
not, especially for convective cases, probably because of the lower quality of the IWC retrieval in these situations.
Improvements are, however, notable for stratiform rainfall in 2021, for which the IWC estimator profits from
better specific differential phase estimates owing to a higher radial radar resolution than the other cases. The
assimilation of all radar data sets together (CNV+LWC+ IWC+Z) yields the best first guesses.

All assimilation configurations with radar information consistently improve deterministic 9 h QPF compared
with the assimilation of only conventional data (CNV). Forecasts based on the assimilation of LWC and IWC
retrievals on average slightly improve Fraction Skill Score (FSS) and Frequency Bias (FBI) compared with the
assimilation of Z alone (CNV+Z), especially when LWC is assimilated for the 2017 convective case and when
IWC is assimilated for the high-resolution 2021 stratiform case. However, IWC assimilation again degrades fore-
cast FSS for the convective cases. Forecasts initiated using all radar data sets together (CNV+LWC+ IWC+Z)
yield the best FSS. The development of IWC retrievals that are more adequate for convection constitutes one next
step to further improving the exploitation of ice microphysical retrievals for radar data assimilation.

1 Introduction

Heavy precipitation events can pose serious risks to the pub-
lic and have increased in frequency and strength since the
middle of the 20th century (IPCC, 2021). Thus, improv-
ing quantitative precipitation forecasts (QPF) is and remains
of high societal interest. With the ever-increasing comput-
ing power of meteorological forecasting centers, the reso-
lution of operational numerical weather prediction (NWP)
models has increased up to the convective scale, allowing
more accurate QPF. NWP requires model states close to the

true atmospheric state (model initialization), which is usu-
ally achieved by combining short-term model forecasts (first
guesses) and observational data statistically, taking into ac-
count their respective uncertainties, a process known as data
assimilation (DA; e.g., Talagrand, 1997). Proper initializa-
tion at convective scales is challenging, because uncertainties
in convective processes are difficult to estimate, and because
of the observations required to resolve moist convective pro-
cesses. Weather surveillance radars can provide such data
with unique temporal and spatial resolution, and have be-
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come an indispensable data source for convective-scale NWP
over the past few decades.

Radar observations have been successfully assimilated
into convective-scale NWP models, e.g., with 4D variational
(4DVar; e.g., Lewis and Derber, 1985; Le Dimet and Ta-
lagrand, 1986) and 3D variational (3DVar; Courtier et al.,
1998) DA methods (e.g., Sun and Crook, 1997, 1998; Xiao et
al., 2005). Over the past two decades, radar DA using the en-
semble Kalman filter (EnKF; Evensen, 1994), a Monte Carlo
approximation of the original Kalman filter (Kalman, 1960),
has become increasingly popular, particularly because of its
ability to estimate the flow-dependent forecast uncertainty
(the background error covariance matrix) at the convective-
scale through an ensemble of model forecasts (e.g., Sny-
der and Zhang, 2003; Tong and Xue, 2005; Aksoy et al.,
2009; Dowell et al., 2011; Tanamachi et al., 2013; Wheat-
ley et al., 2015; Bick et al., 2016; Gastaldo et al., 2021).
However, running a forecast ensemble of sufficient size to
robustly estimate the forecast error covariance matrix is not
feasible in operational routines owing to the connected high
computational costs, which can lead to sampling errors that
can cause filter divergence and spurious long-range correla-
tions in the model domain (e.g., Houtekamer and Mitchell,
1998; Hamill et al., 2001). Observation localization (Ott et
al., 2004), which limits the radius within which observa-
tions affect the analysis, is a common approach to mitigating
this problem. The Local Ensemble Transform Kalman Fil-
ter (LETKF; Hunt et al., 2007), a manifestation of the EnKF
in which observation localization is a key feature and which
computes analyses at each grid point independently allowing
for easy parallelization, is currently very popular in the DA
community. In addition to being used for research purposes at
the Japan Meteorological Agency (e.g., Miyoshi et al., 2010)
and the European Centre for Medium-Range Weather Fore-
casts (e.g., Hamrud et al., 2015), the LETKF has been im-
plemented operationally at the Italian Operational Centre for
Meteorology (Gastaldo et al., 2021) as well as at the German
Meteorological Service (Deutscher Wetterdienst, DWD), and
MeteoSwiss. Assimilation of 3D radar observations with the
LETKF has shown positive effects on short-term QPF (e.g.,
Bick et al., 2016; Gastaldo et al., 2021); at DWD, 3D radar
DA with the LETKF became operational for the convective-
scale NWP model ICON-D2 (limited area setup of the Icosa-
hedral Nonhydrostatic model over Germany; Zängl et al.,
2015) in spring 2021.

Radar DA has mainly focused on the horizontal radar re-
flectivity factor (hereafter simply reflectivity) Z and the ra-
dial velocity V , with only Z providing direct information
on cloud and precipitation microphysical processes. Dual-
polarization (i.e., linear orthogonal polarization diversity;
Seliga and Bringi, 1976, 1978; hereafter referred to as polari-
metric) radar observations provide additional information on
clouds and precipitation, such as the size, shape, orientation,
and composition of hydrometeors (e.g., Zrnic and Ryzhkov,
1999). Therefore, polarimetric radar observations can help

to improve the representation of cloud-precipitation micro-
physics in NWP models, weather analyses, and consequently
short-term QPF through model evaluation, parameterization
developments, and DA (e.g., Kumjian, 2013; Zhang et al.,
2019). Polarimetric radar observations have already been
used to improve attenuation correction (e.g., Bringi et al.,
1990; Testud et al., 2000; Snyder et al., 2010), quantita-
tive precipitation estimation (e.g., Zrnic and Ryzhkov, 1996;
Ryzhkov et al., 2005a; Tabary et al., 2011; Chen et al., 2021),
severe weather observation and detection (e.g., Ryzhkov et
al., 2005b; Bodine et al., 2013), hydrometeor classification
(e.g., Park et al., 2009), and model evaluation (e.g., Jung
et al., 2012; Putnam et al., 2014, 2017). However, exploita-
tion of polarimetric information in DA is still in its infancy.
One reason is the remaining uncertainties in the relation-
ships between polarimetric radar moments and model mi-
crophysical state variables. Another reason is the lack of
widespread operational polarimetric radar observations from
national surveillance radar networks in the past. In recent
years, many of these networks have been upgraded to po-
larimetry, e.g., in Germany, the USA, Canada, the UK, and
China, providing a valuable new source of observational data
for future operational NWP.

