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Abstract. Mobile sources are responsible for a substantial controllable portion of the reactive organic carbon
(ROC) emitted to the atmosphere, especially in urban environments of the United States. We update existing
methods for calculating mobile source organic particle and vapor emissions in the United States with over a
decade of laboratory data that parameterize the volatility and organic aerosol (OA) potential of emissions from
on-road vehicles, nonroad engines, aircraft, marine vessels, and locomotives. We find that existing emission
factor information from Teflon filters combined with quartz filters collapses into simple relationships and can be
used to reconstruct the complete volatility distribution of ROC emissions. This new approach consists of source-
specific filter artifact corrections and state-of-the-science speciation including explicit intermediate-volatility
organic compounds (IVOCs), yielding the first bottom-up volatility-resolved inventory of US mobile source
emissions. Using the Community Multiscale Air Quality model, we estimate mobile sources account for 20 %–
25 % of the IVOC concentrations and 4.4 %–21.4 % of ambient OA. The updated emissions and air quality
model reduce biases in predicting fine-particle organic carbon in winter, spring, and autumn throughout the
United States (4.3 %–11.3 % reduction in normalized bias). We identify key uncertain parameters that align with
current state-of-the-art research measurement challenges.
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1 Introduction

Ambient particulate matter (PM) and ozone (O3) have detri-
mental impacts on human health and the environment (U.S.
EPA, 2019, 2020c; Pye et al., 2021) with disparate impacts
across societal groups (Tessum et al., 2021). Non-methane
organic gases (NMOGs) are precursors to PM and O3, and
reducing NMOGs could reduce criteria pollutants and their
associated mortality throughout the United States (Pye et
al., 2022). Mobile source emissions continue to be a major
contributor to modern anthropogenic NMOG emissions. In
contrast to other NMOG sources such as vegetation, mo-
bile emissions have been reduced through successful reg-
ulatory policy and the introduction of cleaner engine and
control technologies (Lurmann et al., 2015; Gentner et al.,
2017; Winkler et al., 2018; Bessagnet et al., 2022). Yet, ef-
fective management of urban and regional air quality still
depends on accurate and detailed characterization of the
carbon-containing compounds emitted by mobile sources.

Fossil-fuel combustion emissions comprise thousands of
organic compounds with widely varying volatility, depend-
ing on source type (Drozd et al., 2018; Lu et al., 2018).
The lowest-volatility compounds are emitted principally in
the particle phase and are typically classified as primary or-
ganic aerosol (POA). Conventionally this portion of emis-
sions is sampled using filters which are weighed or processed
offline with thermal–optical techniques, solvent extraction,
and other methodologies (Chow et al., 1993; Birch and Cary,
1996; CFR, 2023). The highest-volatility NMOGs are emit-
ted in the gas phase and enhance O3 formation when oxidized
in the atmosphere, a process that also enhances PM mass
via secondary organic aerosol (SOA) formation. U.S. EPA
emission tools like the MOtor Vehicle Emission Simulator
(MOVES) (U.S. EPA, 2020b) and the SPECIATE database
(U.S. EPA, 2020a) provide emission estimates and specia-
tion for POA (assumed to be nonvolatile) and NMOGs. The
“conventional” path in Fig. 1 depicts this process.

However, laboratory and field measurement campaigns
have demonstrated that much of the mobile source POA is
subject to gas-particle partitioning and filter-sampling arti-
facts. These artifacts may bias the interpretation of filter-
based measurements by yielding higher POA emission fac-
tors due to the presence of these adsorbed vapors (Turpin
et al., 1994; Robinson et al., 2010; Bessagnet et al., 2022).
These compounds principally include (Table 1) semivolatile
organic compounds (SVOCs) and intermediate-volatility or-
ganic compounds (IVOCs) (May et al., 2013b, a). Accurately
representing SVOCs and IVOCs is important because they
are SOA precursors and are underestimated in contemporary
models and emission databases (Gentner et al., 2012; Tkacik
et al., 2012; Y. Zhao et al., 2014, 2015, 2016).

