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Abstract. Insoluble particles influence weather and climate by means of heterogeneous freezing process. Cur-
rent weather and climate models face considerable uncertainties in freezing-process simulation due to limited
information regarding species and number concentrations of heterogeneous ice-nucleating particles, particularly
insoluble particles. Here, for the first time, the size distribution and species of insoluble particles are analyzed
in 30 shells of 12 hailstones collected from China using scanning electron microscopy and energy-dispersive
X-ray spectrometry. A total of 289 461 insoluble particles were detected and divided into three species – organ-
ics, dust, and bioprotein – utilizing machine learning methods. The size distribution of the insoluble particles
of each species varies greatly among the different hailstones but little in their shells. Further, a classic size dis-
tribution of organics and dust followed logarithmic normal distributions, which could potentially be adapted in
future weather and climate models despite the existence of uncertainties. Our findings highlight the need for
atmospheric chemistry to be considered in the simulation of ice-freezing processes.

1 Introduction

Insoluble particles, acting as the main heterogeneous ice-
nucleating particles in the atmosphere (Lamb and Verlinde,
2011), influence precipitation formation and radiative forcing
(Hoose and Möhler, 2012; DeMott et al., 2015) and further
impact weather and climate (Vergara-Temprado et al., 2018).
Temperature and vapor supersaturation are used to calculate
the number concentration of ice crystal particles in micro-
physics parameterization rather than considering the physical
properties of ice-nucleating particles in weather and climate
models (DeMott et al., 2010). Few models use the freezing
parameterization, which establishes a direct connection be-
tween the number concentration of ice-nucleating particles
and the number concentration of ice crystals. The absence
of description regarding the number concentration of ice-

nucleating particles in models can result in an incorrect esti-
mation of ice crystals and lead to significant bias in radiative
simulations (Vergara-Temprado et al., 2018).

An improved description of the number concentrations of
ice-nucleating particles is needed (DeMott et al., 2010) but is
obstructed by a lack of complete microphysical observations
of ice-nucleating particles in clouds. There are two ways to
sample ice-nucleating particles: the first involves an airborne
instrument, named a continuous-flow thermal-gradient dif-
fusion chamber (Rogers et al., 2001; Prenni et al., 2009; De-
Mott et al., 2010); the second is done in the laboratory, where
scientists conduct freezing experiments (Hoose and Möhler,
2012). In most cases, it is necessary for an aircraft to collect
air parcels for measurement of the physical properties of ice-
nucleating particles in the air. However, former field projects
sampled air parcels in anvils of convective clouds, cirrus
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clouds, and winter mixed-phase stratiform clouds. No flight
report or article has reported that they sampled air parcels
through cores in deep convection. This phenomenon is con-
sistent with considerations for flight security. Thus, current
observations are insufficient for describing the whole convec-
tive cloud, especially the deep convection in severe storms.
The absence of microphysical observations of ice-nucleating
particles within severe storms leads to uncertainty in under-
standing cold cloud processes.

Hailstones, as a product of deep-convective clouds, serve
as carriers of information within these clouds. Recently, anal-
yses revealed large diversity in terms of the number con-
centration of soluble ions among hailstones from different
hailstorms (Li et al., 2018). Further, the detection of sol-
uble ions along with isotopic analysis of a huge hailstone
revealed an up-and-down hailstone growth trajectory, which
demonstrated that the different shells were formed at differ-
ent heights (Li et al., 2020). These studies have proved that
aerosol information in convective clouds may be recorded
in soluble particles within hailstones (Li et al., 2018, 2020).
Similarly, insoluble particles in hailstones can also record
aerosol information in severe storms.

Former studies showed that species and number concen-
tration of insoluble particles in hailstones (Vali, 1968; Rosin-
ski, 1966; Michaud et al., 2014) would influence hetero-
geneous nucleation process (Hoose and Möhler, 2012) and
further hailstone formation (Knight, 1981). Information on
the species of insoluble particles can determine the freezing
temperature when these particles participate in the initiation
of ice crystal formation and subsequently impact hailstone
embryo growth. Biological particles in hailstones, such as
pollen and bacteria, are more efficient ice-nucleating par-
ticles than dust within the ice nucleation region of storm
clouds (Michaud et al., 2014). They can raise the freezing-
threshold temperature above−15 ◦C, while dust particles are
activated to form ice crystals at temperatures below −15 ◦C
(Michaud et al., 2014). In addition to species, the number
concentration of insoluble particles can also influence the
hailstone formation. When more dust particles were consid-
ered, a model simulation resulted in larger number concen-
trations of ice crystals, smaller graupel (one type of hail-
stone embryo) sizes, and suppression of the hailstone growth
(Chen et al., 2019). Nonetheless, previous studies involving
analysis of insoluble particles in hailstones mainly focused
on substance analysis or total number concentration statis-
tics. A size distribution of insoluble particles in hailstones
with species information, which is beneficial for complet-
ing microphysical observation in severe storms, has not been
given so far.

