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Abstract. Net-zero emission policies principally target climate change but may have a profound influence on
surface ozone pollution. To investigate this, we use a chemistry–climate model to simulate surface ozone changes
in China under a net-zero pathway and examine the different drivers that govern these changes. We find large
monthly mean surface ozone decreases of up to 16 ppb in summer and small ozone decreases of 1 ppb in winter.
Local emissions are shown to have the largest influence on future ozone changes, outweighing the effects of
changes in emissions outside China, changes in global methane concentrations, and a warmer climate. Impacts of
local and external emissions show strong seasonality, with the largest contributions to surface ozone in summer,
while changes in global methane concentrations have a more uniform effect throughout the year. We find that
while a warmer climate has a minor impact on ozone change compared to the net-zero scenario, it will alter
the spatial patterns of ozone in China, leading to ozone increases in the south and ozone decreases in the north.
We also apply a deep learning model to correct biases in our ozone simulations and to provide a more robust
assessment of ozone changes. We find that emission controls may lead to a surface ozone decrease of 5 ppb
in summer. The number of days with high-ozone episodes with daily mean ozone greater than 50 ppb will be
reduced by 65 % on average. This is smaller than that simulated with the chemistry–climate model, reflecting
overestimated ozone formation under present-day conditions. Nevertheless, this assessment clearly shows that
the strict emission policies needed to reach net zero will have a major benefit in reducing surface ozone pollution
and the occurrence of high-ozone episodes, particularly in high-emission regions in China.
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1 Introduction

Rapid changes in air pollution have occurred in China over
the last few decades because of dramatic transformations in
economic development and air pollutant emissions. Follow-
ing substantial increases in emissions in the 1990s and 2000s,
nationwide pollutant emission controls since 2013 have led
to remarkable reductions in fine particulate matter (PM2.5),
with national-population-weighted annual mean concentra-
tions decreasing from 62 to 42 µgm−3 during 2013–2017
(Zhang et al., 2019). However, surface ozone (O3) pollution
is becoming increasingly prevalent in China despite these
emission controls, as recent emission policies have primar-
ily targeted fine particles (T. Wang et al., 2022). Reductions
in the emissions of nitrogen oxides (NOx), a precursor of
both O3 and fine particles, may lead to increased O3 con-
centrations due to non-linear O3 chemistry (Liu et al., 2021)
and to strengthened incoming solar radiation (Hollaway et
al., 2019). In addition, anthropogenic emissions of other O3
precursors that contribute to O3 formation, e.g. volatile or-
ganic compounds (VOCs) and methane (CH4), are less well
regulated (Li et al., 2019). Observed summertime surface
maximum 8 h average (MDA8) O3 concentrations in China
showed a consistent annual increase of 1.9 ppb between 2013
and 2019 (Li et al., 2020), and this increase is greater in high-
emission regions, reaching 3.3 ppbyr−1 on the North China
Plain. Given that O3 production in these regions tends to be
VOC-limited (W. Wang et al., 2022), reducing emissions of
NOx and VOCs simultaneously has become crucial. There
are also significant natural sources of O3 precursors from
vegetation and soils that may increase due to a warmer cli-
mate (Doherty et al., 2013; Fiore et al., 2015). Since surface
O3 is detrimental for human health, plant growth, and crop
yields (WHO, 2021), robust and effective emission controls
on O3 precursors are needed.

The Intergovernmental Panel on Climate Change (IPCC)
calls for cutting global greenhouse emissions to close to zero
to reduce the risks of climate change (IPCC, 2022). Many
countries have recently adopted such net-zero policies to re-
duce net greenhouse gas emissions to zero by 2050, and
China has also implemented emission policies that aim to
achieve a carbon peak before 2030 and carbon neutrality by
2060 (Tay, 2022). These low-carbon policies alongside re-
ductions in anthropogenic air pollutant emissions will have
co-benefits for both global climate and air quality (UNEP,
2022). However, since surface O3 changes are not directly
proportional to emission changes, it is challenging to quan-
tify the benefits for O3 accurately. Future O3 is also influ-
enced by climate change through changes in atmospheric
stagnation, natural emission sources, chemical reaction rates,
and deposition rates (Hong et al., 2019; Zanis et al., 2022;
Brown et al., 2022). Regional surface O3 changes also de-
pend on emission pathways in other parts of the world, which
influence the long-range transport of O3 and its precursors
across continents (Wild et al., 2012; Doherty, 2015). The

combination of these factors shapes the changes in the fu-
ture O3 but imposes large uncertainties in O3 projections
(Turnock et al., 2020), which poses a challenge to assess the
underlying impacts of net-zero policies on future air quality.