Some air quality models (AQMs) have incorporated
SVOCs and IVOCs by scaling these emissions to sector-wide

POA or NMOG inputs during a data pre-processing step or
the AQM runtime (Murphy and Pandis, 2009; Shrivastava et
al., 2011; Ahmadov et al., 2012; Bergström et al., 2012; Koo
et al., 2014; Woody et al., 2015; B. Zhao et al., 2016; Woody
et al., 2016; Jathar et al., 2017b; Murphy et al., 2017). How-
ever, these approaches rely on broad application of assump-
tions that may not be appropriate for specific source types
since sampling artifacts will bias low-emitting and high-
emitting sources differently (Robinson et al., 2010). As emis-
sions from individual combustion sources are continually re-
duced in response to tightening regulations, accounting for
these potential biases becomes important. Manavi and Pan-
dis (2022) and Sarica et al. (2023) implemented emission fac-
tors and speciation of SVOCs and IVOCs specific for mobile
sources in Europe, while Morino et al. (2022) explored revi-
sions to stationary source organic emissions in Japan. Chang
et al. (2022) implemented a more detailed bottom-up inven-
tory of organic emissions across all sectors in China with
emission factors specified at the volatility bin level rather
than for bulk PM and NMOGs. Additional bottom-up ap-
proaches are needed that revise emission factors and speci-
ation profiles for all relevant individual source types and re-
gions.

This paper documents the transition of U.S. EPA mobile
emission tools from the conventional paradigm that consid-
ers operationally defined particulate organic matter (OM)
and NMOG emission factors and speciation to one that
accommodates the full complexity of atmospheric carbon-
containing trace pollutants. To accomplish this, we consider
total reactive organic carbon (ROC), defined by Saffediene et
al. (2017) and Heald and Kroll (2020) as all reactive organic
compound mass across gas and particle phases excluding
methane. We catalogue updates to 51 diverse mobile source
categories across multiple categories and engine, fuel, and
control types. Further, we demonstrate procedures for inte-
grating existing inventory emission factors with state-of-the-
art chemical composition measurements, pointing out where
critical uncertainties could be further resolved in the future.
Finally, we document the impact the updates have on source-
specific and sector-wide emissions as well as regional-scale
pollutant formation and transport predicted by an updated
version (2020) of the Community Multiscale Air Quality
(CMAQ) regional-scale AQM.

2 Materials and methods

2.1 Mobile emission modeling

To develop the new framework and estimate potential im-
pacts from speciation updates, we used existing estimates
for 2016 annual mobile emissions for the contiguous United
States. We considered five categories including on-road, non-
road, air, rail, and marine. The MOVES3 model predicted
emissions for on-road and nonroad sources using county-
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Figure 1. Depiction of calculation steps for the conventional and ROC approaches to speciation of PM and NMOG emissions. Panel (a)
shows the reported fuel-based emission factors based on MOVES predictions for 2016. Panel (b) shows the inorganic ions, metals, and other
nonorganic matter (IPM) separated from organic matter (OM). The beige area inside the dashed box in panel (c) indicates emissions that
are added in the conversion of OM to CROC to account for underrepresented SVOCs from the filter measurement. Panels (d) and (e) show
the comprehensive emission factors for the conventional and ROC approaches, respectively, with data arranged by volatility while indicating
non-organic PM emissions as well. In panels (d) and (e), bars to the left and right of the vertical line at Log10(C∗)= 6.5 are quantified by the
left and right y axes, respectively. The number within panels (d) and (e) indicates the total ROC emission factor excluding EC and other PM
for on-road heavy-duty diesel sources. “Alkane” refers to only linear alkanes, while “cyclic” and “branched” are cyclic alkanes and branched
alkanes. “Multi” indicates multifunctional organics. The bars in the gray shaded regions are not included in the organic volatility distribution
but are included in the CROC-compatible SPECIATE profiles (e.g., 104CROC).