This study analyzed insoluble particles in hailstones col-
lected from eight hailstorms that occurred in China be-
tween 2016 and 2021. The identification of insoluble par-
ticles in hailstones was conducted using scanning electron
microscopy (SEM) and energy-dispersive X-ray spectrome-
try (EDX). The insoluble particles were separated into three

species using self-organized maps (SOMs) and the random
forest method. The variation in size distribution of the insol-
uble particles in embryos and different shells was explored.
Based on the size distributions, logarithmic normal distribu-
tions were fitted to describe the concentration of organics and
dust in deep convection.

2 Methods

2.1 Sample information and experimental design

Hailstones were collected from eight hailstorms that oc-
curred in six provinces of China during the warm seasons
from 2016 to 2021 (Table 1, Fig. 1). Volunteers stored the
hailstones in clean containers, including plastic bags, glass
containers, and tinfoil, either during or immediately after
the hail events. All hailstone samples were transported to a
laboratory at Peking University in Beijing and kept at tem-
peratures ranging from −18 to −4 ◦C. The hailstones were
then transferred into vacuum-sealed plastic pockets and pre-
served in a freezer, maintaining an internal temperature rang-
ing from −29 to −23 ◦C, until they underwent further pro-
cessing and analysis.

Insoluble particles were extracted in the experiments
(Fig. 2). The surface of each hailstone was polished to re-
move any attached grass or soil. Subsequently, the hailstones
were sliced into cross-sections along the major axis, cor-
responding to the size of the hailstone embryo. The cross-
sections were further sliced into shells using heated Fe–Cr al-
loy wire at an air temperature below−8 ◦C. The shells within
a hailstone were distinguished based on their natural trans-
parency or opacity. However, hailstones with a major axis
< 7 mm could not be sliced due to the mass loss resulting
from heating using our experimental apparatus.

The shells were sequentially labeled with capital letters in
alphabetical order, starting from the embryo (designated as
shell A) and progressing toward the crust. After the ice shells
were melted into a solution, the solution was filtered through
a membrane (VSWP01300, Merck KGaA, Germany) with a
pore size of 30 nm. The 1 mL (a total of 5 mL) of distilled
water underwent five passes through the filter membrane to
ensure maximum retention of insoluble particles on the mem-
brane. Subsequently, the filter membrane was dried under an
air temperature of approximately 40 ◦C to satisfy the dry-
environment requirements of SEM.

The number of insoluble particles in each shell was de-
termined using scanning electron microscopy (SEM), with a
focus on particles larger than 0.16 µm. The length along the
major axis of the particles was measured using Aztec soft-
ware (Aztec Software, Oxford Instruments plc, UK) on SEM
images. The software was able to randomly capture elec-
tron microscopy photos of the membrane (Aztec User Man-
ual, 2013). No particle will be counted repeatedly. Energy-
dispersive X-ray spectrometry (EDX) was utilized to deter-
mine the elemental weight ratios of the particles. Only el-
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Table 1. Information about collected hailstones.

Date and Beijing Latitude and Total column Freezing-level height Location and Samplesf Diameterg Particle
local timea longitudeb water vaporc – orography altituded sample (mm) numberh

(kg m−2) (m) abbreviatione

19 June 2018, 41.82◦ N, 26.35[18:00] 3241.66[18:00] Fushun (FS) 1 13.80 13 648
18:30 123.85◦ E

10 June 2016, 40.00◦ N, 36.86[14:00] 3780.52[14:00] Beijing (BJ1) 1 – 35 291
15:00 116.32◦ E

30 June 2021, 39.95◦ N, 31.84[20:00] 3852.76[20:00] Beijing (BJ2) 5 25.38 14 865
20:18 116.30◦ E Beijing (BJ3) 24.11 20 233

Beijing (BJ4) 16.30 20 350
Beijing (BJ5) 14.86 14 350
Beijing (BJ6) 22.80 18 056

1 October 2021, 37.49◦ N, 32.81[13:00] 3642.42[13:00] Yantai (YT) 1 45.00 32 137
14:02 121.44◦ E

25 August 2020, 35.53◦ N, 17.83[17:00] 422.58[17:00] Guyuan (GY1) 1 15.00 29 341
18:00 106.32◦ E

26 August 2020, 35.58◦ N, 17.01[15:00] 835.04[15:00] Guyuan (GY2) 1 18.50 32 107
16:00 105.93◦ E

14 April 2016, 26.60◦ N, 31.62[19:00] 2147.58[19:00] Guiyang (GYA) 1 26.20 20 690
20:00 106.72◦ E

9 May 2016, 23.90◦ N, 47.45[18:00] 4572.70[18:00] Baise (BS) 1 – 38 353
18:51 106.60◦ E

a Date and Beijing local time of hailstorm occurrences. Hailstones were collected within 30 min during hail. b Latitude and longitude where the hailstone were collected.
c Total column water vapor values (Beijing local time of ERA5 reanalysis data in square brackets; Hersbach et al., 2018). d Depth between freezing level and orography
(Beijing local time of ERA5 reanalysis data in square brackets; Hersbach et al., 2018). e Location and sample abbreviations. f Numbers of hailstones used in the experiments.
g Diameter of hailstones (– means no record). h Insoluble particle number in hailstones.

ements with an atomic number greater than 4 could be de-
tected due to the X-ray input window being made of beryl-
lium. Each shell sample was analyzed within approximately
4 h by SEM and EDX. The scanning mode of SEM was set
in a random order to reduce errors caused by bias in the de-
tection area.