While the general relationships between O3, its precursor
emissions, and climate change are known well (Zeng et al.,
2008; Hedegaard et al., 2013; Doherty et al., 2013; Grif-
fiths et al., 2021), the relative importance of these drivers
remains very uncertain. Challenges remain in the capabil-
ity of chemistry–climate models to simulate O3 changes ac-
curately because processes occurring at small scales cannot
be resolved adequately. Young et al. (2018) show that there
are systematic biases in the simulation of present-day O3
concentrations in current chemistry–climate models, and this
raises questions regarding their skill in representing long-
term O3 changes (Parrish et al., 2021). Averaging output
from a number of different models is a common way to ob-
tain more robust results but does not eliminate the O3 bi-
ases that are shown to be systematic (Revell et al., 2018). In
addition, the models tend to use different parameterisations
to represent different processes (Wild et al., 2020) and may
misrepresent the importance of local emission controls or the
risks caused by climate change. It is hence valuable to correct
model simulations to produce more robust O3 projections.

A practical way to address this is to apply deep learning
models. Deep learning approaches have developed quickly in
the last decade due to advances in computational speed that
allow intensive training, and they have been applied widely
in scientific fields (LeCun et al., 2015). Deep learning mod-
els have been shown to be a universal approximator (Hornik
et al., 1989) and can thus be applied to compensate for dis-
crepancies between physical model simulations and observa-
tions. We have demonstrated a successful application of deep
learning to correct the biases in surface O3 simulations from
a global chemistry–climate model (Z. Liu et al., 2022a) and
found that changes in surface O3 in high-emission regions
across the world may be overestimated with the process-
based model. This bias correction approach allows us to pro-
vide a more robust and reliable assessment of future surface
O3 projections under the effect of different emission policies
and facilitates an examination of their effectiveness.

The aim of this study is to produce reliable estimates of
future O3 changes associated with changing emissions and
climate under a net-zero pathway in China and to determine
how well strict emission controls can tackle the increasing
frequency of high-O3 episodes. We introduce the chemistry–
climate model used in Sect. 2 along with different emission
and climate scenarios, and we describe the deep learning
model that we have implemented to correct surface O3 bi-
ases. In order to highlight the value of bias correction, we
show the results of version 1 of the United Kingdom Earth
System Model (UKESM1) before showing the corrected re-
sults. We first investigate surface O3 changes in China from
the present day to the future under a net-zero emission path-
way simulated with UKESM1 in Sect. 3. The influences of
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emission changes outside China, changes in global CH4 con-
centrations, and climate change are examined in Sect. 4. We
demonstrate the capability of the deep learning model in sim-
ulating the biases in surface O3 and apply this bias correc-
tion technique to estimate future O3 changes and high-O3
episodes in Sect. 5. Conclusions are presented in Sect. 6.

2 Approach

2.1 Description and application of the chemistry–climate
model

We use version 1 of the United Kingdom Earth System
Model, UKESM1 (Sellar et al., 2019), to simulate surface O3
mixing ratios in the present day (2013–2017) and the future
(2060–2070) under different scenarios. UKESM1 consists of
a physical climate model, the Hadley Centre Global Environ-
ment Model version 3 (HadGEM-GC3.1), configured with
the Global Atmosphere 7.1 (GA7.1) and Global Land 7.0
(GL7.0) components (Walters et al., 2019), to which other
Earth system processes are coupled (Sellar et al., 2019). A
state-of-the-art module for modelling atmospheric composi-
tion in the troposphere and the stratosphere and the United
Kingdom Chemistry and Aerosol model (UKCA; Morgen-
stern et al., 2009; O’Connor et al., 2014) are included. A gas-
phase chemistry scheme, StratTrop (Archibald et al., 2020b),
and an aerosol scheme, GLOMAP-mode (Mulcahy et al.,
2020), are used in UKCA. An extended chemistry scheme
based on StratTrop that incorporates more reactive VOC
species including alkenes, alkanes, and aromatics is used in
this study to permit a more realistic representation of the
chemical environment in China (Liu et al., 2021). The model
resolution is N96L85 in the atmosphere, with 1.875◦ in lon-
gitude by 1.25◦ in latitude, 85 terrain-following hybrid height
layers, and a model top at 85 km.

We use the atmosphere-only configuration of UKESM1
with prescribed present-day and future sea surface temper-
atures (SST) and sea ice (SICE) in the form of monthly
mean time-evolving fields to investigate the transient impacts
of changing emissions under different climates. These fields
alongside global values for greenhouse gas and methane con-
centrations are generated from fully coupled UKESM1 runs
for historical and future simulations conducted as part of the
Coupled Model Intercomparison Project Phase 6 (Eyring et
al., 2016). We nudge the model with ERA-Interim meteo-
rological reanalysis data for the present-day simulations and
allow the model to run freely in the simulations of future sce-
narios.