Polarimetric moments can be linked to microphysical
model state variables using either radar forward operators or
retrieval algorithms. Radar forward operators compute syn-
thetic radar moments based, for example, on simulated pa-
rameterized particle size distributions, whereas retrievals es-
timate microphysical model state variables from radar obser-
vations prior to DA. The direct approach via forward opera-
tors is challenging because, for example, hydrometeor shape,
size, and orientation distributions, all of which affect (polari-
metric) radar observations, are still rather rudimentarily rep-
resented or rarely taken into account in NWP models (e.g.,
Schinagl et al., 2019). The indirect approach via retrievals
circumvents these model deficiencies, but suffers from re-
trieval uncertainties. A few case studies from the USA,
Japan, and China have already attempted the direct DA of
polarimetric observations with some success using the EnKF
(e.g., Jung et al., 2008, 2010; Putnam et al., 2019, 2021;
Zhu et al., 2020) or the 3DVar method (e.g., Li et al., 2017;
Du et al., 2021). Other studies have assimilated polarimet-
ric observations indirectly via retrieved hydrometeor mixing
ratios using the 4DVar approach (e.g., Wu et al., 2000), the
3DVar method (e.g., Li and Mecikalski, 2010, 2012), or the
EnKF method (e.g., Yokota et al., 2016). Polarimetric data
have also been used to modify cloud analysis schemes based
on polarimetric signatures in storms (Carlin et al., 2017) or
to improve hydrometeor classifications (Ding et al., 2022).
To our knowledge, no study has yet assimilated polarimetric
radar data in Central Europe. In preparation for the direct as-
similation of polarimetric data, the single-polarization radar
forward operator EMVORADO (Efficient Modular VOlume
scan RADar Operator; Zeng et al., 2016), used operationally
at DWD for the ICON-D2 model, is currently being upgraded
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to polarimetric capabilities, but is still in a testing phase.
Regarding indirect assimilation, polarimetric retrieval algo-
rithms for liquid and ice water content (LWC and IWC) have
been proposed in the literature (e.g., Ryzhkov et al., 1998;
Bringi and Chandrasekar, 2001; Doviak and Zrnic, 2006;
Carlin et al., 2016, 2021; Ryzhkov and Zrnic, 2019; Bukov-
cic et al., 2020), but most of these algorithms were developed
with a focus on S-band radars in the USA. The applicability
of these retrieval relations for Germany with its C-band radar
network and its quite different precipitation climatology may
thus be limited. Recently, a hybrid polarimetric LWC estima-
tor adapted to the German national C-band network has been
developed by Reimann et al. (2021).

The present paper takes a first step toward the indirect
assimilation of polarimetric radar observations using micro-
physical retrievals of LWC and IWC in Germany and evalu-
ates their impact on short-term QPF relative to the direct as-
similation of Z observations. Polarimetric radar observations
from the German national C-band weather radar network are
assimilated into the DWD ICON-D2 model using the corre-
sponding DA framework KENDA (Kilometer-scale Ensem-
ble Data Assimilation; Schraff et al., 2016) implementing
the LETKF scheme. LWC and IWC data are estimated from
the polarimetric measurements below and above the melting
layer using the hybrid retrievals of Reimann et al. (2021) and
Carlin et al. (2021) respectively. We attempt to identify suit-
able assimilation configurations for LWC and IWC based on
first-guess QPF quality and provide first insights into how
the indirect assimilation of polarimetric information affects
short-term QPF up to a 9 h lead time. The study focuses on
three intense precipitation periods in the summers of 2017
and 2021 over Germany.

The remainder of the paper is structured as follows.
Section 2 briefly introduces the ICON-D2 model and the
KENDA DA framework. Section 3 describes the data used
and the applied microphysical retrieval algorithms. Section 4
shows the experimental setup including the technique of as-
similating the LWC and IWC retrievals and the experiment
parts. Section 5 presents the results of the experiments, and
Sect. 6 presents the conclusions.

2 Forecast model and assimilation framework

2.1 The ICON-D2 model

The ICON (Icosahedral Nonhydrostatic) modeling frame-
work (Zängl et al., 2015) is a global NWP and climate
modeling system jointly developed by DWD and the Max
Planck Institute for Meteorology in Hamburg, Germany, and
became operational in DWD’s forecasting system in 2015.
In this study, we perform integrations with the convection-
resolving, area-limited setup of the ICON model, ICON-D2,
covering Germany and parts of its neighboring states. The
ICON-D2 model uses an unstructured triangular grid with a
resolution of about 2.2 km horizontally and 65 vertical levels;

the near-ground levels are terrain-following and the higher
levels gradually shift to constant heights toward the model
top. Lateral boundary conditions are provided by simulations
of the ICON-EU model, a nesting setup of the global ICON
model over Europe. The ICON-D2 model became opera-
tional at DWD recently, ousting the previously used COSMO
(COnsortium for Small-scale MOdeling) model (Baldauf et
al., 2011).

The ICON-D2 model provides prognostic variables in-
cluding the 3D wind velocity components and the virtual po-
tential temperature. The total density of the air–water mix-
ture and the individual mass fractions of dry air, water vapor,
cloud water, cloud ice, rain, snow, and graupel are further
prognostic variables, simulated in our study with the single-
moment microphysics scheme (Doms et al., 2011), represent-
ing a two-component system of dry air and water, which can
occur in all three states of matter.

2.2 The KENDA framework

The KENDA system, originally developed for the COSMO
model, is now operationally used for the ICON-D2 model at
DWD and includes the LETKF scheme (Hunt et al., 2007).
KENDA employs one deterministic model run in addition
to the current 40-member ensemble (40+ 1-mode), which is
updated in the analysis using the Kalman gain for the ensem-
ble mean K as

xa,det
= xb,det

+K
(
yo
−H

(
xb,det

))
, (1)

with xa,det and xb,det the deterministic analysis and back-
ground, yo the observation vector, and H a (nonlinear) ob-
servation operator (Schraff et al., 2016). KENDA comprises
various tools beneficial for ensemble-based DA. Among
them are horizontal and vertical observation localization with
a Gaspari–Cohn correlation function (Gaspari and Cohn,
1999) using individual length-scales to scale the inverse ob-
servation error covariance matrix. Moreover, KENDA allows
for analysis calculations on a coarsened grid (Yang et al.,
2009) to reduce the computational costs in the analysis step.
KENDA also includes, for example, multiplicative covari-
ance inflation (Anderson and Anderson, 1999), relaxation to
prior perturbations (Zhang et al., 2004), and relaxation to
prior spread (Whitaker and Hamill, 2012).

The indirect assimilation of Z observations started at
DWD in 2007 with Latent Heat Nudging (LHN; Stephan et
al., 2008; Milan et al., 2008), which modifies the thermody-
namic model state during model forward integration using
low-elevation Z observations. LHN is applicable to both the
ensemble and the deterministic run in KENDA. Recently, the
direct assimilation of 3DZ and V observations from the Ger-
man C-band radar network (see Fig. 1) in combination with
LHN became operational in the ICON-D2 routine at DWD.
Note that LHN and the assimilation of 3D V observations are
not applied in this study (see below).
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Figure 1. German polarimetric C-band radar network oper-
ated by DWD. Crosses indicate locations of radar stations
in Emden (EMD), Boostedt (BOO), Rostock (ROS), Han-
nover (HNR), Ummendorf (UMD), Prötzel (PRO), Essen (ESS),
Flechtdorf (FLD), Dresden (DRS), Neuhaus (NEU), Neuheilen-
bach (NHB), Offenthal (OFT), Eisberg (EIS), Türkheim (TUR),
Isen (ISN), Memmingen (MEM), and Feldberg (FBG), circles in-
dicate approximate ranges of 150 km around radars; blue color in-
dicates polarimetric and red color indicates nonpolarimetric radars.