level fleet properties and activity data. The dominant US on-
road vehicle sources were light-duty gasoline cars and trucks
and heavy-duty diesel trucks. Nonroad emission sources in-
cluded construction, agricultural, and lawn equipment as
well as nonroad recreational vehicles. The Aviation Envi-
ronmental Design Tool (AEDT), maintained by the Federal
Aviation Administration, predicted landing, taxi, and take-

off emissions for aircraft and emissions from ground support
equipment (FAA, 2020). Rail emissions were calculated us-
ing confidential line-haul activity data that were summarized
at the county level, while rail-yard emissions were based on
supply fuel use and yard switcher counts provided by compa-
nies (U.S. EPA, 2021b). Marine emissions included both port
and underway conditions for large, generally international
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ships, vessels, and smaller boats operating near the shore
(U.S. EPA, 2021b). The MOVES3 model predicted emis-
sions from recreational boats as part of the nonroad recre-
ational equipment category.

We also collected national total annual fuel usage data
for each source from the models to calculate an ef-
fective fuel-based OM emission factor (see Sect. S1 in
the Supplement). These effective emission factors ranged
from 1–20 mg (kg fuel)−1 for the newest gasoline, diesel,
and compressed natural gas (CNG) vehicles to over
6000 mg (kg fuel)−1 for nonroad gasoline two-stroke en-
gines. In the process of reviewing each mobile source OM
emission rate, we discovered and corrected several minor er-
rors and limitations to compressed natural gas sources and
uncontrolled nonroad diesel exhaust (see Sect. S2).

2.2 Reactive organic carbon (ROC)

To accurately simulate the behavior of mobile emissions,
we considered total ROC, which includes organic carbon
(OC) and non-carbon mass from the most-volatile com-
pounds like ethane and formaldehyde to chemically com-
plex, high-molecular-weight, low-volatility compounds (e.g.,
oligomers) (Heald and Kroll, 2020). Conventional met-
rics for reporting OM and NMOGs are operationally de-
fined based on measurement methods and conditions; there-
fore, they are difficult to compare across tests and among
other ROC sources. Furthermore, uncertainties are intro-
duced when they are speciated with profiles measured at
different conditions. To improve standardization, we intro-
duced two new metrics: CROC (condensable reactive or-
ganic carbon) and GROC (gaseous reactive organic carbon).
CROC was defined as compounds with saturation concentra-
tion (C∗) less than 320 µg m−3 (Table 1), with this bound-
ary corresponding to n-alkanes with 20± 1 carbon atoms.
CROC included SVOCs (0.32 < C∗≤ 320 µg m−3) and low-
volatility organic compounds (LVOCs; C∗≤ 0.32 µg m−3),
whereas GROC was defined as the sum of compounds
with C∗ greater than 320 µg m−3 corresponding to IVOCs
(320 < C∗≤ 3.2× 106 µg m−3) and volatile organic com-
pounds (VOCs; C∗> 3.2× 106 µg m−3) (Donahue et al.,
2009; Murphy et al., 2014). CROC and GROC aligned with
well-known categories in the volatility basis set (VBS) space,
so they could be applied straightforwardly to speciation pro-
files in the recent literature containing both explicit com-
pounds and lumped groups.

We applied a two-step methodology to process gas- and
particle-phase emissions (“ROC” path in Fig. 1). First, we
estimated total GROC and CROC emissions from existing
NMOG and OM emission factors, respectively, while consid-
ering measurement uncertainties like sampling setup losses
(e.g., tubing) and filter artifacts. We then speciated GROC
and CROC using state-of-the-science profiles. For GROC,
these included explicit IVOC compounds, where available,
and lumped IVOC groups distinguished by their saturation

concentration and functionality. The methodology for pro-
cessing CROC emissions similarly used volatility profiles
from the recent literature.

2.2.1 GROC emissions and speciation

Total NMOG emissions are measured from mobile emis-
sions by combining total hydrocarbons (THCs) with car-
bonyl compounds and subtracting methane (see Sect. S3)
(Kishan et al., 2008; May et al., 2014). Lu et al. (2018) com-
piled measurements for on-road vehicles, nonroad equip-
ment, and an aircraft turbine engine. That study concluded
that methods using heated sampling and a heated flame-
ionization detector (FID) captured both IVOCs and VOCs
but that speciation methods like canister or Tedlar bag sam-
pling analyzed with gas-chromatography–FID missed essen-
tially all IVOCs due to wall losses to the sampling materials.
Assuming that NMOG emission rates are based on heated
FID sampling, we set GROC emission rates equal to to-
tal NMOG emission rates across all sources, and we speci-
ated GROC emissions using profiles that include VOCs and
IVOCs.