2.2 Emissions and experiments

We use Coupled Model Intercomparison Project Phase 6
(CMIP6) year-2014 emissions, the latest year available, to
represent present-day anthropogenic (Hoesly et al., 2018)
and biomass burning emissions (Van Marle et al., 2017) for

the globe but replace anthropogenic emissions in China with
an up-to-date regional emission inventory over 2013–2017,
the Multi-resolution Emission Inventory for China (MEIC;
Li et al., 2017). Biogenic VOC emissions are calculated in-
teractively with the iBVOC emissions scheme in the Joint
UK Land Environmental Simulator (JULES) land surface
scheme (Pacifico et al., 2011), which is coupled to UKCA.
Other online natural emissions such as sea salt, dust, and
lightning NOx are the same as in UKESM1 simulations for
CMIP6 (Turnock et al., 2020). Anthropogenic emissions for
five sectors (industry, power plants, transport, residences, and
agriculture) are provided for the model, and independent di-
urnal and vertical emission profiles are applied for each sec-
tor (Bieser et al., 2011; Mailler et al., 2013).

For the future, emissions under the Shared Socioeconomic
Pathways (SSPs) of CMIP6 are used to account for future
social, economic, and environmental developments (O’Neill
et al., 2014; Van Vuuren et al., 2014). We use the SSP1-1.9
pathway to represent the net-zero emission as net emissions
of greenhouse gases drop down to zero at about 2060 in this
scenario. We note that this scenario has the potential to limit
global warming to 1.5 ◦C by the end of this century. Future
scenarios for China are taken from the Dynamic Projection
model for Emissions in China (DPEC; Tong et al., 2020),
and we use the “ambitious pollution neutral goal” scenario
to represent a net-zero pathway in China. For comparison,
we use the SSP3-7.0 pathway from CMIP6, along with the
corresponding “baseline” scenario from DPEC, to represent
a low-mitigation scenario and to evaluate future O3 pollu-
tion with high emissions. In addition, to assess the impacts
of CH4 on surface O3, CH4 concentrations from SSP1-1.9
and SSP3-7.0 are used to represent low and high CH4, re-
spectively.

We perform several model experiments to investigate sur-
face O3 changes and to quantify the contribution of emis-
sion changes inside and outside China, global CH4 concen-
trations, and changes in climate; see Table 1. For each of the
future scenarios the model is spun up for 6 years and then run
for 5 years for data analysis. Table 2 summarises the global
mean total surface emissions calculated from CMIP6, MEIC,
and DPEC and the global CH4 abundance.

2.3 Development of the deep learning model

A deep learning model is developed here to correct the bi-
ases in surface O3 simulated with UKESM1. Like many other
chemistry–climate models, UKESM1 exhibits systematic bi-
ases in surface O3 (Turnock et al., 2020; Z. Liu et al., 2022b;
Archibald et al., 2020a), but it is hard to determine the origin
of these biases. While some of these biases may be attributed
to simplified chemistry, improvement in the chemical scheme
in UKESM1 has been shown to increase biases in some lo-
cations (Archer-Nicholls et al., 2021). However, this problem
can be addressed through deep learning to simulate the differ-
ences between the chemistry–climate model simulations and
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Table 1. Model configurations used for the present day (2013–2017) and six future (2060–2070) simulations. “Hist.” means that the emissions
(emis.), CH4 concentrations, or SST and SICE evolve as for the historical simulations. “NZ” means that they evolve under a net-zero pathway.
“High” means that they evolve under a high-emission scenario, SSP3-7.0.

Experiment Emis. in China Emis. outside China CH4 SST and SICE

Present day Hist. Hist. Hist. Hist.
Net zero NZ NZ NZ NZ
Local emis. High NZ NZ NZ
External emis. NZ High NZ NZ
High CH4 NZ NZ High NZ
Warmer climate NZ NZ NZ High
SSP3-7.0 High High High High

Table 2. Overview of annual mean time-varying surface emissions
of NOx , VOCs, and CO from anthropogenic (ANT), biomass burn-
ing (BB), and biogenic (BIO) sources for the present day (2013–
2017) and the future (2060–2070) net-zero and SSP3-7.0 pathways
in China. Annual mean surface CH4 mixing ratios (ppb) are also
shown.

