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Figure S1: Back trajectories of air masses reaching Hong Kong (latitude = 22.303, longitude 16 

= 114.177, height = 100 m, duration = 72 h) during the four sampling periods. Back-trajectories 17 

calculations were performed by the Hybrid Split-Particle Lagrangian Integrated Trajectory 18 

(HYSPLIT) model using meteorological data from NCEP/NCAR Reanalysis (2.5° latitude-19 

longitude grid).  20 
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Figure S2: Comparisons of aerosol pH values calculated with (y axis) vs. without (x axis) 22 

contributions from 𝑊𝑜. The dashed line is the 1:1 line. Majority of the predicted pH values lie 23 

close to the dashed line. This indicated that the inclusion/exclusion of 𝑊𝑜 into calculations 24 

did not impact aerosol pH significantly.    25 

 26 
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 27 

Figure S3: Relationships between the mass concentrations of total Al and the other total metals 28 

in coarse and fine aerosols. Only data with non-zero total metal concentrations were used in 29 

the figures. Also shown are the spearman correlation coefficients for each relationship. 30 

 31 



5 

 

 32 

Figure S4: Profiles of the five factors resolved by positive matrix factorization (PMF) using 33 

bootstrap (BS) analysis for source apportionment of aerosols measured at the monitoring site. 34 

The error bars represent the largest displacement (DISP) uncertainty range from the base run.    35 
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Figure S5: Seasonal mass contributions of each source to each species in coarse and fine 37 

aerosols.   38 
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 39 

Figure S6: Metal fractional solubility vs. total metal concentration for fine and coarse aerosols. 40 

The fractional solubility values were calculated by dividing the water-soluble metal mass 41 

concentration by the total metal mass concentration. Only data with non-zero total metal 42 

concentrations were used in the figures.   43 
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 44 

Figure S7: Relationships between the metal fractional solubilities and 𝑊𝑖 in fine aerosols. 45 

Only data with non-zero total metal concentrations were used in the figures. Also shown are 46 

the spearman correlation coefficients for each relationship. 47 
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 48 

Figure S8: Relationships between the metal fractional solubilities and 𝐻𝑎𝑖𝑟
+  in fine aerosols. 49 

Only data with non-zero total metal concentrations were used in the figures. Also shown are 50 

the spearman correlation coefficients for each relationship. 51 

 52 
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 53 

Figure S9: Relationships between the Cr, Fe, Co, Cu, Pb, and Mn fractional solubilities and 54 

fine aerosol pH. Only data with non-zero total metal concentrations were used in the figures. 55 

Also shown are the spearman correlation coefficients for each relationship. Only the correlation 56 

between the Fe fractional solubility and fine aerosol pH was statistically significant. 57 

 58 
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Table S1: Comparison of average total metal concentrations (ng m-3) in 2012/2013 by Jiang et 70 

al. (2015) and 2021/2022 (this study) at a Kowloon Tong in Hong Kong 71 

(a) Comparison of winter mass concentrations   72 

Metal Jiang et al. (2015)a This studyb 

Fine Coarsec Fine Coarsec 

Cr 3 2.7 1.11 0.94 

Al 254 301.2 78.53 135.12 

Fe 137 142 204.71 301.22 

Ni 4.4 1.6 1.97 0.84 

Cu 19.7 4 20.61 61.20 

Pb 49.4 2.9 8.98 0.86 

Mn 17.1 5.2 11.82 5.18 

V 9.2 0.9 1.41 0.30 

Cd 1.1 0.1 0.22 0.03 
a Measurements were performed from 12 November 2012 to 10 December 2012. 73 
b Measurements were performed from 15 December 2021 to 26 January 2022. 74 
c Mass concentrations measured for the MOUDI impactor stage 11 (18 µm nominal cutoff) was 75 

excluded in this comparison since Jiang et al. (2015) reported mass concentrations for PM2.5-10 76 

for their coarse aerosol measurements.    77 

 78 

(b) Comparison of spring/summer mass concentrations 79 

Metal Jiang et al. (2015)a This studyb 

Fine Coarsec Fine Coarsec 

Cr 7.2 1.5 2.53 1.24 

Al 591 528.9 107.14 237.76 

Fe 190.6 153 150.33 163.59 

Ni 10 1.3 3.84 0.94 

Cu 21.6 5.5 11.98 24.16 

Pb 52.7 2.8 6.92 3.69 

Mn 19.3 5 6.45 2.87 

V 25.6 1.8 1.90 0.31 

Cd 1.2 0.1 0.08 0.01 
a Measurements were performed from 8 April 2013 to 13 May 2013. 80 
b Measurements were performed from 7 March 2021 to 4 April 2021, 23 to 30 June 2021, and 81 