2.2 Clustering and classification

The number of insoluble particles was measured using Aztec
on SEM images, but the species could not be determined
directly and were identified by a machine learning method.
The criteria of species classification were established by the
SOMs method to determine the species of unclassified parti-
cles. These labeled particles were then regarded as the train-
ing set in the random forest classifier. Details are presented
in Fig. 3.

With reference to the studies of Ault et al. (2012) and
Kirpes et al. (2018) and considering the results of elemen-
tal weight ratios determined by EDX analysis, 19 elements
(N, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu,
Br, Ba, and Pb) were selected to confirm the species of the

particles. C and O were not taken in account when clustering
or classifying particles as the membrane filters were made
from cellulose acetate and cellulose nitrate, which contain C,
H, N, and O. We could not detect H because the ray input
window was made of beryllium. All particles showed high
contents of C and O but different contents of N; thus, N was
retained as a feature of classification.

Species of aerosol particles vary with sampling location
(Tao et al., 2017). Therefore, when establishing the matri-
ces of elemental weight ratios for clustering, equal amounts
of data were randomly extracted from the sample data from
each province to ensure the inclusion of a consistent pro-
portion of samples from each region in the training process.
A hailstone from FS (collected from Fushun City, Liaoning
Province) was shown to contain 13 648 insoluble particles,
which was the smallest amount among all samples from six
provinces (Fig. 1). With random sampling of 13 648 parti-
cles from each province, the matrix used in clustering anal-
yses included 81 888 particles. This operation was repeated
100 times to obtain 100 matrices Mi with i ranging from 1
to 100.
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Figure 1. Geographical distribution of collected hailstones. The collection locations of the hailstones are indicated by black dots. Provinces
of China from which the hailstones were collected are represented by six different colors. The number of hailstones we analyzed was
indicated in parentheses. Abbreviations (corresponding to Table 1): BJ – Beijing; BS – Baise; FS – Fushun; GY – Guyuan; GYA – Guiyang;
YT – Yantai. Publisher’s note: please note that this figure contains disputed territories.

Each matrix Mi was clustered using the SOMs method.
SOMs belong to the category of competitive learning algo-
rithms and are a type of artificial neural network (Kohonen,
1990). A basic SOMs network consists of an input layer,
weight vectors, and an output layer. Each neuron in the out-
put layer possesses a set of weight vectors, which represent
the topological structure of the neurons in the output layer,
associated with the inputs. SOMs are commonly used as di-
mensionality reduction algorithms, enabling the representa-
tion of high-dimensional data in a lower-dimensional struc-
ture while preserving the original topology. When SOMs are
trained on unlabeled data for clustering purposes, it proves
to be highly beneficial in clustering unlabeled and high-
dimensional inputs into visualized two-dimensional outputs.

We utilized the SOMs code from MATLAB’s deep learn-
ing toolbox. The input of SOMs is Mi . At the beginning,
the neural network in the output layer was initialized as a 1-
D dimension with k neurons. The number of neurons in the
output layer matches k ranging from 2 to 10. The operation
of SOMs with the same initialized k neurons and input ma-
trix Mi was repeated 100 times to ensure result robustness.
The clustering result was stored in matrix Ck,i,j , which cor-
responded to the given k centroids in Mi with j th SOMs op-
eration. Each Ck,i,j matrix consists of k rows and 19 columns
(corresponding to the number of elemental features). Four

indices, namely, the silhouette index (Rousseeuw, 1987), the
Calinski–Harabasz index (Calinski and Harabasz, 1974), the
modified Hartigan index (de Amorim and Hennig, 2015;
Hartigan, 1975), and the Davies–Bouldin index (Davies and
Bouldin, 1979), were selected as evaluation indicators to de-
termine the parameters k, i, and j . The silhouette index,
Davies–Bouldin index, and Calinski–Harabasz index assess
the similarity between a particle and others within the same
cluster, as well as the dissimilarity across different clusters
for a given k. The Hartigan index evaluates whether it is wor-
thy to increase the k. Notably, the Hartigan index has under-
gone modifications that preserve its statistical meaning while
conserving computational resources.

The Hartigan index (de Amorim and Hennig, 2015; Harti-
gan, 1975) is defined as follows:

H (k)= (N − k− 1)
[

err(k)
err(k+ 1)

− 1
]
, k = 2–10, (1)

err(k)=
k∑
g=1

∑
xg∈Cg

(
xg −Cg

)2
, (2)

where k is the number of clusters, N is the number of obser-
vations, Cg is the centroid of cluster g, and xg is the obser-
vation of cluster g.