Emission Present Net SSP3-7.0
(Tg (species)yr−1) day zero

NOx ANT 24.2 2.9 33.9
BB 0.3 0.2 0.3

Total 24.5 3.1 34.2

VOCs ANT 28.5 10.7 29.2
BB 2.0 1.1 1.6
BIO 38.0 56.4 56.9

Total 68.5 68.2 87.6

CO ANT 154.3 43.1 143.6
BB 10.1 5.6 8.6

Total 164.4 48.7 152.1

CH4 (ppb) 1844.4 1266.6 2733.5

real-world observations. The model is trained on present-day
conditions to establish a relationship between O3 biases and
key outputs of the chemistry–climate model, referred to as
features. Future O3 biases can then be predicted using fea-
tures that are generated from simulations of the future with
the chemistry–climate model. We adopt the approach applied
by Z. Liu et al. (2022a) to use 20 physical, meteorological,
and chemical variables as features, and these include vari-
ables associated with location, season, temperature, humid-
ity, wind speed, photolysis and deposition rates, and concen-
trations of key precursors; see Z. Liu et al. (2022a). We do
not use O3 concentration as a variable, as this is highly cor-
related with O3 biases and thus masks the contribution of
other factors. This approach has shown good performance in
reproducing monthly mean surface O3 biases over the globe,
with a mean bias error of 0.1 ppb. In this study, we further

develop and extend this deep learning model to predict the
biases in daily mean O3, which enables the examination of
the occurrence of high-O3 episodes. We note that the CH4
concentration is not included as an input feature because its
variation under present-day conditions is much smaller than
the changes expected in the future. We therefore adopt the
non-linear parameterisation developed by Wild et al. (2012)
to quantify the response of surface O3 to changing CH4 con-
centrations in the future and consider this feature indepen-
dently of the others.

The Chinese air quality reanalysis dataset (CAQRA; Kong
et al., 2021) assimilates hourly mean surface O3 observations
during 2013–2017 from the China National Environmental
Monitoring Centre (CNEMC), and we use this as a refer-
ence to derive surface O3 biases in UKESM1 simulations.
The surface O3 reanalyses are shown to match observations
well, with small mean errors of −2.3 µgm−3 (Kong et al.,
2021). We account for these errors and uncertainties and rep-
resent them as noise which we add to the original dataset in
model training. We assume that this noise follows a normal
distribution with a mean of 2.3 µgm−3 and 1 standard devia-
tion of 2.3 µgm−3 and generates three datasets with random
noise to reduce overfitting in training. The CAQRA data at
15 km × 15 km resolution are regridded to the coarser reso-
lution of UKESM1. A key advantage of the CAQRA data
is that they provide complete spatial and temporal coverage
for comparison with UKESM1, thus avoiding issues with the
poor coverage of observations in some areas. However, we
only examine data in areas below 2000 m altitude that have
relatively high populations and where there are more mea-
surement sites. For training, we pre-process the data to dis-
tribute them randomly across time and location and then split
them into a training set (80 %), a validation set (10 %), and
a testing set (10 %). The validation data are used to evalu-
ate the model performance at each iteration of the training
process, and the test data provide an independent evaluation
when the model training is completed.
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3 Future surface O3 changes in China under
net-zero policies

Seasonal mean surface O3 mixing ratios in China simulated
with UKESM1 are shown in Fig. 1 for the present day and
the net-zero pathway, without bias correction. There is a clear
seasonal variation in surface O3, with high summertime O3
and low wintertime O3 (Fig. 1a and d). However, this varia-
tion is reduced under net zero (Fig. 1b and e) due to O3 de-
creases in summer (Fig. 1c) and O3 increases in parts of east-
ern China in winter (Fig. 1f) in the future. Surface O3 mixing
ratios decrease by about 16 ppb in summer, demonstrating
the great benefits of emission controls in mitigating summer-
time O3 pollution. Other studies show similar results, with
18 ppb decreases in MDA8 O3 mixing ratios achieved from
net-zero policies (Shi et al., 2021; Xu et al., 2022). How-
ever, smaller changes are seen in the most polluted industrial
areas of China, namely the North China Plain, the Yangtze
River Delta, and the Pearl River Delta, even though reduc-
tions in anthropogenic emissions in these areas are substan-
tially larger than other regions (Fig. S1a and b in the Supple-
ment). This is principally due to VOC-limited O3 formation
regimes in which decreased NOx emissions increase O3 mix-
ing ratios (Liu et al., 2021). Much greater reductions in NOx

emissions or further reductions in VOC emissions are needed
to reduce surface O3 mixing ratios in these high-emission re-
gions. In contrast, higher emissions following SSP3-7.0 will
greatly increase summertime O3 (Fig. S2a–c), and the trans-
port sector is shown to have the largest impact with 10 ppb
O3 increases.

