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S1 Graupel free fall equations

The equation of motion for a spherical liquid drop from Pruppacher and Klett (2010) can
be used to describe the motion of a lump graupel which is almost spherical with

dv 1 ¥ 3Cypa

My = (mg +mg)g — EpaC'dAv2 = (1 — ﬁ—g)g — gﬁiv% (C1)
where m, and m, the graupel and air masses, p, and p, are the graupel and air

densities, g the acceleration, A the graupel cross section, C; the drag coefficient, r the

radius of the graupel and v the graupel fall speed. The previous equation can be simplified

with C] and Cy terms:

dv
— =, — O S2
at ~ (52)
Equation S2 have to be integrated to deduce the speed and the position of the graupel

during the fall speed as
1

1
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From Eq. S5 and the arctanh function properties

t= \/% arctanh <\/£g_iv> (S6)

By integrating Eq. S6, one can deduce the speed of the graupel depending on the time

v = gtanh (\/5l 0225). (S7)

To know the position of the graupel according to the time, equation S7 have to be inte-
grated. With the properties of the tanh function, the position of the graupel is expressed
by

Tr =

1
N In (cosh (/C1Cat)). (S8)

If t — oo, the fall velocity becomes equal to the terminal velocity vy of the graupel:

~ |8r(pa/pg —1)g
vp = \/ 30, . (S9)




S2 Fragments size distributions

(a) High CKE (1.18 x 1075J) (b) High CKE (1.58 x 107°J) (c) High CKE (1.89 x 107°J)
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Figure S1: Size distributions of ice fragments produced by graupel-graupel with dendrites
collisions. Low CKE in blue, intermediate CKE and high CKE in red.
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Figure S2: Size distributions of ice fragments produced by graupel-snowflake collisions for
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different impact positions (see color scale of Fig. 14).
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S3 Distributions
fragments

(a) High CKE (1.18 x 1075J)

for the cross sectional areas of the

(b) High CKE (1.58 x 1075J)

(c) High CKE (1.89 x 105J)
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Figure S3: Area distributions of ice fragments produced by graupel-graupel with dendrites
collisions. Low CKE in blue, intermediate CKE and high CKE in red.
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Figure S4: Area distributions of ice fragments produced by graupel-snowflake collisions
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S4 Distributions of fragments aspect ratio

(a) High CKE (1.18 x 1075J) (b) High CKE (1.58 x 1073J) (c) High CKE (1.89 x 107°J)
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Figure S5: Aspect ratio (AR=D,,in/Dpaj) distributions of ice fragments produced by
graupel-graupel with dendrites collisions. Low CKE in blue, intermediate CKE and high
CKE in red.
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Figure S6: Aspect ratio (AR=D,yin/Dpaj) distributions of ice fragments produced by
graupel-snowflake collisions for different impact positions (see color scale of Fig. 14).
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