7 to 14 July 2021. 82 
c Mass concentrations measured for the MOUDI impactor stage 11 (18 µm nominal cutoff) was 83 

excluded in this comparison since Jiang et al. (2015) reported mass concentrations for PM2.5-10 84 

for their coarse aerosol measurements.    85 

 86 
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Table S2: Spearman rank correlations between the water-soluble and total metals in fine and 87 

coarse aerosolsa  88 

Metal Fine Coarse 

Cr 0.49 0.50 

Al 0.40 0.14 

Fe 0.58 0.48 

Ni 0.43 0.30 

Co 0.16 0.06 

Cu 0.86 0.81 

Pb 0.60 0.43 

Mn 0.93 0.95 

V 0.89 0.81 

Cd 0.96 0.64 
a Bold: statistically significant (p < 0.05)  89 

 90 
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Table S3: Spearman rank correlations between the metal fractional solubilities and nitrate and 108 

aerosol propertiesa  109 

Metal Nitrate Ammonium RH Temp 

Cr 0.67 0.51 -0.53 -0.78 

Al -0.05 0.09 -0.07 -0.09 

Fe -0.04 0.39 0.01 0.06 

Ni -0.26 -0.05 0.25 0.77 

Co 0.16 0.33 -0.01 0.02 

Cu 0.67 0.59 0.00 0.00 

Pb 0.34 0.38 -0.25 -0.12 

Mn 0.14 0.22 0.02 -0.11 

V -0.29 0.23 0.18 0.10 

Cd -0.16 0.11 0.08 -0.17 
a Bold: statistically significant (p < 0.05)  110 

 111 
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Section S1. Source apportionment  124 

To identify the major sources of the measured total aerosol metals, source 125 

apportionment was performed with positive matrix factorization (PMF) using EPA PMF 5.0 126 

software. PMF decomposes the measured concentration matrix (𝑥𝑖𝑗 ) into two matrices: the 127 

factor contributions matrix (𝑔𝑖𝑘) and factor profiles (𝑓𝑘𝑗) plus a residue matrix (𝑒𝑖𝑗) (Paatero 128 

and Tapper, 1994; Paatero, 1997): 129 

𝑥𝑖𝑗 = ∑ 𝑔𝑖𝑘𝑓𝑘𝑗
𝑝
𝑘=1 + 𝑒𝑖𝑗  ⋯        (1) 130 

where p is the number of factors determined by the user. Factor contributions and profiles are 131 

determined by minimizing the objective function (Q): 132 

Q = ∑ ∑ [
𝑥𝑖𝑗−∑ 𝑔𝑖𝑘𝑓𝑘𝑗

𝑝
𝑘=1

𝑢𝑖𝑗
]

2

⋯𝑚
𝑗=1

𝑛
𝑖=1       (2) 133 

where 𝑢𝑖𝑗  is the uncertainty matrix provide by the user. The ultimate goal is to achieve 134 

chemical mass balance between the measured species and source contributions by minimizing 135 

Q. Two error estimation approaches were used to analyze the model-resolved factor profiles: 136 

Bootstrap (BS) and Displacement (DISP) (Paatero et al., 2014). The EPA PMF 5.0 software 137 

conducts BS by randomly perturbing the original data set and generating new PMF results 138 

using the resampled version of input data. The BS factor is subsequently assigned to the base 139 

run factor with which the BS factor has the highest correlation, above a user-defined threshold. 140 

BS estimation involves uncertainties derived from random errors and partially from rotational 141 

ambiguity. The EPA PMF 5.0 software performs DISP by “displacing” each variable in the 142 

well-fitted factor 𝑓𝑘𝑗  far enough such that Q increases by a pre-defined maximum value 143 

d𝑄𝑚𝑎𝑥. Such extensions estimate the upper and lower intervals of each species in the factor 144 

profile. By nature, DISP reflects the uncertainty derived from rotational ambiguity.  145 

The mass concentrations of 14 chemical species (Na+, Cl-, K+, Mg2+, 27Al, 51V, 52Cr, 146 

55Mn, 57Fe, 59Co, 60Ni, 65Cu, 111Cd, and 208Pb) measured on each MOUDI stage during every 147 

sampling period (total of 175 sets of samples) were used as the input matrix. 100 BS runs were 148 

performed. Uncertainties were as following: 149 



15 

 

𝑢𝑖𝑗 = √(𝑥𝑖𝑗 × 𝐸𝐹)2 + (𝑀𝐷𝐿)2 ⋯      (3) 150 

where xij is the measured concentration, EF is the user-defined error fraction for individual 151 

species derived from the experimental data, and MDL is the method detection limit. For 152 

concentrations below MDL, the uncertainty was set to 5/6 × MDL. In PMF, the optimal number 153 

of factors is a compromise between resolving factors with the best physical meanings and a 154 

good fit for all input species. 3 to 7 factors were tested, and the final number was determined 155 

by examining the changes in 𝑄𝑟𝑜𝑏𝑢𝑠𝑡 𝑄𝑒𝑥𝑝⁄  and the physical interpretation of each factor. 156 