In wintertime, surface O3 mixing ratios generally decrease
by 1 ppb in mainland China but increase in eastern China by
up to 20 ppb in heavily populated industrial regions. This re-
sults in a reduced latitudinal gradient of O3 mixing ratios in
China in wintertime under the net-zero scenario. These con-
trasting responses further demonstrate regional differences in
the chemical environment for O3 production. Polluted urban
environments are dominated by VOC-limited O3 formation,
particularly in winter when weak boundary layer mixing per-
mits greater NOx accumulation at the surface and rapid lo-
cal O3 destruction. Therefore, increased NOx emissions from
the main emission sectors such as power plants, industry, and
transport under SSP3-7.0 cause notable decreases in O3 mix-
ing ratios of up to 3 ppb in winter (Fig. S2e–g), although the
effect of the residential sector is relatively small (Fig. S2h)
as small changes in NOx emissions are accompanied by sub-
stantial changes in VOC emissions (Cheng et al., 2021).

4 Drivers of future surface O3 changes in China

While local emission changes directly influence surface O3
changes in the future, there are a number of other important
drivers that govern surface O3. We investigate four indepen-
dent drivers: changes in emissions inside China (local emis-
sions) and outside China (external emissions), changes in at-

mospheric CH4 concentrations (high CH4), and a warmer cli-
mate (warmer climate) relative to the net-zero pathway; see
Fig. 2. Local anthropogenic emission changes in China are
shown to have the largest impact in both seasons (Fig. 2a
and e), but other drivers also contribute to surface O3 changes
and show substantial regional and seasonal differences.

The effect of changes in emissions outside China re-
flects the importance of transport of O3 from other countries
and higher background O3 concentrations. If the rest of the
world did not follow a net-zero emission pathway, surface
O3 mixing ratios would be more than 10 ppb higher in sum-
mer (Fig. 2b). The contribution to O3 in winter is generally
smaller, estimated here as 4 ppb (Fig. 2f). The contribution of
external emissions is much larger near the country’s borders
than in central China. Changes in atmospheric CH4 abun-
dance have a relatively uniform influence on surface O3 in
eastern China, with slightly greater effects in western China
where altitudes are higher. A 4 ppb O3 increase due to higher
CH4 is seen for both seasons (Fig. 2c and g). The O3 changes
due to CH4 are comparable to those across central China due
to higher emissions outside China. In contrast, a warmer cli-
mate under the SSP3-7.0 scenario compared to the net-zero
pathway has minor impacts on surface O3 changes (< 1 ppb).
In general, surface O3 mixing ratios decrease likely due to
increased humidity under a warm climate but may increase
locally due to higher temperatures, natural emissions, and
reduced O3 deposition rates (Zanis et al., 2022). There are
increased natural BVOC emissions in China under both net-
zero and SSP3-7.0 scenarios (Fig. S1c and f), particularly in
southern China where vegetation is more abundant than in
the north. Regional surface O3 responds differently to differ-
ent future climates (Fig. 2d and h), with O3 increases in the
south and O3 decreases in the north under a warmer climate.
The regional differences are consistent with those found un-
der the effects of changing BVOC emissions in the future
(S. Liu et al., 2022). These O3 increases occur in both sea-
sons, but although they are more pronounced in summer, they
remain much smaller than the changes due to anthropogenic
emissions. The relative impacts of climate change on O3 may
become larger in the future as anthropogenic emissions re-
duce towards net-zero targets. Overall, we show that while
local emissions are critical to O3 pollution, emissions out-
side China and global CH4 concentrations are also important
drivers of concern.

The seasonality of surface O3 changes in China and glob-
ally is shown in Fig. 3. In summer, local emissions dominate
surface O3 increases, while in winter and spring, O3 trans-
port from other countries and O3 increases due to elevated
CH4 concentrations are more important. Strong NO titration
of O3 leads to substantial O3 decreases in winter, but its ef-
fects are suppressed by more efficient O3 production over
summer (Fig. 3a). Emissions outside China increase O3 mix-
ing ratios throughout the year, with the greatest impact in
late spring and early summer when intercontinental trans-
port is strongest. The seasonal variation in the influence of
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Figure 1. Seasonal surface O3 mixing ratios in East Asia simulated with UKESM1 from present day to the future following a net-zero
pathway. Mean O3 mixing ratios are shown for (a, b) June–July–August (JJA) and (d, e) December–January–February (DJF), along with (c, f)
the corresponding seasonal changes, with values of O3 changes in mainland China shown in parts per billion in the top right corner.

Figure 2. Contribution of changes in (a) internal emissions in East Asia, (b) external emissions outside China, (c) global CH4 concentrations,
and (d) a warmer climate following the SSP3-7.0 pathway to seasonal surface O3 changes relative to the net-zero pathway. Mean O3 changes
over mainland China in parts per billion are shown in the top right corner.

local and external emissions is relatively small on a global
scale, reflecting a limited sensitivity of global O3 changes
to emissions (Fig. 3b). The uniform influence of changes in
CH4 concentration is comparable both in China and globally.
The warmer climate under SSP3-7.0 leads to slightly larger
O3 decreases on a global scale relative to the net-zero sce-
nario. We emphasise that seasonal O3 responses to emission
changes are more pronounced at a regional scale and become

weaker in winter and that O3 continental transport and back-
ground O3 concentrations may still contribute to O3 pollu-
tion.