3 Data sets and microphysical retrievals

Intense summer precipitation events can pose a serious risk
to society in Central Europe and are particularly difficult
to forecast (Olson et al., 1995). Thus, we focus on three
intense summer precipitation events in Germany. The first
event covers a 2 d period of heavy, mostly stratiform pre-
cipitation over western Germany and its neighboring states
from 13 to 14 July 2021, resulting from a slow-moving low-
pressure system and causing devastating flooding, e.g., along
the Ahr river in North Rhine-Westphalia (case S2021). The
second event covers a 3 d period from 24 to 26 July 2017,
characterized by widespread intense, mostly stratiform pre-
cipitation. It also caused flooding, especially in Lower Sax-
ony in central-northern Germany along the Bode River catch-
ment (case S2017). The third event dominated by convec-
tive precipitation covers a 1.5 d period from midday on 19 to
20 July 2017 (case C2017).

3.1 Radar observations

The DWD operates a network of 16 polarimetric C-band
radars (blue circles in Fig. 1) and one additional nonpo-
larimetric radar (red circle). In “volume-scan” mode, the
network monitors data consisting of Plan Position Indica-
tors (PPI) at 10 radar elevation angles between 0.5 and 25◦

with maximum slant ranges of about 180 km every 5 min.
The data have a resolution of 1 km in range, which increased
to 0.25 km in March 2021, and 1◦ in azimuth; they are taken
from the DWD archive.

For the direct assimilation of 3D Z data employed in this
study, we use pre-processed Z observations including qual-
ity assurance and attenuation correction. For the LWC/IWC
estimation, we use the raw polarimetric moments Z (given
in dBZ), differential reflectivity ZDR (given in dB), total dif-
ferential phase 8DP (given in degrees), and co-polar cross-
correlation coefficient ρHV. ZDR is the logarithmic ratio be-
tween the backscattered power at horizontal and vertical po-
larizations, which is 0 dB for isotropic scatterers and shows
larger positive values for oblate particles and negative val-
ues for prolate particles. 8DP is the lag in degrees of the
horizontally polarized electromagnetic wave behind the ver-
tically polarized one as the radar signal propagates through
the atmosphere filled with anisotropic scatterers such as rain-
drops. Typically, half the range-derivative of 8DP, the spe-
cific differential phase shift KDP (given in degrees per kilo-
meter), is considered, which is positive for radar volumes
filled with oblate particles and is affected by the presence of
liquid water. ρHV is the cross-correlation coefficient between
the horizontally and vertically polarized waves and is thus a
measure of the diversity of scatterers in a radar volume. ρHV
decreases in the presence of a pronounced diversity of hy-
drometeor shapes and in the presence of nonmeteorological
targets, making it a useful tool for radar data quality assur-
ance.

Kumjian (2013) notes that ρHV can be as low as 0.85 for
snow/ice and 0.95 for rain at S-band. Here, we assume
these values for C-band too. Thus, we only consider data
below/above the melting layer for ρHV > 0.95/0.85 with
ρHV corrected for noise before filtering (Ryzhkov and Zrnic,
2019). The height of the melting layer is determined from
so-called Quasi-Vertical Profiles (i.e., azimuthal medians of
PPIs measured at sufficiently high elevations and transferred
to range-height displays; Trömel et al., 2014; Ryzhkov et al.,
2016), as derived from PPIs of ρHV measured at a 5.5◦ el-
evation angle, or from the nearest operational DWD radio
sounding, especially in convective situations. KDP is esti-
mated from the filtered and smoothed 8DP following Vulpi-
ani et al. (2012) with a fixed window size of 9 km. This win-
dow size is required because of the rather coarse radial res-
olution (1 km) for most of the PPIs considered to keep noise
low and reduce potentially negative KDP estimates. The hor-
izontal specific attenuation A (given in dB km−1) – the rate
at which power is lost from the transmitted radar signal in
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horizontal polarization as it propagates through the precip-
itating atmosphere – is derived below the melting layer us-
ing the filtered and smoothed 8DP and measured (attenu-
ated) Z using the ZPHI method (Testud et al., 2000). In the
retrieval algorithms, the attenuation parameter α (ratio be-
tween A and KDP, given in dB ◦−1) is optimized for each
ray using the self-consistency method proposed by Bringi et
al. (2001). Finally, the raw Z and ZDR data are corrected
for (differential) attenuation using the optimized/climatolog-
ical α values below/above the melting layer and the clima-
tological value for the differential attenuation parameter β
at C-band 0.02 dB ◦−1 (Ryzhkov and Zrnic, 2019). For more
details on the polarimetric radar moments, see, for example,
Kumjian (2013).

3.2 Hybrid liquid water content retrieval

The LWC is estimated from the polarimetric radar observa-
tions below the melting layer following the hybrid retrieval
proposed by Reimann et al. (2021) developed based on a
large pure-rain disdrometer dataset and T-matrix scattering
calculations at C-band. The estimator combines different po-
larimetric radar moments to optimally exploit and mitigate
respective advantages and disadvantages known for different
precipitation characteristics. For example, in weak precipi-
tation indicated by small total 8DP increments 18DP < 5◦

below the melting layer, the LWC(Z,ZDR) relation is used
(LWC is always in g m−3):

log10 (LWC(Z,ZDR))= 0.058Z− 0.118ZDR− 2.36. (2a)

In such situations, KDP is potentially noisy owing to noise in
8DP and A potentially suffers from an unreliable 18DP es-
timation, whereas the influence of (differential) attenuation
on Z and ZDR should be small for these rays. For stronger
rain – rays with 18DP > 5◦ – the negative influence of (dif-
ferential) attenuation on Z and ZDR increases, whereas less
noise and uncertainty is expected in KDP and A; therefore,
LWC(A) and LWC(KDP) estimators are used. The LWC(A)
estimator

log10(LWC(A))=−0.1415log10(A)2
+ 0.209log10(A)+ 0.46, (2b)

is used for radar bins with Z < 45 dBZ, when hail is unlikely,
and the LWC(KDP) estimator

log10 (LWC(KDP))= 0.568log10 (KDP)+ 0.06, (2c)

is used for bins with Z > 45 dBZ, as KDP is less affected by
hail than A. In addition, resonance scattering of medium and
large raindrops at C-band may favor the use of LWC(KDP)
compared with LWC(A) in moderate to heavy rain. It should
be noted, however, that the hybrid LWC estimator is likely
unsuitable in the presence of hail and graupel, especially in
certain convective situations, owing to its derivation from
pure-rain observations.