Many studies have reported speciated organic gases nor-
malized to total IVOC or VOC (Lu et al., 2018; Jathar et
al., 2017a; Y. Zhao et al., 2015, 2016; Huang et al., 2018;
Drozd et al., 2018). A key parameter used to integrate these
data is the IVOC / NMOG ratio (see Sect. S4), which ranges
from ∼ 4.6 % for gasoline vehicle cold-start exhaust to 67 %
for marine residual oil. Gasoline fuel evaporation profiles
of GROC were assumed to be the same as NMOGs since
IVOCs are not expected to contribute substantially to those
emissions (Gentner et al., 2012). The profile for whole diesel
fuel evaporation was updated to be consistent with fuel char-
acterization in Gentner et al. (2012) (see Sect. S1c). SPE-
CIATEv5.1 contains thousands of explicit species and many
mixtures of compounds (e.g., oils, unspeciated terpenes) re-
ported by previous studies. Recent studies have constrained
the unknown portion of IVOCs and VOCs with lumped
groups resolved by volatility and often by structure/function-
ality features (e.g., branched, cyclic, oxygenated). We lever-
aged the representative compound structures in SPECIATE
developed by Pye et al. (2023) to classify these emissions by
functional groups and their subsequent atmospheric chem-
istry. Table S2 summarizes the new IVOC profiles. Species-
based ozone and OA potential were calculated for each emis-
sion source using relationships from Seltzer et al. (2021),
which were expanded by Pye et al. (2023).

2.2.2 CROC emissions and speciation

We estimated effective OM emission factors using the
MOVES-predicted national total OM emissions normalized
to the total fuel usage for each source (see Sect. S1). The
MOVES model relied on conventional measurements of to-
tal PM emissions sampled and weighed on Teflon filters. The
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Figure 2. Effective ambient primary organic aerosol emission fac-
tor estimated at 298 K and 10 µg m−3 as a function of the OM emis-
sion factor for on-road gasoline-fueled vehicles.

profiles available in the SPECIATE database, meanwhile,
provide the weight percent of OC measured by thermal–
optical techniques from samples collected on quartz filters
(CFR, 2023) normalized by coincident bulk PM measure-
ments from the Teflon filter (see Sect. S5). SPECIATE pro-
files also include a source-dependent OM/OC factor to ad-
just for non-carbon organic mass (i.e., hydrogen, oxygen),
which represents OM once added to OC (Table S1a) (Reff et
al., 2009; Simon et al., 2011). Previous studies have demon-
strated that OM emission factors vary with changing temper-
ature and OM loading (Lipsky and Robinson, 2006; Robin-
son et al., 2010; May et al., 2013a, b; Jathar et al., 2020).
AQMs that have taken this behavior into account typically
distributed OM emissions among volatility bins using refer-
ence distributions. May et al. (2013a, b) constrained param-
eters for calculating volatility-resolved emissions assuming
OC is measured on a quartz filter. Although this approach
performs well for average cases, it is less accurate when ap-
plied to sources that are low or high emitting, for which
absorptive partitioning biases are more substantial (Fig. 2).
For an exceedingly low-emitting source (low OM loading),
SVOC emissions that would normally partition to the parti-
cle phase under ambient conditions could go undetected as
they pass through the filter.