To examine how the occurrence of high-O3 episodes may
change in the future, we show the frequency distributions of
daily mean surface O3 mixing ratios for all grid cells over
China under different scenarios in Fig. 4. We find that sur-
face O3 mixing ratios under the net-zero pathway follow an
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Figure 3. Seasonal surface O3 changes relative to net zero due to
changes in emissions in and outside China, global CH4 concentra-
tions, and differences in 2060 climate under SSP3-7.0 in (a) China
and (b) the globe.

approximate normal distribution, with a mean O3 of about
20 ppb (Fig. 4a). The frequency of high O3 greater than
40 ppb can be greatly reduced under net zero. This is sub-
stantially different from the present-day and SSP3-7.0 sce-
narios. SSP3-7.0 assumes that there are no emission controls
in China, leading to a higher frequency of high O3 mixing
ratios (> 50 ppb). However, the faster NO titration on O3
with higher NOx emissions also increases the frequency of
low O3 mixing ratios (< 10 ppb). In Fig. 4b, we show that
the O3 distribution shifts to higher values of O3 under the
high-internal-emission scenario and is substantially different
from the other scenarios shown here, indicating that there is
a large change in local O3 production due to local emission
changes. The frequency of O3 mixing ratios between 30 and
50 ppb is highest in the scenarios of high external emissions
and high CH4 concentrations, demonstrating that these fac-
tors can lead to an overall increase in daily mean O3. In ad-
dition, we do not find significant changes in O3 mixing ratios
due to a warmer climate under SSP3-7.0.

5 Bias-corrected surface O3 under the net-zero
pathway

Since there are systematic biases in surface O3 simulations
with UKESM1 (Fig. S3a and b), the reliability of future
O3 projections remains uncertain. We estimate the biases in
surface O3 through the deep learning model and apply this
to generate a more robust assessment of O3 changes under
the net-zero pathway. A fully independent evaluation for the
deep learning model is conducted using a testing dataset; see
Fig. 5. We show that the magnitudes and distributions of bi-
ases in the UKESM1 simulations are reproduced well by the
deep learning model, with a correlation coefficient of 0.96,
a mean bias error of 0.1 ppb, and a root mean square error
(RMSE) of 4.0 ppb, which demonstrates the robustness of
this approach. We also subtract the biases from UKESM1
and examine the spatial and temporal distribution of O3 mix-
ing ratios in China in Fig. 6. Spatial distributions of sur-
face O3 in China over 2013–2017 can also be captured well

(Fig. 6a, b, d, and e), with the highest summertime O3 and
the lowest wintertime O3 in the North China Plain. The mag-
nitudes of surface O3 mixing ratios with bias correction are
in close agreement with the observations. The time series of
daily mean O3 can also be simulated well in Beijing and
Guangzhou (Fig. 6c and f), which represent two different
locations in northern and southern China with rather differ-
ent chemical and meteorological environments. The evalua-
tion demonstrates the capability of the deep learning model
in correcting the seasonal and daily UKESM1 simulation of
surface O3. This approach shows great promise in reducing
current model errors and hence has the potential to improve
simulations of surface O3 under future scenarios.

Spatial distributions of future bias-corrected surface O3
under the net-zero pathways are shown in Fig. 7 to compare
and contrast with UKESM1 outputs (Fig. 1) and to assess
the effectiveness of emission controls. With bias correction,
summertime O3 mixing ratios generally decrease under net
zero (Fig. 7a and b), which is consistent with UKESM1 re-
sults (Fig. 1c). We find that there are larger O3 decreases in
summer in the North China Plain and the Yangtze River Delta
(Fig. 7c) than in other less-polluted regions. However, the
overall magnitudes of surface O3 decreases are not as large as
simulated with UKESM1. There are noticeable differences in
the latitudinal mean surface O3 decreases, with the maximum
changes estimated as 10 ppb in the bias-corrected simulation,
smaller than 20 ppb predicted with UKESM1 (Fig. 7d). This
indicates that the underlying impacts of emission controls on
O3 may not be as large as the model suggests and that the
O3 responses to changing emissions may be overestimated.
This is also reflected in the overestimation of O3 changes in
southern China in the SSP3-7.0 scenario (Fig. S4a–c).

