Supplement of Atmos. Chem. Phys., 23, 13755–13768, 2023
https://doi.org/10.5194/acp-23-13755-2023-supplement
© Author(s) 2023. CC BY 4.0 License.

Supplement of

Benefits of net-zero policies for future ozone pollution in China

Zhenze Liu et al.

Correspondence to: Zhenze Liu (zhenze.liu@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.
Figure S1. Differences in annual mean surface emissions in anthropogenic and biomass burning NO\textsubscript{x}, VOCs, and biogenic VOCs (BIO) between the present day (PD) and the scenarios of Net Zero (NZ; a, b, c) and SSP3-7.0 (d, e, f).

Figure S2. Changes in seasonal (JJA and DJF) surface O\textsubscript{3} mixing ratios between the scenario of Net Zero and SSP3-7.0 (SSP3-7.0 – Net Zero). Influences of higher emissions in different individual sectors, (a, e) power, (b, f) industry, (c, g) transport and (d, h) residence on surface O\textsubscript{3} changes are shown separately. Mean O\textsubscript{3} changes over China are given in the top right corner.
Figure S3. Annual mean biases in surface O$_3$ simulations (ppb) from (a) UKESM1, and the predicted biases in (b) the present day (PD), (c) the Net Zero (NZ), and (d) the SSP3-7.0 scenarios.

Figure S4. Seasonal mean changes in surface O$_3$ mixing ratios from the present day to the future under SSP3-7.0 in China. Changes from UKESM1 and the corrected UKESM1 by the deep learning model in (a, b) summertime and (d, e) wintertime are shown. Mean latitudinal O$_3$ change between UKESM1 and the corrected UKESM1 are shown in (c, f), with one standard deviation of O$_3$ changes in latitude shown in shaded areas.