3.3 Hybrid ice water content retrieval

The IWC is estimated above the melting layer using the hy-
brid estimator proposed by Carlin et al. (2021). It combines
the relations based on ZDR and KDP (Ryzhkov and Zrnic,
2019)

IWC(zDR,KDP)= 4.0× 10−3 KDPλ

1− z−1
DR

, (3a)

with the one based on Z and KDP (Bukovcic et al., 2018,
2020)

IWC(z,KDP)= 3.3× 10−2(KDPλ)0.67z0.33, (3b)

with z and zDR areZ andZDR given in linear units (mm6 m−3

and unitless), IWC in g m−3, and the radar wavelength λ set
to 53 mm (C-band). The estimators in Eq. (3) are again com-
bined to complement their individual strengths: Eq. (3a) is
fairly immune to the orientation and shape of snowflakes,
but sensitive to variations in ice density and prone to errors
from ZDR biases especially at low ZDR values; Eq. (3b) is
immune to ZDR miscalibration, but sensitive to hydrometeor
aspect ratio, orientation, and density. Equation (3a) is used
for ZDR > 0.4 dB and Eq. (3b) otherwise. Recently, Blanke
et al. (2023) demonstrated the high accuracy of this hybrid
estimator (correlation coefficient and root-mean-square de-
viation 0.96 and 0.19 g m−3, respectively) in an evaluation
study with in situ airplane observations on the west coast of
the USA. It should be noted, however, that both parts of the
hybrid IWC estimator in Eq. (3) are adapted to snowfall, with
their derivation based on an inversely proportional relation-
ship between particle density and diameter, which usually
does not hold for hail and graupel. Therefore, its applicabil-
ity to hail and/or graupel in convective situations in particular
may be limited.

4 Setup of assimilation experiments

4.1 Retrieval resolution

The retrieved LWC and IWC values with the resolution cor-
responding to the measured radar data are subjected to “su-
perobbing” (see an example in Fig. 2), which is also applied
to the Z data in KENDA. Superobbing reduces the resolu-
tion of the radar data to approximately match the resolution
of the analysis grid by spatial and elevation-wise averag-
ing in the linear scale to a Cartesian grid with a resolution
(res_cartesian in kilometers) corresponding to the analysis
grid (10 km for an analysis grid coarsening factor of three
currently used in KENDA). The number of radar bins con-
tributing to the averaging decreases with increasing distance
from the radar, and the window size for the averaging (win-
size_avg in kilometers) is equal to res_cartesian in KENDA,
but is also modified in our study while keeping res_cartesian
constant. The minimum number of valid values in the su-
perobbing window to perform superobbing (minnum_vals)
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Figure 2. Visualization of the superobbing process from (a) a PPI of estimated LWC (Eq. 2) below and IWC (Eq. 3) above the melting layer
(approximate upper and lower boundaries of the melting layer indicated by violet rings) at 1.5◦ of the DWD radar NHB (see Fig. 1) for the
stratiform precipitation case S2021 on 14 July 2021 16:00 UTC to (b) the corresponding field of superobbed (with the pre-selected settings
winsize_avg= 10 km, lower_lim=−2.3, and minnum_vals= 3) log(LWC) and log(IWC) (colored dots) and superobbed reflectivity Z (gray
squares), where no LWC/IWC estimates are available (e.g., within the melting layer).

is three observations, as used for the 3D Z DA in KENDA.
Further details on the superobbing procedure can be found in
Bick et al. (2016) and Zeng et al. (2021).

The LWC and IWC estimates are assimilated with a lower
limit (lower_lim) similar to the “no-precipitation” threshold
of 0 dBZ used for the Z assimilation in KENDA. In contrast
to Z, the LWC and IWC data in no-precipitation are mostly
filtered out by the applied ρHV thresholds, but such a lower
data threshold can still be useful to limit the variability in the
microphysical estimates and thus can also be used for tuning
(personal communication with Ulrich Blahak, DWD). We
choose lower_lim=−2.3 for log10(LWC), which approxi-
mately corresponds to 0 dBZ for Z when comparing mea-
sured log10(LWC) and synthetic Z data obtained from T-
matrix scattering calculations for a large German pure-rain
disdrometer data set (not shown). The rare occurrence of
snow on the ground in Germany and instrumental limitations
prevent a similar analysis for IWC. Therefore, we also use
−2.3 for log10(IWC).

Analogous to the assimilation of 3D Z data in KENDA,
only the PPIs at radar elevation angles of 1.5, 3.5, 5.5, 8.0,
and 12.0◦ are used for LWC and IWC, and data from altitudes
below 600 and above 9000 m are not considered. The super-
obbed microphysical estimates are assimilated in the loga-
rithmic scale, similar to the Z data in KENDA, which leads
to better results than assimilating the data in the linear scale
(not shown; e.g., Liu et al., 2020).

4.2 Assimilation settings and first guess

Z is currently assimilated in KENDA with a fixed observa-
tion error standard deviation (obserr_std) of 10 dBZ. We use
a fixed value of obserr_std= 0.5, which can be obtained sta-

tistically from the disdrometer data considered above: a dif-
ference 1log10(LWC)= 0.5 covers a similar fraction of the
full range of data as1Z = 10 dBZ (not shown). This value is
also used for log10(IWC). The horizontal observation local-
ization length-scale (obsloc_hor) and the vertical observation
localization length-scale (obsloc_ver) are set to 16 km and to
increase with height from 0.075 to 0.5 in the logarithm of
pressure (ln(p)) as used for the 3D Z DA in KENDA. More-
over, microphysical analysis increments of only cloud wa-
ter mixing ratio and specific humidity are produced, i.e., not
all available hydrometeor species (e.g., rain, cloud ice, and
graupel mixing ratios) are updated individually in KENDA’s
standard configuration.

First guesses of LWC and IWC are calculated with a sim-
ple “forward operator”, which uses the prognostic model
variables total air density (ρtot, given in kg m−3) and the rain
and cloud water mixing ratios qr and qc for LWC, and the
snow, graupel, and cloud ice mixing ratios qs, qg, and qi (all
given in g m−3) for IWC at the model grid points via

LWC= 103ρtot (qr+ qc) , (4a)

and

IWC= 103ρtot
(
qs+ qg+ qi

)
. (4b)

The first-guess LWCs and IWCs are then projected using the
nearest-neighbor method onto the polar (PPI) grid of the ob-
served LWC and IWC data and superobbed analogously to
the observed data. This procedure is done for the ensemble
and the deterministic run.
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Table 1. Pre-selected and modified (modifications 1 and 2) values for the DAPs obsloc_hor (horizontal observation localization length-
scale in kilometers), obsloc_ver (vertical localization length-scale in the logarithm of pressure ln(p)), obserr_std (observation error standard
deviation for log(LWC) and log(IWC)), winsize_avg (superobbing window size in kilometers), lower_lim (lower limit of the log(LWC) and
log(IWC) data), and minnum_vals (minimum number of valid values for superobbing).

DAP values obsloc_hor obsloc_ver obserr_std winsize_avg lower_lim minnum_vals
(km) (ln(p)) (km)

Pre-selected (S-pre) 16 h.d. 0.50 10 −2.30 3
Modification 1 8 0.2 0.25 5 −1.15 25 %
Modification 2 32 0.5 1.00 20 −4.60 50 %

Figure 3. Exceedances of hourly rain accumulation thresholds 0.5 (black curves), 1.0 (green), 2.0 (blue), and 4.0 mm h−1 (yellow) in the
RADOLAN data (hourly accumulations) for the rainfall cases (a) C2017, (b) S2017, and (c) S2021 as percentages of the total number of
threshold exceedances in all three rainfall cases and thresholds considered. The fractions are used to determine weights for calculations of
weighted medians of FSS and BSS (e.g., in Fig. 4), and for the calculation of the univariate measure JQS (see Eq. 5 in Sect. 4.4).