In wintertime, while surface O3 mixing ratios increase
in high-emission regions under net zero, as seen in both
UKESM1 and the bias-corrected results, areas with O3
increases are smaller than those predicted by UKESM1
(Fig. 7). This again suggests that the magnitude and spa-
tial extent of O3 titration by NO may be overestimated in
UKESM1. The same effect is seen in the bias-corrected
wintertime O3 under SSP3-7.0 (Fig. S4). In general, biases
in O3 simulations from UKESM1 are smaller in the net-
zero scenario but still remain large in the SSP3-7.0 scenario
(Fig. S3b–d). These two scenarios correspond to low- and
high-emission pathways, respectively, which indicates that
the accuracy of O3 simulations in UKESM1 may decrease
when emission changes become larger. The bias-corrected
results show that only industrial regions with high NOx emis-
sions in China show substantial O3 increases under net zero,
while surface O3 mixing ratios decrease in less-polluted re-
gions in winter. This leads to a general decrease in latitudinal
surface O3 mixing ratios in wintertime (Fig. 7h).

With bias correction, the average surface O3 mixing ratios
are estimated to decrease in both seasons in the eastern part
of China in the future under the net-zero pathway. O3 de-
creases of 5 ppb are predicted to occur in summer, which are
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Figure 4. Whole year distributions of daily mean surface O3 mixing ratios (a) in the present-day, the net-zero, and the SSP3-7.0 scenarios
in China and (b) in the scenarios with higher internal emissions, external emissions, CH4 concentrations, and a warmer climate relative to
net zero.

Figure 5. Independent evaluation of the deep learning model in simulating daily mean surface O3 biases at each UKESM1 grid point over
China. (a) Surface O3 biases (UKESM1 minus CAQRA) and biases predicted by the deep learning model. (b) Probability density function
(PDF) of O3 biases (labelled here as reference) and predicted O3 biases. Statistics are shown in the top right corner.

slightly larger than the 4 ppb decreases predicted in winter.
This demonstrates the overall advantages of net-zero policies
in achieving a surface ozone air quality co-benefit. Further-
more, in high-emission regions, the directions of surface O3
changes are different in summer and winter, as shown in both
UKESM1 and the corrected UKESM1, indicating that VOC-
limited O3 formation still dominates there in winter.

We also calculate the annual average number of days with
daily mean O3 over 50 ppb as a measure to quantify high-O3
pollution episodes; see Fig. 8. The number of days per year
with high-O3 episodes under present-day conditions can be
reproduced well following bias correction (Fig. 8a and b, Ta-
ble 3), with intensive areas of high O3 pollution in the North
China Plain (60 d), particularly in summertime, and relatively

low occurrence in the Pearl River Delta (31 d). There is an
average of 33 dyr−1 with high O3 pollution over China. We
find that the net-zero policies will succeed in reducing the
number of high O3 pollution days markedly by 65 % in the
future. In contrast, following higher emission control poli-
cies will increase high-O3 episodes by almost a factor of 4
(Table 3).

Following net-zero emission controls, the Yangtze River
Delta and the Pearl River Delta only have high-O3 episodes
for a few days each year. However, high-O3 episodes still
occur for almost 1 month (30 d) on the North China Plain
and parts of central China in the future, demonstrating that
O3 pollution cannot be fully eliminated in this region. The
Sichuan Basin is also a region where high O3 pollution can-
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Figure 6. (a, d) Surface mean O3 mixing ratios derived from CAQRA (Ref.), compared with (b, e) bias-corrected O3 using deep learning
in December–January–February (DJF) and June–July–August (JJA) over 2013–2017. Mean surface O3 mixing ratios (ppb) over the eastern
part of mainland China are shown in the top right corner. Time series of daily mean O3 mixing ratios in Beijing and Guangzhou in 2017
are shown in panels (c) and (f), with mean O3 values and correlation coefficients between CAQRA and the UKESM1 simulations and deep
learning results shown in the legend.

Figure 7. Seasonal mean surface O3 mixing ratios corrected with the deep learning model in the present-day (a, b) and the net-zero sce-
nario (e, f) in the eastern part of mainland China, as well as the expected O3 changes in summertime and wintertime (c, g). Latitudinal mean
O3 changes in UKESM1 and bias-corrected UKESM1 are shown in panels (d) and (h), where shading indicates 1 standard deviation of the
changes in latitudinal O3 mixing ratios.
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Figure 8. Annual average number of days with daily mean surface O3 mixing ratios higher than 50 ppb in the present day calculated from
(a) the surface O3 reanalysis and (b) bias-corrected UKESM1. Future high-O3 episodes under (c) net-zero and (d) SSP3-7.0 pathways are
shown from bias-corrected UKESM1.