Atmos. Chem. Phys., 23, 13957–13971, 2023 https://doi.org/10.5194/acp-23-13957-2023



H. Zhang et al.: Analysis of insoluble particles in hailstones in China 13961

Figure 2. Schematic diagram illustrating the experimental framework. (1–2) The surface of each hailstone was polished to remove any
attached grass or soil. (3) Subsequently, the hailstones were sliced into cross-sections along the major axis, corresponding to the size of the
hailstone embryo. (4–7) After photographing the hailstone cross-sections, they were further subdivided into shells using heated Fe–Cr alloy
wire at an air temperature below −8 ◦C. The shells were distinguished based on their natural transparency or opacity. (8) The solution of
melting shell samples was then passed through a filter membrane to isolate the insoluble particles. (9) Each shell sample underwent analysis
using scanning electron microscopy and energy-dispersive X-ray spectrometry to determine the elemental weight ratios of the insoluble
particles within approximately 4 h. (11) Finally, the elemental weight ratio information of hailstones was obtained.

The calculation of H (k) requires clustering for values of
k ranging from 2 to 11 in order to obtain H (2), H (3), . . . ,
H (10). Clustering particles into 11 clusters would require
performing an additional 10 000 iterations of the SOMs, with
100 iterations of extracting Mi and 100 iterations of SOMs
for each Mi . Additionally, we observed that the SOMs did
not perform well in the silhouette index (Sil), the Calinski–
Harabasz index (CH), and the Davies–Bouldin index (DB)
when k = 2. As a result, we introduced modifications to the
Hartigan index.

Hart(k)= [N − (k− 1)− 1]
[

err(k− 1)
err(k)

− 1
]
,

k = 2–10 (3)

err(k)=
k∑
g=1

∑
x∈Cg

(
xg −Cg

)2
, k ≥ 2 (4)

When k = 1, it indicates that all particles belong to one clus-
ter.

err(1)=
N∑
n=1

(xn−C)2 (5)

where C is the centroid of all data and xn refers to the ob-
servation of data. In clustering with a specific value of k, our

objective is to have particles tightly grouped together in fea-
ture space while ensuring that the centroids exhibit a signifi-
cant dispersion compared to k−1. A higher value of Hart(k)
for a given k indicates improved clustering performance. The
best k, i, and j were chosen by combining the evaluation of
the four indices (Fig. 4). We applied max normalization to
rescale the four indices, Sil(k), CH(k), DB(k), and Hart(k).
Subsequently, the best combination of k, i, and j was deter-
mined, resulting in {Sil(k, i,j )+CH(k, i,j )+Hart(k, i,j )−
DB(k, i,j )}, reaching its maximum.

The centroid matrix Ck,i,j with the best k, i, and j was
treated as an instruction for random forest classification. The
chosen centroid matrix Ck,i,j with the top four elements is
shown in Fig. 5 with k = 6. The first species with a low el-
emental weight ratio, except for C and O contents, was con-
sidered to be organics. The second species with high Fe con-
tent and low Cr content was introduced by the material of the
slicer used in the experiment. The third species had a high
Al content, representing oxides or carbonates of aluminum.
The fourth and fifth species were mineral silicates. Thus, the
third, fourth, and fifth species were referred to as dust. The
last species with high N content was protein-containing bio-
logical aerosol.

The random forest method was applied in classifying in-
soluble particles, which involves randomly growing 100 clas-
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Figure 3. Schematic diagram illustrating the methodological framework used for particle identification in this study. A total of 100 matrices
Mi , with i ranging from 1 to 100, were utilized in self-organized-maps clustering analyses, each containing 81 888 unidentified particles
with 19 elemental features (N, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Br, Ba, and Pb). The centroid matrix Ck,i,j represents
the clustering results obtained through the self-organized-maps method with a given cluster number k. The self-organized-maps operation
with the same k was repeated 100 times to ensure result robustness, where j denotes the number of repetitions ranging from 1 to 100. Four
indices – silhouette index (Sil), Calinski–Harabasz index (CH), modified Hartigan index (Hart), and Davies–Bouldin index (DB) – were
employed to determine the optimal parameters k, i, and j . The matrix Mi containing the identified 81 888 particles was randomly divided
into a training set (80 %) and a test set (20 %) for random forest classification. The 10-fold cross-validation was utilized to determine the best
tree. Abbreviations (corresponding to Table 1): BJ – Beijing; BS – Baise; FS – Fushun; GY – Guyuan; GYA – Guiyang; YT – Yantai.

sification trees. The training set consisted of 80 % of par-
ticles of Mi , and 10-fold stratified cross-validation was ap-
plied during the training process to find the best tree among
the 100 random trees. The remaining 20 % of particles of Mi

were used as the test set to evaluate the best tree. The con-
fusion matrix of classification results is shown in Table 2.
All remaining insoluble particles were classified by this tree.
Finally, we identified three species: organics, dust, and bio-
protein aerosols.