4.3 Model initialization and lateral boundary data

ICON-D2 model data in 40+ 1-mode for our evaluation
periods are provided by DWD for the initial times of the
experiment periods 00:00 UTC 13 July 2021, 00:00 UTC
24 July 2017, and 11:00 UTC 19 July 2017. These data are
outputs from the regular ICON-D2 routine and thus do not
require further “spin-up” integrations prior to our assimila-
tion experiments. ICON-EU model data provided by DWD
are used as lateral boundary conditions every hour.

4.4 Experiment part A: assimilation configurations

From the model initial times, 3D LWC and IWC estimates
are assimilated in hourly assimilation cycles instead of 3D Z

data, where available, to avoid potential problems arising
from assimilating the information from the Z data twice.
Thus, Z data is always assimilated within the melting layer
and in precipitation-free areas, where the LWC and IWC esti-
mates are not available owing to the applied ρHV thresholds.
We exclude the assimilation of 3D V observations and LHN
to focus on the assimilation of microphysical information
from the radar network. We assimilate the LWC and IWC es-

timates separately to study their individual impact on weather
forecasts, but also to identify individual best DA parame-
ter (DAP; obsloc_hor, obsloc_ver, obserr_std, winsize_avg,
lower_lim, and minnum_vals) sets. The DA configurations
assimilating LWC and IWC also assimilate conventional ob-
servations and are therefore referred to as CNV+LWC/Z
and CNV+ IWC/Z. The DA of only conventional observa-
tions and the DA of conventional and 3D Z observations are
used as reference configurations CNV and CNV+Z, respec-
tively.

We consider a near-random sample of DAP settings gener-
ated via Latin Hypercube Sampling (LHS) by modifying the
DAP values from their pre-selected values (pre-selected and
modified values in Table 1; generated settings S1-01 to S1-
12 in Table 2). The results of using the DAP configurations
or values are compared with each other in terms of both first-
guess deterministic and ensemble QPF quality via a single
univariate measure newly introduced here – the joint quality
score (JQS):
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Table 2. First and second near-random sample of DAP settings (S1-01 to S1-12 and S2-01 to S2-10) generated with Latin Hypercube
Sampling from all the DAP values in Table 1 and with a reduced number of DAP values from Table 1 based on consideration of the
univariate measure JQSv (see Eq. 5 in Sect. 4.4) calculated with the first sample, respectively.

DAP obsloc_hor obsloc_ver obserr_std winsize_avg lower_lim minnum_vals
settings (km) (ln(p)) (km)

S1-01 16 h.d. 1.00 5 −2.30 50 %
S1-02 8 0.5 0.25 10 −1.15 50 %
S1-03 8 0.5 0.25 20 −1.15 3
S1-04 32 0.5 0.50 5 −2.30 25 %
S1-05 8 0.2 0.25 10 −4.60 50 %
S1-06 16 h.d. 0.50 20 −1.15 25 %
S1-07 32 0.2 1.00 5 −1.15 3
S1-08 8 0.2 0.50 20 −2.30 3
S1-09 32 0.5 0.50 5 −4.60 25 %
S1-10 16 h.d. 1.00 10 −4.60 25 %
S1-11 32 h.d. 1.00 20 −4.60 3
S1-12 16 0.2 0.25 10 −2.30 50 %
S2-01 16 0.2 1.00 20 −1.15 50 %
S2-02 16 0.2 0.25 10 −2.30 3
S2-03 8 h.d. 1.00 20 −1.15 3
S2-04 16 0.2 1.00 20 −2.30 50 %
S2-05 16 h.d. 0.25 10 −2.30 50 %
S2-06 8 0.2 0.25 20 −1.15 3
S2-07 8 0.2 1.00 10 −1.15 3
S2-08 8 h.d. 0.25 10 −1.15 50 %
S2-09 8 h.d. 1.00 20 −2.30 50 %
S2-10 16 h.d. 0.25 10 −2.30 3

JQSc/v =medianw
(
1CNV+ZFSSnorm

[
CNV+X/Z

])
+medianw (1CNV+ZBSSnorm[CNV+X/Z]) . (5)

Although changes in deterministic and ensemble QPF
quality with respect to the CNV+Z configuration are not
always consistent, the JQS provides a useful measure for
the overall intercomparison of DA settings. In Eq. (5),
FSS is the deterministic Fraction Skill Score (Roberts
and Lean, 2008), BSS is the Brier Skill Score (following
Wilks, 2019 and Bick et al., 2016) quantifying the en-
semble forecast quality, and both quantities are calculated
using DWD’s RADOLAN (Radar-Online-Aneichung)
product (https://opendata.dwd.de/climate_environment/
CDC/grids_germany/hourly/radolan/historical/bin/, last
access: 17 November 2022) as verification data; 1CNV+Z
denotes differences with respect to the CNV+Z con-
figuration; X is LWC or IWC; index “norm” denotes
normalization with the means of 1CNV+ZFSS[CNV+Z]
or 1CNV+ZBSS[CNV+Z]; medianw (. . . ) denotes the
weighted median. Medians are used instead of means in
order to reduce the impact of outliers in FSS and BSS,
and weights are determined by the fractions of threshold
exceedances for a given time and threshold of the total
number of exceedances at all thresholds (0.5, 1.0, 2.0, and
4.0 mm h−1) and events (C2017, S2017, and S2021) in the

RADOLAN data (see Fig. 3). We use weighted medians over
all cases and thresholds to compare QPF quality between
different DAP configurations (JQSc) and additionally calcu-
late weighted medians over all DAP settings that have the
same DAP values to compare individual DAP values (JQSv).

In addition to optimizing DAP sets in terms of first-guess
quality, we also aim to optimally combine the radar data
sets considered (i.e., Z, LWC, and IWC). Therefore, also
the parallel assimilation of LWC or IWC and Z (configu-
rations CNV+LWC+Z or CNV+ IWC+Z respectively),
the combined assimilation of LWC and IWC estimates as al-
ternatives to Z (configuration CNV+ [LWC+ IWC]/Z) or
in parallel to Z (CNV+LWC+ IWC+Z) are also evalu-
ated with JQSc.

4.5 Experiment part B: 9 h forecasts

Finally, the impact of assimilating the 3D microphysical es-
timates with KENDA on forecasts with lead times greater
than 1 h is evaluated. The 3D LWC and IWC estimates are
assimilated with the identified DAP sets and radar data set
configurations that lead to the best first-guess QPF quality in
hourly assimilation cycles, as before, and then 9 h determin-
istic forecasts of the ICON-D2 model are initiated every third
hour from the produced analyses. The quality of the deter-
ministic 9 h QPF is assessed using the FSS and the Frequency
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Figure 4. Weighted medians of differences in first-guess deterministic FSS (first and third panel rows) and BSS (second and fourth panel
rows) between the CNV+LWC/Z (left block) or CNV+ IWC/Z (right block) configurations with different sampled DAP settings (S1-01 to
S1-12 and S2-01 to S2-10 in Table 2) and the CNV+Z configuration for accumulation thresholds 0.5, 1.0, 2.0, and 4.0 mm h−1 and the three
rainfall periods considered (three left columns within each block). The right-most column in each block shows the weighted median over all
cases considered. Weights are determined by threshold exceedances in the RADOLAN data (see Fig. 3). Green color indicates improvements
compared with the CNV+Z configuration, gray to dark purple color indicates degradations.