Additionally, reported OM emissions are sometimes
artifact-corrected using a secondary quartz filter behind the
Teflon filter sample, which allows for adsorbed SVOCs and
IVOCs to be neglected. Because these corrections are not
uniformly applied across all studies, May et al. (2013a, b)
reported reference volatility profiles assuming OM emission
factors had not been adsorptive-artifact corrected. Yet this
is not always applicable for the emission rates informing
MOVES and must be resolved at the source level based on
the underlying emission data. To address both adsorptive and
absorptive partitioning biases, we applied CROC / OM pa-
rameterizations developed from detailed measurement data
and informed by filter-based OM emission factors (see

Sect. S6) (May et al., 2013a, b; Huang et al., 2018; Jathar
et al., 2020). The method accounted for filter artifact cor-
rections by adding missing SVOC emissions for low OM-
loading tests and neglecting IVOCs and higher-volatility
SVOCs that would be captured on the front filter during high
OM-loading tests. The CROC / OM parameterization for on-
road gasoline was based on data from 64 vehicles and so was
more robust than the parameterization for on-road heavy-
duty diesel with particulate filters (DPFs), which was based
on 3 vehicles (Sect. S7), or the aircraft engine parameteriza-
tion, which was based on one sample. These datasets showed
that it was possible to represent the relationship between OM
emission factor and CROC emission factor without explicitly
considering variations in temperature and OM concentration.
This simplified approach was limited to mobile sources be-
cause temperature was tightly controlled by test method re-
quirements (i.e., 47 ◦C). We used temperature to calculate C∗

of partitioning components and then calculate total CROC
(e.g., Fig. S4). Because the resulting CROC emission factor
was highly correlated with OM emission factor, the simpli-
fied functions associating them accounted for variations due
to the underlying volatility distribution and increases in con-
centration with emission factor. More work is needed to bet-
ter constrain the CROC / OM parameters.

The impact of this new approach for translating inventory
OM emissions is shown in Fig. 2. We used the on-road gaso-
line light-duty cold-start volatility profile in Table S5 to esti-
mate the effective ambient organic aerosol emission factor at
298 K and COA equal to 10 µg m−3 given a filter-based OM
emission factor in mg kg−1 fuel. Also shown are trends us-
ing parameters reported by Robinson et al. (2007) and Lu et
al. (2020), which have been used in contemporary air qual-
ity models. The filter-based OM emission factor (EFOM) was
multiplied by the volatility distribution, and VBS partition-
ing theory (Eq. 1) was used to calculate the effective ambient
OA emission factor (EFOM,Amb):

EFOM,Amb = EFOM

ntot∑
i=1

αi

1+C∗i /10
, (1)

where ntot was the number of volatility parameters in the vec-
tor α, and ambient conditions were defined to be 298 K and
10 µg m−3. The Lu et al. (2020) and Robinson et al. (2007)
trends are directly proportional to the nonvolatile emission
factor because they do not consider nonlinear dependence
on the filter-based OM emission factor. Meanwhile, the ROC
approach enhances emissions at low emission factors (to cor-
rect for SVOC breakthrough) and reduces them at high emis-
sion factors (to remove IVOCs partitioning to the filter). Also
shown in Fig. 2 are representative filter-based OM emis-
sion factors for pre-Tier 2, Tier 2 (2001–2004), and Tier 2
(2004+) vehicles, which together exhibit emissions reduc-
tions with newer standards. For the older vehicles, the Lu et
al. (2020) and Robinson et al. (2007) approaches give simi-
lar estimates for effective ambient OM as the new approach,
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but as emission factors decrease, those methods may over-
predict evaporation and underpredict the particle emission
factors. At the lowest OM emission factors, even using the
nonvolatile approach may underpredict effective ambient OA
emission factors because significant SVOCs could have bro-
ken through the filter and should be considered for ambient
partitioning.

We did not adjust GROC emissions in response to
CROC / OM conversion, but the sum of total ROC emissions
for each source did not change substantially from the sum
of NMOGs and OM (Fig. S22). We updated existing SPE-
CIATE profiles with volatility distributions of LVOCs and
SVOCs normalized to CROC (Table S5a). Because data on
the functionality of these low-volatility emissions are lack-
ing, we assumed they share similar chemical properties (i.e.,
reactivity) to linear alkanes as a proxy for more complex
mixtures of aliphatics and other compounds.