2.3 Conversion of insoluble particle number
concentration

Particle number was converted to a number concentration
per cubic centimeter volume water (hereinafter referred to
as number concentration) using the following formula:

nliquid ·Vliquid =Nliquid =Ndiluted = ndiluted ·Vdiluted. (6)

The number of insoluble particles in the melted-shell solu-
tion (Nliquid) can be calculated by multiplying their number
concentration (nliquid) with the volume of the shell solution
(Vliquid). Part of the solution was not used up in the experi-
ments and was kept as a backup. Therefore, the shell solution

Table 2. Confusion matrix of the best random forest classifier tree.
The numbers on the diagonal are accurately predicted insoluble par-
ticles. Numbers in bold indicate the accuracy of the prediction of
each type.
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Figure 4. Evaluation of self-organized-maps clustering results.
The clustering results of self-organized maps were evaluated us-
ing (a) the silhouette index, (b) the Davies–Bouldin index, (c) the
Calinski–Harabasz index, and (d) the Hartigan index. The self-
organized-maps operation was repeated 100 times to ensure result
robustness. The solid lines and shading represent the average and
spread of 100 repetitions, respectively.

was diluted in some experiments, and part of the solution was
consumed in the experiments. As in the melting solution, the
number of insoluble particles in the diluted solution (Ndiluted)
can be calculated by multiplying their number concentration
(ndiluted) with the volume of the diluted solution (Vdiluted).
The total particle number in the melted shell (Nliquid) remains
unchanged during the dilution process (Ndiluted).

ndiluted = nused =
Nused

Vused
(7)

The number concentration of the diluted solution (ndiluted) is
equal to that of the consumed part (nused). Assuming that the
rinsing operation ensures all insoluble particles in the shell
were on the membrane, the number of insoluble particles in
the consumed solution (Nused) is equal to the number of in-
soluble particles counted on the membrane (Nfilter).

We use SEM to capture electron microscopy images of
the membrane. Assuming a uniform distribution of insoluble
particles on the filter membrane, software randomly captured
electron microscopy photos of the membrane and counted
the visible insoluble particles in those images. The relation-
ship between the total number of visible insoluble particles
counted in the images (Ncount) and Nfilter is as follows:

Simages

Sfilter
=
Ncount

Nfilter
. (8)

That is, Nfilter is determined by multiplying Ncount by the ra-
tio of the areas between the entire filter membrane (Sfilter)
and the electron microscopy images (Simages). These three
formulas (Eqs. 6–8) were reduced to Eq. (9):

nliquid =
1

Vliquid
·
Sfilter

Simages
·
Vdiluted

Vused
·Ncount. (9)

Here, Sfilter, Simages, Ncount, Vdiluted, and Vused can be mea-
sured. The liquid volume (Vliquid) was determined as the av-
erage of readings obtained by two experimenters from the
test tube. Take the logarithm on both sides:

lnnliquid =− lnVliquid+ lnSfilter− lnSimages

+ lnVdiluted− lnVused+ lnNcount. (10)

Based on Eq. (10), a tiny change in nliquid can be represented
as dnliquid:

dnliquid = nliquid

·

(
−

dVliquid

Vliquid
+

dVdiluted

Vdiluted
−

dVused

Vused
+

dNcount

Ncount

)
, (11)

where

dSfilter = dSimages = 0. (12)

The uncertainty (1) of nliquid comes from the measurement
error of the experimental instruments, following the below
(Taylor, 1997):

1= nliquid

·

√(
dVliquid

Vliquid

)2

+

(
dVdiluted

Vdiluted

)2

+

(
dVused

Vused

)2

+

(
dNcount

Ncount

)2

. (13)

Here, the accuracy of the test tube is 0.1 mL. The term dV
represents the greatest reading error caused by humans and
was set to 0.05 mL. The quantity dNcount

Ncount
corresponds to the

uncertainty associated with the size of insoluble particles and
the scan settings.

dNcount

Ncount
=

dPs
Ps
=

3
6340608

(14)

The term dPs represents the minimum number of pixels that
can be detected in an image. Ps denotes the total number of
pixels in the micrograph.

2.4 Curve fitting

We aggregated insoluble particles into 0.2 µm intervals
(0.2 µm bin interval in Figs. 6 and 9 and 2 µm bin interval
in Figs. 7 and 8) to fit the logarithmic normal distribution:

n (lnD)=
N

√
2π lnσg

· exp

[
−

(
lnD− lnDg

)2
2ln2σg

]
. (15)

N denotes the total number concentration of particles. Both
n(lnD) and n(D) represent the size distributions of particles,
where D is the diameter of insoluble particles. n(lnD) and
n(D) can be converted to each other by D.

n(D)=
1
D
· n (lnD) (16)

When the Ncount in an interval equals 1, the number concen-
tration will exhibit a flat tail due to the conversion to obtain
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Figure 5. Centroids of clustering with six clusters from self-organized-maps results and each species portion. Colored bars show the top four
elements of each species. The stem bars show the portion of each species. The average contents of C and O of each species are marked at the
end of the stem bars.

nliquid. The fitting data were selected with intervals equal to
0.2 µm. The least-squares method was applied to determine
the fitting parameters, and R2 was used to estimate the good-
ness of fit. The two centroids of the fitting parameters of or-
ganics and dust were determined by the K-means method.