Bias (FBI; e.g., Bick et al., 2016). Probabilistic forecasts are
not considered owing to data storage limitations.

5 Numerical results

5.1 Experiment part A: assimilation configurations

The CNV+LWC/Z configuration yields different first-
guess FSS and BSS values for the different DAP settings
(see Table 2) and precipitation cases (Fig. 4a and c). Im-
provements over the CNV+Z configuration considering all
cases together are obtained, e.g., with the DAP sets S1-01 to

S1-03, or S1-06 (Fig. 4a4 and c4). These best-performing
sets all have rather small horizontal observation localiza-
tions obsloc_hor of 8 and 16 km and rather high lower limits
lower_lim of −1.15 and −2.30 (see Table 2). Similarly, the
CNV+ IWC/Z configuration also yields different first-guess
FSS and BSS values for different DAP sets (Table 2) and
precipitation cases (Fig. 4b and d). Improvements over the
CNV+Z configuration are mostly limited to the 2021 strati-
form case, e.g., for the DAP settings S1-02 or S1-05 (Fig. 4b3
and d3), whereas first-guess QPF is mostly degraded for the
2017 convective case (Fig. 4b1 and d1).
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Figure 5. (a) Comparison of the investigated DAP values for obsloc_hor, obsloc_ver, obserr_std, winsize_avg, lower_lim, and minnum_vals
(Table 1) in terms of the univariate measure JQSv (see Eq. 5 in Sect. 4.4) for the LWC (blue bars) and IWC (orange bars) assimilation with
the DAP settings from the first DAP settings (S1-01 to S1-12 in Table 2). In (b), all 22 DAP settings (S1-01 to S1-12 and S2-01 to S2-10 in
Table 2) plus the pre-selected DAP setting (setting S-pre in Table 1) are compared with each other in terms of the univariate measure JQSc
(see Eq. 5 in Sect. 4.4) for the LWC (black bars) and IWC (red bars) assimilation considering all rainfall cases together. Panels (c)–(e) are
like panel (b), but with the JQSc calculated for the individual rainfall cases C2017, S2017, and S2021, respectively.

The univariate measure JQSv (see Sect. 4.4 and Eq. 5),
which uses the first-guess FSS and BSS values, is used to
find the best DAP settings for LWC and IWC in terms of first-
guess QPF quality. The DAP values obsloc_hor= 32 km, ob-
sloc_ver= 0.5ln(p), obserr_std= 0.5, winsize_avg= 5 km,
lower_lim=−4.6, and minnum_vals= 25 % (i.e., 25 % of
the radar pixels in the superobbing window must have valid
values) give the worst (and negative) JQSv values for both
LWC and IWC (blue and orange bars in Fig. 5a). Another
10 DAP sets in the vicinity of the better performing ones are
sampled with LHS (S2-01 through S2-10 in Table 2). Further
improvements over the CNV+Z configuration are obtained
for the LWC assimilation (Fig. 4e and g), but are mostly only
obtained for the 2021 stratiform case for the IWC assimi-
lation (Fig. 4f3 and h3). The new DAP settings (Table 2;
Fig. 4e–h) do, however, on average not perform significantly
better than the first sample (Table 2; Fig. 4a–d), except that
strong negative outliers (e.g., S1-09 in Fig. 4a–d) no longer
appear.

The 22 DAP settings (Table 2) for the LWC and
IWC assimilations are compared with each other in terms
of first-guess deterministic and ensemble QPF quality
using the univariate measure JQSc (see Sect. 4.4 and
Eq. 5). Several DAP settings for the LWC assimila-
tion yield positive JQSc values (black bars in Fig. 5b)
and thus improved first-guess FSS and BSS values com-
pared with the CNV+Z configuration, whereas for the
IWC assimilation, positive JQSc values are limited to the
2021 stratiform case (red bars in Fig. 5e). The DAP
set S2-06 (obsloc_hor= 8 km, obsloc_ver= 0.2ln(p), ob-
serr_std= 0.25, winsize_avg= 20 km, lower_lim=−1.15,
and minnum_vals= 3, see Table 2) for LWC yields over-
all the best JQSc (black bars Fig. 5b), whereas set-
ting S1-02 (obsloc_hor= 8 km, obsloc_ver= 0.5ln(p), ob-
serr_std= 0.25, winsize_avg= 10 km, lower_lim=−1.15,
and minnum_vals= 50 %, see Table 2) results in the best (but
rather neutral) JQSc value for IWC (red bars in Fig. 5b).
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Figure 6. Time series of the difference in first-guess deterministic FSS and BSS for a threshold of 0.5 mm h−1 between the
CNV+LWC/Z (a, c, e, g, i, k) or CNV+ IWC/Z (b, d, f, h, j, l) configurations and the CNV+Z configuration using the best-performing
DAP settings found for LWC and IWC (S2-06 and S1-02, see Table 2) with respect to first-guess quality in hourly assimilation cycles for
the precipitation cases (a–d) C2017, (e–h) S2017, and (i–l) S2021. Green shading indicates improvements with respect to CNV+Z, gray
shading indicates deteriorations.

The assimilation of LWC (CNV+LWC/Z) with the re-
spective best DAP setting in terms of first-guess quality
improves first-guess QPF for the 2017 precipitation cases
(Fig. 4e1, e2, g1, g2 and black bars in Fig. 5c and d) com-
pared with the CNV+Z configuration, whereas QPF quality
is degraded for the stratiform S2021 case (Fig. 4e3, g3 and
black bars in Fig. 5e). As expected, the time series of the
first-guess FSS and BSS values at a threshold of 0.5 mm h−1

show slight, systematic improvements for the 2017 cases for
some time intervals (green colors in Fig. 6a, c, e, and g),
but more pronounced degradations for the 2021 case (Fig. 6i
and k). The assimilation of IWC (CNV+ IWC/Z) with
the respective best DAP set yields improvements over the
CNV+Z configuration particularly for the stratiform S2021
case (Fig. 4b3, d3 and red bars in Fig. 5e), but clear quality
decreases for the convective C2017 case (Fig. 4b1, d1 and
red bars in Fig. 5c). Time series of first-guess FSS and BSS
values at a 0.5 mm h−1 threshold confirm this finding: slight,
systematic improvements are evident for the 2021 case in