𝑄𝑒𝑥𝑝 ≈ 𝑛𝑚 − 𝑝(𝑛 + 𝑚), denotes the degree of freedom of the model solution, where n, m, and 157 

p refer to the number of samples, the number of species input into PMF, and the number of 158 

factors. Based on the minimal Q values and the physical interpretations of the resolved factor, 159 

the five-factor solution was selected. These five factors were broadly classified as: Sea salt, 160 

Dust, Industrial, Residual oil, and Ship emissions. The 𝑄𝑟𝑜𝑏𝑢𝑠𝑡 𝑄𝑒𝑥𝑝⁄  changed 14.8% from a 161 

four-factor to a five-factor solution, while the 𝑄𝑟𝑜𝑏𝑢𝑠𝑡 𝑄𝑒𝑥𝑝⁄  changed 22.6% from a three-162 

factor solution to a four-factor solution. 163 

Figure S3 shows the factor profiles resolved in the five-factor solution. Source 164 

identification was based on the tracer species with the highest mass loadings. The first factor 165 

was marked by the high loadings of common sea salt tracers Na+, Cl-, and Mg2+, thus it was 166 

identified as “sea salt” (Chow et al., 2022). Interestingly, the “sea salt” factor had a noticeably 167 

high Fe loading. Previous studies have reported Fe deposition to marine waters from 168 

continental outflows of mineral dust, biomass burning aerosols, and oil fly ash (Ito, 2013; Wang 169 

et al., 2015; Matsui et al., 2018). This could result in substantial concentrations of Fe in sea 170 

salt, which in turn would lead to the high loading of Fe in the “sea salt” factor. The second 171 

factor was identified as “dust” due to its high loadings of Al, Fe, and Mn, which are known 172 

mineral dust tracers (Chow et al., 2022). Cu is also a dominant species in this second factor. 173 

Previous studies have attributed Cu to brake/tire wear, and Fe and Mn to both dust and 174 

brake/tire wear (Garg et al., 2000; Adachi and Tainosho, 2004; Lough et al., 2005). Thus, 175 

resuspended road dust containing brake/tire wear particles could have contributed to this “dust” 176 

factor. Interestingly, the “dust” factor had a noticeably high Co loading. This could be explained 177 

by Co being widely found in rocks, soil, water, and plants. It is the 33rd abundant element in 178 
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the Earth’s crust with an average concentration of 20 µg/g (Lison, 1996). While Co can also be 179 

emitted from anthropogenic sources such as coal-fired power generation, vehicle exhaust, and 180 

mining activities (Wu et al., 2022; Johansson et al., 2009), these sources were not resolved in 181 

this work since we did not measure their source-specific tracers. The fourth factor was 182 

identified as “ship emissions” since it was marked by high loadings of Ni and V, which are 183 

known tracers for ship emissions (Chow et al., 2022). The third and fifth factors were broadly 184 

classified as “industrial factor 1” and “industrial factor 2” since their dominant metal species 185 

are typically associated with industrial emissions (Chow et al., 2022). 186 

 187 

Section S2. Aerosol liquid water concentration associated with organics 188 

The following equation was used to calculated the aerosol liquid water concentration 189 

(µg m-3) associated with organic species (Guo et al., 2015): 190 

𝑊𝑜 =
𝑚𝑜𝑟𝑔𝜌𝑤

𝜌𝑜𝑟𝑔

𝜅𝑜𝑟𝑔

(
1

𝑅𝐻
−1)

        (4) 191 

where 𝑚𝑜𝑟𝑔 is the organic mass concentration (µg m-3), 𝜌𝑤 is the water density (1 µg m-3), 192 

𝜌𝑜𝑟𝑔  is the organic density, 𝑘𝑜𝑟𝑔  is the organic hygroscopicity parameter, and RH is the 193 

relative humidity of the sampling period. We calculated 𝑚𝑜𝑟𝑔 by multiplying the measured 194 

water-soluble organic carbon (WSOC) concentration by 1.6, which is the conversion factor 195 

recommended for converting WSOC to organic mass in urban aerosols (Turpin and Lim, 2001). 196 

We assumed 𝜌𝑜𝑟𝑔 to be 1.4 g cm-3, which is the value usually assumed for the density of 197 

ambient organic aerosols in previous studies (Guo et al., 2015; Shiraiwa et al., 2017; Kuwata 198 

et al., 2012; King et al., 2007). We used 0.35 for 𝜅𝑜𝑟𝑔, which is the average of the range of 199 

values (0.28 to 0.39) previously measured for organic aerosols in Hong Kong (Meng et al., 200 

2014).      201 

 202 
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