3 Results

A total of 289 461 insoluble particles were detected from 30
shells of 12 hailstones using SEM. The identification of in-
soluble particles employed SOMs for clustering and random
forest for classification. Four indices were utilized to deter-
mine the appropriate parameters in clustering. The cluster-
ing results were divided into a training set and a testing set
for classification. The confusion matrix of the best classifier
showed an accuracy, precision, and recall of 99.7 %, 99.3 %,
and 99.2 %, respectively. All particles were classified as or-
ganics, dust, and bioprotein aerosols (i.e., the fraction of bi-
ological aerosols with protein content).

3.1 Sample similarity

Five of the 12 hailstones (BJ2–BJ6) were from the same hail-
storm that occurred in Beijing on 30 June 2021. The insolu-
ble particles present in BJ2–BJ6 showed similarity in the size
distribution of organics, dust, and bioprotein aerosols, while
those from eight hailstones (BJ1, BJ2, BS, FS,GY1, GY2,

YT, and GYA) exhibited a wider dispersion (Fig. 6). The re-
sults were similar to those of Li et al. (2018), who reported
that the number concentrations of water-soluble ions varied
among hailstorm events but showed similarity in the same
storm (Li et al., 2018). These analyses suggested that insol-
uble particles in the hailstorm may come from local natu-
ral or anthropogenic emissions (e.g., soil dust, aerosols from
biomass and fossil fuel combustion, and/or products of the
conversion of gaseous precursors), which is also suggested
by the results for water-soluble ions (Beal et al., 2022).
The updraft within the hailstorm is likely to bring insoluble
particles from local surfaces or boundary layers into deep-
convective clouds as hailstorms are among the most severe
storms with strong updrafts (Battaglia et al., 2022).

3.2 Size distribution in embryos

All hailstone embryos analyzed in this study are graupel par-
ticles, which grow from the initial ice particles through ac-
cretion of supercooled droplets (Knight, 1981). These initial
ice particles are formed through nucleation of insoluble par-
ticles where heterogeneous nucleation takes place (Lamb and
Verlinde, 2011). In other words, insoluble particles in grau-
pels influence the formation of ice crystals and subsequently
affect the formation of hailstone embryos.

The variations in number concentrations of dust and bio-
protein insoluble particles indicate that particle number con-
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Figure 6. Size distribution of (a) organics, (b) dust, and (c) bioprotein aerosols of insoluble particles in 12 hailstones. The colored dots
represent data from seven hailstones (BJ1, BS, FS,GY1, GY2, YT, and GYA) which were from different hailstorms. The black and gray dots
correspond to data from hailstones (BJ2 to BJ6) that were from the same hailstorm that occurred in Beijing on 30 June 2021. The blue and
gray bars indicate the standard deviation of the number concentration of insoluble particles from eight hailstones (BJ1, BJ2, BS, FS,GY1,
GY2, YT, and GYA) from eight cases and five hailstones (BJ2 to BJ6) from one case, respectively. Abbreviations (corresponding to Table 1):
BJ – Beijing; BS – Baise; FS – Fushun; GY – Guyuan; GYA – Guiyang; YT – Yantai.

centrations decrease exponentially with particle diameter,
with markable variation observed among hailstorms (Fig. 7).
BJ2 was selected to represent five hailstones from the same
storm to simplify comparison. The size distribution distin-
guishes organics from dust and bioprotein aerosols. The
number concentrations of organics from all samples decrease
with particle diameters less than 8 µm, while those of GY1
and GY2 fluctuate starting at diameters of 8 and 12 µm,
respectively. Compared to other hailstones, GY1 and GY2
were collected in remote areas, where there are fields of rural

areas dedicated to growing crops near the south of the Gobi
Desert. Therefore, GY1 and GY2 have a coarse mode of or-
ganics with particle diameters larger than 12 µm, possibly
due to the emission of spring wheat straw burning and unre-
stricted diesel engine vehicles. The transport of coal combus-
tion in surrounding cities may also contribute to the coarse-
mode organics. Among all cases, there is a significant vari-
ance in the size distribution of both organics and dust. The
number concentration of organics from a hailstone embryo
varied from 1 to 390 times compared to those at the same
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Figure 7. Size distribution of (a) organics, (b) dust, and (c) bioprotein aerosols in hailstone embryos. Colors represent different hailstones.
Abbreviations (corresponding to Table 1): BJ – Beijing; BS – Baise; FS – Fushun; GY – Guyuan; GYA – Guiyang; YT – Yantai.

particle diameter in hailstone embryos from different cases.
The number concentration of dust from a hailstone embryo
varied from 1 to 527 times compared to those at the same
particle diameter in hailstone embryos from different cases.
The number concentrations of dust from BJ1, BJ2, and GY1
are at least 3 times higher than those of organics in particles
of the same diameter in the range of 2–24 µm.