2.3 Air quality model configuration

We used an updated version of the Community Multiscale
Air Quality (CMAQ) model v5.4 to quantify the impact
of the new mobile emissions on regional-scale air quality
(U.S. EPA, 2022; Appel et al., 2021). Hourly ambient air
concentrations of OA and O3 were simulated for the en-
tire year 2017 at 12 km horizontal resolution with inputs
from EPA’s air QUAlity TimE Series (EQUATES) project
(U.S. EPA, 2021a; Foley et al., 2023). Meteorology was sim-
ulated with WRFv4.1.1. The Biogenic Emission Inventory
System (BEIS) predicted biogenic gas emissions online in
CMAQv5.4. Gas- and aerosol-phase chemistry were mod-
eled with the Carbon Bond 6 mechanism (CB6r3_AE7) with
updates for production of SOA from mobile IVOCs imple-
mented by Lu et al. (2020). Anthropogenic emissions are de-
scribed in the U.S. EPA 2017 emission platform technical
science document and EQUATES documentation (U.S. EPA,
2021b, a). Mobile emissions for 2017 were recalculated in
order to update speciation and apply both IVOC / NMOG
and CROC / OM adjustments. The CMAQ–ROC simulation
implemented all revisions to mobile elemental carbon (EC)
speciation described in Sect. S2 and the methods described in
Sect. 2.2.1 and 2.2.2. The EC speciation updates resulted in
substantial changes to nonroad diesel, aircraft, marine, and
rail sources (Table S9). Because MOVES used source- and
species-specific emission rates for hazardous air pollutants
(HAPs) rather than relying on generic speciation of NMOGs,
ROC updates for HAPs were not propagated to the air qual-
ity model simulations, although Fig. S25 shows potential
changes to national-scale HAP emissions from updates to
VOC speciation. Volatile chemical product (VCP) emissions
were simulated for 2017 with the VCPy tool (Seltzer et
al., 2021). Nonoxygenated and oxygenated IVOC emissions
from VCPs were represented with the IVOC chemistry from
Lu et al. (2020), which resulted in an average SOA yield of
approximately 30 % at ambient conditions across all IVOCs.

However, Pennington et al. (2021) found the oxygenated
IVOC SOA yield to be 6.28 %, though this yield warrants
re-evaluation with better speciation and yield data given the
diverse mix of oxygenated IVOCs with varying molecule
functionalities that can influence SOA production (Humes
et al., 2022). Based on available information, we reduced
the CMAQ-predicted VCP SOA concentrations by 33.8 % to
account for the overrepresentation of SOA from VCP oxy-
genated IVOCs (see Sect. S7).

We assessed model performance for O3 and OC dur-
ing the 2017 model year with daily-averaged measurements
at routine monitoring sites. We also performed a separate
CMAQ simulation for comparison that is consistent with the
EQUATES project, which assumed the speciation of OM
emissions from all sources was consistent with the volatil-
ity distribution of a small diesel generator (Robinson et al.,
2007). This EQUATES simulation also utilized the simpli-
fied potential-combustion SOA (pcSOA) approach used in
publicly available versions of CMAQ (Murphy et al., 2017).
The CMAQ–ROC simulation neglected pcSOA since the role
of mobile and VCP IVOC SOA formation were explicitly
accounted for. Finally, we analyzed two sensitivity simula-
tions with mobile and VCP SOA precursors each set to zero
to quantify direct sector contributions to total OA. This ap-
proach did not account for the contributions these sectors
make to the atmospheric oxidant capacity through emissions
of low-molecular-weight VOCs and nitrogen oxides.