Table 3. Annual average number of days with daily mean surface O3 mixing ratios higher than 50 ppb in China, the North China Plain
(NCP), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin (SCB). Conditions in the present day and under
the net zero and SSP3-7.0 pathways are presented, calculated from the bias-corrected UKESM1 simulations. The percentage change in the
number of days in the future relative to the present day are shown.

Number of days Present day Present day Net zero SSP3-7.0
with daily mean (reanalysis) (corrected (corrected (corrected
O3 > 50 ppb UKESM1) UKESM1) UKESM1)

Regions

China 32.1 33.9 11.9 (−65 %) 115.8 (242 %)
NCP 56.9 60.5 30.6 (−49 %) 123.7 (104 %)
YRD 45.0 45.3 4.8 (−89 %) 140.4 (210 %)
PRD 31.2 31.4 1.6 (−95 %) 117.0 (273 %)
SCB 34.4 34.1 16.5 (−52 %) 139.3 (309 %)

not be fully addressed, likely due to the favourable meteo-
rological conditions leading to O3 formation associated with
the complex topography. Nevertheless, net-zero policies are
expected to deliver great benefits in mitigating O3 pollution
in China. Indeed, O3 pollution is likely to become much
worse if emissions continue to rise (Fig. 8d; Table 3). Even
stricter controls on anthropogenic emissions than proposed
to meet net zero may be required to avoid high O3 pollution
in the North China Plain.

6 Conclusions

Net-zero emission polices are important for reducing re-
gional surface O3 pollution as well as for mitigating climate
change. We use a chemistry–climate model to quantify the
O3 changes in China under a net-zero pathway and inves-
tigate the relative importance of different drivers of these
changes. We also place our results in context by comparing
to a scenario, SSP3-7.0, in which weak climate mitigation
leads to continued increases in precursor emissions. Surface
O3 responses to net-zero emission control policies in China
are distinctly different in different seasons, with substantial
O3 decreases in summer and O3 increases in winter in high-
emission regions due to decreased O3 titration by NO. This

demonstrates the large benefits of emission controls in reduc-
ing summertime average O3 pollution in China by as much
as 16 ppb.

Local emission changes are shown to be the most impor-
tant driver influencing regional O3 changes, which generally
outweighs other drivers such as transport of O3 from other
countries, increased background O3 formation through ris-
ing CH4 abundance, and a warmer climate. We do not find
substantial changes in surface O3 in China between net-zero
and SSP3-7.0 scenarios due to a warmer climate, but there
are surface O3 increases in southern China. Impacts of future
local and external emissions on surface O3 show strong sea-
sonal variation, while increasing future CH4 concentrations
have a relatively uniform effect on O3 throughout the year.
In winter and spring, future external emissions outside China
and higher CH4 concentrations are more important than local
emissions at a regional average scale.

We further demonstrate the capability of deep learning ap-
proaches to correct the biases in simulated daily mean O3.
UKESM1 shows systematic biases in simulated O3 like many
other chemistry–climate models; these are expected to influ-
ence their projections of future O3. Deep learning can pro-
vide improved assessment of the impacts of net-zero policies
on surface O3. We find that surface O3 changes are overesti-
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mated by UKESM1 in summertime, and therefore the bene-
fits of emission controls may be overestimated by chemistry–
climate models. UKESM1 estimates that the mean latitudinal
surface O3 decreases due to emission controls could be up to
20 ppb in summer, but bias correction shows that these may
only be up to 10 ppb.

We acknowledge that there are uncertainties associated
with the choice of the deep learning model used and with
the variables and parameters it is trained on, but the biases
are sufficiently well predicted here that we are confident in
the robustness of our results. The prediction might be further
improved by employing more advanced deep learning archi-
tectures and considering a wider range of variables. The pre-
diction of future surface O3 biases may be slightly different
under these conditions, but we believe that our principal re-
sults are likely to remain robust. The driving variables under
the net-zero scenario typically lie in the ranges associated
with the present-day conditions that were used to train the
model, suggesting that the relationships between inputs and
outputs derived from the deep learning model are suitable for
predicting future situations.

However, net-zero emission policies succeed in reducing
the number of days of high O3 pollution by 65 % in China
per year, with the number dropping from 33 d under present-
day conditions to 11 d each year under net zero. The North
China Plain will still be affected by high O3 pollution in the
future, meaning that stricter emission policies are needed in
this region. In the Yangtze River Delta and the Pearl River
Delta, O3 pollution is likely to be less of a concern in the fu-
ture as there are only a few days with high O3 pollution under
net zero. It is also clear that if emissions continue to rise, air
quality in China will be substantially worse than at present,
and therefore emission controls are essential. However, it is
clear from these studies that emission controls can be very
effective in reducing surface O3 pollution and that net-zero
emission policies can substantially mitigate O3 pollution in
China.
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