Moreover, dust showed a wider size distribution than or-
ganics and bioproteins among all samples. Dust from GY1
had a higher number concentration and a larger maximum
size (42 µm) compared to other hailstone embryos. Hailstone
samples with high insoluble particle content, i.e., GY1 and
GY2, showed significantly lower total column water vapor
values and smaller depths between freezing-level height and
orography within 1 h before hailstorm occurrence compared
to other hailstones (Table 1). The competition between con-
densation and the relatively shorter updraft pathway might
be responsible for the high number concentrations of organ-
ics, dust, and bioproteins in GY1 and GY2 as compared with
other hailstones. Bioprotein aerosols, with high freezing ef-
ficiency, may have formed initial ice particles in GY1, GY2,
and YT, while dust or organics formed initial ice particles
in hailstorms in the other five cases. All hailstone embryos
contained organics and dust, but not all hailstone embryos
contained a significant amount of bioprotein aerosols. Due
to limited comprehension of the transportation and transfor-
mation processes of biological materials, it is challenging to

establish a definitive relationship between biological protein
particles and biological aerosols (Fröhlich-Nowoisky et al.,
2016).

3.3 Size distribution in shells

The size distributions of each species varied little in terms
of characteristics between outer shells with the embryos
(Fig. 8). In a four-shell hailstone, the number concentrations
of insoluble particles exhibited V-shaped distributions (BS
and YT) or inverse V-shaped distributions (BJ1) from em-
bryo to crust. Five out of nine two-shell hailstones showed
higher number concentrations of dust in crusts than in em-
bryos, while seven of them showed higher number concen-
trations of organics in embryos than in crusts. Moreover, the
quantification of differences in number concentration varied
little among shells. The 90.5 % points showed that differ-
ences in the number concentration of the same kinds of par-
ticles in a shell compared to those of the previous shell at
the same diameter were within a factor of 2 (294 data points
in Fig. 8). This observation is attributed to the fact that the
growth of hailstones beyond the embryo stage relies on the
accretion of supercooled water rather than ice crystals (Lamb
and Verlinde, 2011). Consequently, the hailstone record not
only insoluble particles during the embryo formation but also
insoluble particles in the hailstone growth zone throughout
the hailstorm. As a result, the size distribution of particles
within all of the hailstones may represent the distribution of
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Figure 8.

insoluble particles in deep-convection regions through which
the hailstones went.

3.4 Logarithmic normal distribution of dust and organics

The size distributions of dust and organics in the whole hail-
stone can be described by a logarithmic normal distribution
(Fig. 9) (Lamb and Verlinde, 2011):

n (lnD)=
N

√
2π lnσg

· exp

[
−

(
lnD− lnDg

)2
2ln2σg

]
,

(D > 0.2µm), (17)

where n(lnD) is the number concentration of insoluble parti-
cles per cubic centimeter volume water ranging from lnD−
1
2 dlnD to lnD+ 1

2 dlnD. Here,D represents the diameter of
particles (in micrometers), lnDg is the geometric mean di-
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Figure 8. The size distribution of insoluble particles within the natural shells of 12 hailstones is represented. Blue triangles, orange squares,
and purple diamonds are used to indicate dust, organics, and bioprotein aerosols, respectively. The natural shells are denoted alphabetically
with capital letters (shell A refers to embryos, and shell B–D refers to the crust of hailstones). The arrow direction illustrates the tendency of
particle number concentration in each layer compared to the previous shell. Shading is employed to indicate uncertainty. Detailed calculations
are provided in Sect. 2.3. Abbreviations (corresponding to Table 1): BJ – Beijing; BS – Baise; FS – Fushun; GY – Guyuan; GYA – Guiyang;
YT – Yantai.

ameter, and lnσg is the geometric standard deviation (Lamb
and Verlinde, 2011). The number of bioprotein aerosols was
below the limit of detection in some samples so that only
the curves of organics and dust were fitted. The fitting pa-
rameters of the same species were aggregated in parameter
space and were suspected to be related to the physical prop-
erties of each species, requiring further studies for confirma-
tion. Moreover, the fitting parameters of organics and dust
particles were clustered into two centroids (Fig. 9) by the K-
means method, which indicated that organics and dust have
two classic modes (classic mode of organics: lnDo =−0.70,
lnσo = 0.91, and No = 9.19× 105 cm−3; classic mode of
dust: lnDd = 0.11, lnσd = 1.07, andNd = 1.59×106 cm−3).
That is, insoluble organics in hailstones are usually smaller in
diameter and present in lower amounts than dust. Regardless
of fine or coarse particles (particles D< 0.5 µm in diameter
were not considered in reference to DeMott et al., 2010), the
number concentration of dust was up to 2 orders of magni-
tude higher than the number concentration of organics. These
observations indicated that dust accounted for the major por-
tion of particles in eight hailstorms (not considering biopro-
tein), which was consistent with the observations of embryos
described above.