some time periods (Fig. 6j and l), whereas degradations are
visible for the 2017 convective case (Fig. 6b and d). The bet-
ter performance of the IWC assimilation for the 2021 strat-
iform case may be due the higher radial resolution of the
more recent radar data of DWD (recall that the resolution
was increased from 1 km to 0.25 km in spring 2021), which
leads to better KDP estimates, because many more consec-
utive radar bins are considered for the 9 km KDP-estimation
window used. Using the same window length for the lower-
resolution data for the 2017 cases means using only one
quarter of the data compared with the 2021 case. Estimating
KDP from only nine consecutive values may favor negative
KDP estimates resulting in negative IWC values, which are
set to the lower limit (lower_lim) value in the superobbing
procedure and are thus treated as “no-precipitation”. The re-
placement of negative IWC estimates with zero or with the
IWC(Z) retrievals following Atlas et al. (1995) led to some
improvements, but the first-guess QPF quality remained be-
low the CNV+Z configuration (not shown).
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Figure 7. Comparison of different radar data set configura-
tions in terms of the univariate measure JQSc (see Eq. 5 in
Sect. 4.4). Configurations assimilating LWC and/or IWC with
the best DAP settings found (S2-06 and S1-02 in Table 2) in
terms of first-guess QPF quality (a) instead of Z where possi-
ble (alternative Z assimilation) in configurations CNV+LWC/Z,
CNV+ IWC/Z, and CNV+ [LWC+ IWC]/Z (lower, middle,
and upper bars), and (b) together with Z (parallel Z assimila-
tion) in configurations CNV+LWC+Z, CNV+ IWC+Z, and
CNV+LWC+ IWC+Z (lower, middle, and upper bars) are com-
pared. Black bars indicate the JQSc calculated over all three rainfall
cases, and blue, orange, and green bars indicate the JQSc calculated
over the individual cases C2017, S2017, and S2021 respectively.

Parallel assimilation of LWC and Z (CNV+LWC+Z),
i.e., assimilation of LWC and Z at the same superob-
bing points, reduces the JQSc values compared with the
alternative assimilation strategy (CNV+LWC/Z), but is
still better than the CNV+Z configuration (lower black
bars in Fig. 7). In contrast, the parallel assimilation
of IWC and Z (CNV+ IWC+Z) improves JQSc val-
ues compared with the alternative assimilation strategy
(CNV+ IWC/Z; middle black bars in Fig. 7) above the
CNV+Z quality. Assimilation of all radar data sets in paral-
lel (CNV+LWC+ IWC+Z) gives the best JQSc value (up-
per black bar in Fig. 7b).

The impact of the LWC and IWC assimilation on the first-
guess of temperature, relative humidity, and u-wind speed
is investigated using conventional observations. The assim-
ilation of radar information generally reduces standard de-
viations (SD) compared with the assimilation of only con-
ventional data (CNV+Z, CNV+LWC/Z, CNV+ IWC/Z,
and CNV+LWC+ IWC+Z configurations correspond to
black, red, yellow, and blue curves in Fig. 8b, e, and h),
whereas the impact on mean bias deviations (MBD) is less
clear (compare black solid, red, yellow, and blue curves with
black dotted curves in Fig. 8c, f, and i). The CNV+LWC/Z,
CNV+ IWC/Z, and CNV+LWC+ IWC+Z configura-
tions result in SDs and MBDs similar to the CNV+Z con-
figuration, but slight, systematic SD improvements are evi-
dent for the u-wind speed with the CNV+ IWC/Z configu-
ration (yellow curve in Fig. 8h).

5.2 Experiment part B: 9 h forecasts

With the best performing DAP sets for the LWC and IWC
assimilations in terms of first-guess QPF quality, up to 9 h
forecasts are performed. Z observations (CNV+Z) clearly
improve the deterministic FSS for a threshold of 0.5 mm h−1

for all forecast hours compared with the assimilation of only
conventional data (CNV) on average for all cases (compare
black with gray lines in Fig. 9a, d, g, and j). This also holds
for the deterministic FBI for the stratiform S2017 and S2021
cases, whereas for the convective C2017 case the under-
estimation is enhanced (compare black and gray curves in
Fig. 9c, f, i, and l). Assimilating LWC estimates instead of
Z data where possible (CNV+LWC/Z) slightly further im-
proves the FSS on average over all cases for most of the fore-
cast time (red curve above the zero line in Fig. 9b). This over-
all positive impact results from the first 6 h of the convective
C2017 case and forecast hours five to nine of the stratiform
2021 case (Fig. 9e and k). FBI improvements are achieved for
up to 7 h lead time (compare red with black curves in Fig. 9c)
and at least for the first 4 h lead time for all individual cases
(compare red curves with gray and black curves in Fig. 9f, i,
and l).

The IWC assimilation (CNV+ IWC/Z) only marginally
improves the FSS on average for the first 5 h lead time (yel-
low curves in Fig. 9b) compared with the CNV+Z config-
uration. As expected from the first-guess analysis, the mean
FSS for the convective C2017 case is mostly degraded (yel-
low curve in Fig. 9e) and the stratiform S2017 and S2021
cases are improved (yellow curves in Fig. 9h and k). For the
S2021 case, the mean forecast FSS values are slightly im-
proved for most of the forecast time (yellow curve mostly
above zero line in Fig. 9k). Qualitatively similar outcomes
result for the FBI on average over all cases, which shows the
best results for the first four forecast hours (compare yellow
with the remaining curves in Fig. 9c).

The on-average best FSS for the first six forecast hours
is obtained when all radar data sets are assimilated together
(CNV+LWC+ IWC+Z; blue curve in Fig. 9b); however,
the good results for the FBI with the assimilation of IWC
(CNV+ IWC/Z) are not reached (compare blue and yellow
curves in Fig. 9c), but the FBI is improved up to seven fore-
cast hours compared with the CNV+Z configuration (black
curve).

As expected, the SDs of 2 m temperature, 2 m rel-
ative humidity, and 10 m u-wind speed generally in-
crease with forecast lead time for all DA configurations
(CNV, CNV+Z, CNV+LWC/Z, CNV+ IWC/Z, and
CNV+LWC+ IWC+Z in Fig. 10). The assimilation of
radar information always reduces the SDs. Interestingly, the
assimilation of IWC yields the lowest SD for humidity (yel-
low curve in Fig. 10c) and wind (Fig. 10e) and is only
marginally outperformed by the assimilation of all radar
information in parallel (CNV+LWC+ IWC+Z) for 2 m
temperature (compared yellow with blue curve in Fig. 10a).
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Figure 8. Vertical profiles of differences in standard deviations (SD) with respect to the CNV configuration (b, e, h) and of mean bias
deviations (MBD; c, f, i) of first guesses of temperature (a–c), relative humidity (d–f), and u-wind (g–i) obtained from hourly assimilation
cycles with the assimilation configurations CNV (black dotted), CNV+Z (black solid), CNV+LWC/Z (red), CNV+ IWC/Z (yellow),
and CNV+LWC+ IWC+Z (blue curves) from conventional observations over Germany. The number of observations contributing to the
SD and MBD calculations are shown in the left column (gray solid curves). All rainfall cases are considered and the best DAP settings found
for LWC and IWC (S2-06 and S1-02 in Table 2) in terms of first-guess QPF quality are used for the LWC and IWC assimilations.

The bias (MBD), however, is only reduced for the near-
surface wind (Fig. 10f), whereas the absolute MBD gener-
ally increases owing to the assimilation of radar data – ex-
cept for the near-surface humidity, which achieves its lowest
values when all radar information is assimilated in parallel
(CNV+LWC+ IWC+Z; blue curve in Fig. 10d).