3 Results and discussion

3.1 Volatility-resolved mobile source ROC emissions

Using the 2016 annual predictions from MOVES and the
other mobile emission models processed and speciated with
the ROC approach, we explore for the first time a complete
bottom-up inventory of organic carbon emissions from mo-
bile sources in the United States. Figure 1 shows the re-
sults of the ROC and conventional approaches for one ex-
ample source: on-road heavy-duty diesel equipped with par-
ticulate filters. Non-organic particulate matter species such
as ions and other PM are equivalent in both approaches.
Nonvolatile OM emissions in the conventional approach are
distributed in the ROC approach to a range of SVOCs and
IVOCs, which are predominantly alkanes and branched com-
pounds for diesel sources. The magnitude of emission fac-
tors for compounds in the VOC volatility range from on-road
diesel sources is reduced by 47.8 % due to the introduction
of IVOCs (IVOC / GROC= 52.2 %), and the distribution of
VOC functionality is changed substantially due to adoption
of VOC speciation profiles from Lu et al. (2018). Unknown
ROC mass is also reduced from 7 % of total emissions to
0.7 % after introducing IVOCs. Emission factors vary by or-
ders of magnitude across mobile sources, motivating careful
accounting of sampling biases (Figs. S18–S21), which re-
quires the ROC approach in the emission modeling workflow
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to be complex and involve multiple tools and intermediate
steps (Fig. S1).

Figure 3 shows the predicted contributions of source types
and functional groups across the volatility spectrum for 2016
ROC inventory. The VOC emissions are roughly evenly dis-
tributed between on-road and nonroad sources (1130 and
1045 kt yr−1, respectively), IVOCs are weighted towards on-
road (62 %), and CROC (i.e., SVOCs and larger compounds)
is roughly split among on-road, nonroad, and others. Tailpipe
(i.e., exhaust) emissions while running represent the majority
across all volatility categories (56 % of total ROC), although
evaporative sources are important in the VOC range (38 %)
and similar to prior estimates (Gentner et al., 2009). It could
be counter-intuitive, given laboratory data on start and idle
emission factors, that the start/idle operating mode does not
contribute more to total ROC emissions. This result could be
due in part to substantially more time spent by sources in
the running mode during normal operation, but it could also
be partly due to MOVES neglecting start modes for nonroad
sources. Drozd et al. (2018) found that cold-start IVOC fuel-
based emission factors are about 6 times larger than those
from hot-running-start emissions for newer vehicles, which
is consistent with the post-Tier 2 gasoline vehicles in this
work. For older vehicles though, the ROC inventory predicts
greater IVOC emissions factors for hot-running modes than
cold-start modes for older vehicles (Tables S1a and 2). Fur-
ther research is needed to constrain NMOG emission factors
and IVOC / NMOG ratios for older (pre-2004) vehicles that
are expected to have contributed approximately 72 % of on-
road gasoline ROC emissions during 2017 (see Fig. S24 and
Table S1a).

Emissions from gasoline-fueled sources dominate the
VOC range in Fig. 3, but diesel-fueled sources, of which
there are far fewer in the United States, dominate the IVOC
range, whereas sources using both fuels are important for
CROC emissions. Mobile source VOCs comprise many func-
tionalities, and aromatics make a substantial contribution.
The higher-volatility IVOCs have mass associated with aro-
matics from gasoline sources, but cyclic hydrocarbon com-
pounds contribute to IVOCs across all volatilities, a fea-
ture reported by Zhao et al. (2015). We currently lack data
to specify CROC functionality across all mobile categories,
so we have labeled them alkane-like based on observations
of motor vehicle POA emissions (Worton et al., 2014). Im-
proved CROC speciation is needed, especially given the im-
portance of functionality to SOA formation (Lim and Zie-
mann, 2009; Yee et al., 2013).

3.2 Impact of filter artifacts

Transitioning from the conventional approach to the ROC
approach has implications for near-source particle concen-
trations and prompt SOA production. Figure 4 shows the
contributions of mobile categories with results using ap-
proaches from previous work (Murphy et al., 2017; Lu et

al., 2020). The conventional approach assumes all OM stays
in the particle phase, which has been shown to lead to poor
AQM performance (Murphy et al., 2017). The Robinson et
al. (2007) case, which is consistent with CMAQv5.4, applies
the volatility distribution for a small nonroad diesel engine,
where half the OM mass is assumed to be IVOCs adsorbed to
filters and is thus volatilized. As seen in Fig. 4, only 25 % of
the OM persists in the particle after evaporation in the Robin-
son et al. (2007) approach. Lu et al. (2020) applied gasoline
and diesel-specific volatility profiles parameterized for emis-
sions from in-use vehicles to the entire mobile category, lead-
ing to less evaporation of OM than the Robinson et al. (2007)
approach. Lu et al. (2020) also applied a conversion factor of
1.4 to all mobile gasoline-fueled sources to account for miss-
ing SVOCs.