4 Conclusions

This was the first study to simultaneously analyze both the
number concentrations and species (including organics, dust,
and bioproteins) of insoluble particles in hailstones. The find-
ings from this analysis offer valuable insights into particle
observations within severe storms. Understanding the num-
ber concentration and composition of these insoluble parti-
cles is crucial as they play a significant role as ice-nucleating
particles during the heterogeneous nucleation process in deep
convection.

The size distribution of insoluble particles in hailstones
from the same hailstorm showed less variation than those
from different hailstorms. One possible reason is that up-
drafts of hailstorms brought insoluble particles from local
surfaces or boundary layers into deep-convective clouds.
Moreover, almost all insoluble particles in hailstone embryos
analyzed in this study showed an exponential size distribu-
tion, which was consistent with the effects of gravity. The
number concentrations of organics and dust from different
hailstone embryos differed by up to 389 times and 526 times
at the same diameter, respectively. The changes in particle
concentration may lead to at leat 1-order-of-magnitude vari-
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Figure 9. Fitting size distribution functions of organics and dust contained in the whole hailstone. (a–h) Fitting parameters of logarithmic
normal distributions of BJ1, BJ2, BS, FS, GY1, GY2, YT, GYA. (i) Classic modes of dust and organics (interval of data is 0.2 µm, and
fitting curves are painted with intervals of 0.02 µm). The fitting parameters for panels (a)–(h) are listed in Table 3. The fitting range of
(a)–(h) is shown with a green rectangle in (i). The centroid of the organics’ fitting parameter (orange line) is lnσo = 0.91, lnDo =−0.70,
and No = 9.19× 105 cm−3. The centroid of the dust fitting parameter (blue line) is lnσd = 1.07, lnDd = 0.11, and Nd = 1.59× 106 cm−3.
Shading shows uncertainty of organics and dust. Abbreviations (corresponding to Table 1): BJ – Beijing; BS – Baise; FS – Fushun; GY –
Guyuan; GYA – Guiyang; YT – Yantai.

ance in ice-nucleating particles (DeMott et al., 2010). Addi-
tionally, the size distribution of insoluble particles varied in
shells by up to 27 times, which was much smaller than dif-
ferences between different hailstorms.

Two logarithmic normal distribution models were applied
to fit the size distribution of organics and dust within hail-
stones, providing a description of insoluble particles in the
deep convection during hailstone formation. The analysis of
the two classic size distribution modes of insoluble parti-
cles indicated a significant presence of dust without con-
sidering bioprotein. Furthermore, a positive correlation ex-

ists between the number concentrations of insoluble particles
and those of ice-nucleating particles in hailstones, specifi-
cally for corresponding species (figure not shown). A further
measurement of ice-nucleating particles by drop-freezing ex-
periments will establish the relationship between insoluble
particles and immersion ice-nucleating particles. The combi-
nation of these results with future experiments to determine
the number concentrations and species of particles from local
observations will establish the relationship between surface
observations and ice-nucleating particles in deep-convective
clouds, which will lead to an improvement in the parameteri-
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Table 3. The fitting parameters of dust and organics size distributions in Fig. 9a–h.

Sample No (cm−3) lnDo lnσo R2
o Nd (cm−3) lnDd lnσd R2

d

BJ1 4.57× 105
−0.98 0.90 0.97 7.11× 105 0.20 1.06 0.93

BJ2 9.32× 104
−0.90 0.88 0.98 2.55× 105 0.02 1.01 0.89

BS 6.65× 105
−0.75 0.98 0.97 4.12× 105 0.40 0.84 0.91

FS 4.13× 105
−1.12 0.93 0.89 2.35× 105

−0.05 1.15 0.87
GY1 2.66× 106

−0.05 0.69 0.97 8.15× 106 0.57 0.96 0.98
GY2 1.60× 106 0.10 0.79 0.98 1.25× 106 0.37 1.06 0.95
YT 1.21× 106

−0.90 0.87 0.98 1.16× 106 0.20 0.92 0.94
GYA 2.51× 105

−0.99 1.21 0.84 5.06× 105
−0.87 1.57 0.79

zation of ice-nucleating particles in both weather and climate
models.

Nonetheless, two kinds of classic size distribution modes
of organics and dust in hailstones were performed, but a more
robust classic mode required a larger number of samples.
In future, for climate or weather models, the classic mode
can be assumed as the mean state to describe the characteris-
tics of insoluble particles in supercooling water. In addition,
this study did not attempt to parameterize bioprotein aerosols
because there was a great uncertainty in quantification due
to a poor understanding of biological processes (Fröhlich-
Nowoisky et al., 2016). Further collaborative studies are re-
quired to gain a better understanding of biological processes
to establish the classic bioprotein mode.
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