6 Conclusions

We assimilated for the first time polarimetric information
from radar observations of the German C-band radar network
in the KENDA-ICON-D2 system of DWD. In this study, we
used microphysical retrievals of liquid and ice water con-
tent (LWC and IWC) and evaluated their impact on short-
term precipitation forecasts. First, the impact of assimilat-
ing the microphysical retrievals on the first-guess (hourly)
precipitation forecasts was investigated with different data
assimilation parameter (DAP; e.g., observation localization

length-scales and errors) sets and radar data set configura-
tions. Then, the most successful assimilation settings were
used to initiate 9 h precipitation forecasts.

Four data set configurations were analyzed to find the best
DAP sets: only conventional observations (CNV), conven-
tional and 3D reflectivity Z observations (CNV+Z), con-
ventional data and 3D LWC estimates replacing Z obser-
vations where available (CNV+LWC/Z), and conventional
data and 3D IWC estimates replacing Z observations where
possible (CNV+ IWC/Z). For the two stratiform cases in
the summers of 2017 and 2021 and the one convective case
in the summer of 2017, a rather small horizontal observation
localization length-scale of 8 km and a lower limit of −1.15
in log10(LWC) and log10(IWC) yielded the best determin-
istic and ensemble first guesses. Thus, the best first guess
of precipitation forecasts is achieved when the influence of
the observed microphysical estimates on the model state is
rather small in terms of observation localization length-scale
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Figure 9. (a, d, g, j) Time series of the deterministic FSS for a 0.5 mm h−1 threshold of 9 h forecasts initiated every third hour from hourly
assimilation cycles with the CNV and CNV+Z configurations (gray and black curves) as means over all precipitation cases (a–c), over
only the 2017 convective case C2017 (d–f), over only 2017 stratiform case S2017 (g–i), and over only the 2021 stratiform case S2021 (j–
l). (b, e, h, k) Corresponding deviations in mean deterministic FSS from the CNV+Z configuration of the CNV+LWC/Z (red curves),
CNV+ IWC/Z (yellow curves), and CNV+LWC+ IWC+Z (blue curves) configurations using the found best DAP settings for LWC and
IWC assimilations (S2-06 and S1-01 in Table 2) in terms of first-guess QPF quality. (c, f, i, l) Corresponding mean deterministic FBI.

and lower data limit. A rather small observation error stan-
dard deviation of 0.25 in log10(LWC) and log10(IWC) was
most successful. The best values for the other DAPs differed
for LWC and IWC: vertical localization length-scales were
0.2 in logarithm of pressure for LWC and 0.5 in the logarithm
of pressure for IWC; best superobbing window sizes were
20 km for LWC and 10 km for IWC; the minimum number
of valid values in the superobbing window was three obser-
vations for LWC and 50 % valid values for IWC.

The LWC assimilation (CNV+LWC/Z) with the best
performing DAP setting with respect to the first-guess
QPF quality improved the first guesses for most precipita-
tion cases and accumulation thresholds compared with the
CNV+Z configuration, whereas the best-performing DAP
setting for IWC worsened the results, especially for the 2017

convective case, except for the stratiform case in 2021. The
latter may be due to the radial resolution increase in the
DWD volume scans from 1 km to 0.25 km in spring 2021.
The higher resolution improves the specific differential phase
KDP estimation as part of the hybrid IWC retrieval, because
more successive radar bins can be used for a given KDP win-
dow size. One reason for the poor performance of the IWC
assimilation, especially for the 2017 convective case, besides
possible deficiencies in the model’s ice module, may be the
fact that the IWC retrieval was developed for snowfall but not
for hail or graupel likely being present during intense con-
vective summer precipitation in Germany. Interestingly, the
LWC assimilation led to consistent improvements for con-
vective situations, despite a retrieval not adapted to hail or
graupel either. The application of a higher co-polar cross-
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Figure 10. Mean standard deviations (SD; a, c, e) and mean bias deviations (MBD; b, d, f) of forecasted 2 m temperature (a, b), 2 m
relative humidity (c, d), and 10 m u-wind (e, f) from conventional observations in Germany as functions of the forecast lead time. Means
are calculated over 9 h forecasts initiated every third hour from hourly assimilation cycles with the assimilation configurations CNV (gray
curves), CNV+Z (black curves), CNV+LWC/Z (red curves), CNV+ IWC/Z (yellow curves), and CNV+LWC+ IWC+Z (blue curves)
using the best DAP settings found for the LWC and IWC assimilations (S2-06 and S1-02 in Table 2) in terms of first-guess QPF quality, and
taking all rainfall cases C2017, S2017, and S2021 into account.

correlation coefficient ρHV threshold below the melting layer
for filtering may have masked radar pixels contaminated with
hail or graupel.

In general, the best first-guess precipitation forecasts were
obtained when all radar data sets (i.e., Z, LWC, and IWC)
were assimilated together (CNV+LWC+ IWC+Z).

9 h forecasts initiated with the CNV+LWC/Z configu-
ration using the best DAP setting with respect to first-guess
QPF quality slightly outperformed the CNV+Z configura-
tion in terms of deterministic FSS on average and for most
forecast lead times with the best results for the 2017 con-
vective case. The same applies to the assimilation of IWC
(CNV+ IWC/Z); however, the mean FSS mostly deterio-
rated for the convective case compared with the CNV+Z
configuration, but was systematically improved over most
of the forecast time for the high-resolution 2021 strati-
form case. Forecasts initiated with the assimilation of all
radar data sets (CNV+LWC+ IWC+Z) yielded the best
overall FSS. Furthermore, the assimilation of the LWC
and/or IWC estimates (CNV+LWC/Z, CNV+ IWC/Z,

and CNV+LWC+ IWC+Z) generally improved the mean
frequency bias FBI over the CNV+Z configuration for most
forecast hours.

We used DWD’s standard configuration of KENDA,
which only produces microphysical analysis increments in
cloud water mixing ratio and specific humidity, i.e., not
all available hydrometeor species (e.g., rain, cloud ice, and
graupel mixing ratios) are updated individually. This set-
ting was chosen at DWD to optimize the assimilation im-
pact of Z (Klaus Stephan, DWD, personal communication,
2023). Thus, it remains to be explored how changes in the
updated (microphysical) variables change precipitation fore-
casts when polarimetric information contained in microphys-
ical retrievals is assimilated. For example, it should be in-
vestigated if the update of the rain mixing ratio via cross-
correlations in the first-guess ensemble from LWC observa-
tion increments or the update of ice species (e.g., snow and/or
cloud-ice mixing ratios) via cross-correlations from IWC in-
novations would yield improved forecasts.

https://doi.org/10.5194/acp-23-14219-2023 Atmos. Chem. Phys., 23, 14219–14237, 2023
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Our study presented the benefits from the assimilation of
state-of-the-art polarimetric microphysical retrievals below
and above the melting layer adjusted for pure rain and snow-
fall respectively in a convective-scale NWP system in Ger-
many. The results revealed only limited benefits with the as-
similation of IWC retrievals in convective precipitation. As
the retrievals are based on assumptions valid for snow but
not for graupel or hail, e.g., the inversely proportional rela-
tionship between the density and size of the hydrometeors,
the potential presence of graupel and/or hail in convection
may be at least partly responsible. Accordingly, the devel-
opment of more adequate retrieval algorithms for convective
cores constitutes one of the next steps in further improving
the exploitation of ice microphysical retrievals for radar data
assimilation.
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