In the ROC approach here, we apply source-specific ad-
justment factors (Table S6) and volatility profiles (Table S5)
and find similar results for on-road gasoline and nonroad
diesel compared to Lu et al. (2020). However, on-road diesel
CROC emissions are increased by 60 % relative to the CROC
emissions from the Lu et al. (2020) approach, driven by
the inclusion of missing SVOCs from clean test conditions
for diesel engines with DPFs. Conventional OM emissions
from nonroad sources are greater than those from on-road
for both gasoline- and diesel-fueled sources. Nonroad gaso-
line emissions reduced by 36 % relative to Lu et al. (2020)
where emission factors are large, and CROC / OM is much
less than 1.0 (Table S6), indicating the presence of IVOCs
on the filter. Predicted conventional OM emissions from air,
rail, and marine sources are also important, and CROC emis-
sions are slightly larger than OM. Across the mobile sector,
total CROC emissions increased by 12 % relative to OM, and
42 % of the CROC emissions are predicted to be in the parti-
cle phase at 298 K and 10 µg m−3 organic aerosol (OA) load-
ing.

3.3 National-scale impact on PM, O3 and HAPs

When aggregated across all mobile sources, total ROC emis-
sions are nearly identical between the conventional approach
and ROC approach (Fig. 5). Total IVOC emissions repre-
sent only 10.2 % of total GROC due to the substantial role of
VOCs from gasoline sources to ROC emissions in the United
States. The spatial distribution of IVOC and CROC emis-
sions highlight the key role of cities, highways, and shipping
lanes (Fig. S26). We calculate the OA potential as the sum
of particle-phase mass (calculated at 298 K and 10 µg m−3)
for each species and the SOA yield of the vapor-phase com-
ponent of each species. Mobile source OA potential has
contributions from all ROC volatility classes with 6.8 %
from LVOCs, 25.4 % from SVOCs, 19.1 % from IVOCs, and
48.7 % from VOCs (Fig. 5). The estimated VOC OA poten-
tial is mainly driven by adjusted yields of aromatic VOCs,
which are enhanced over previous work due to corrections
for vapor wall losses of single-ring aromatic yields (Zhang
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Figure 3. Volatility-resolved mobile source ROC emissions for the contiguous United States during 2016 stratified along several dimensions
including category (a), operating mode (b), fuel (c), and chemical functionality (d). The “multi”-functionality series corresponds to com-
pounds that are both oxygenated and have double carbon bonds. Bins to the left of the solid black line are quantified by the left y axis and
those to the right by the right y axis. The unknown emissions (UN) are not assigned to a volatility bin and do not contribute to OA or O3
formation.

Figure 4. Bottom-up predictions of 2016 annual mobile CROC
(i.e., SVOC, LVOC, and lower-volatility compound) emissions clas-
sified by category, model approach, and equilibrium phase distribu-
tion. The full height of each bar corresponds to total CROC emis-
sions. Gas-particle partitioning is calculated for atmospherically rel-
evant conditions at 298 K and organic aerosol loading of 10 µg m−3.

et al., 2014). These metrics possibly reflect an upper bound
on VOC and IVOC contribution as they apply SOA yields
to the precursor emission without consideration of reaction

rates, timescales, or competitive losses of precursors and in-
termediates to deposition. Potential OA relative contributions
from air, marine, and rail (12 %) and on-road diesel (16 %)
sources play a larger role in OA potential when emissions are
estimated with the ROC approach, while nonroad gasoline
and diesel (38 %) and on-road gasoline potential OA (34 %)
decrease (Fig. 6). While aromatic species dominate OA po-
tential in the VOC precursor range, in the IVOC range OA
potential has larger contributions from cyclic alkane com-
pounds from on-road diesel sources (Fig. S23). In the LVOC
range and below, the ROC approach assumes only alkane-
like species; improvements to the SPECIATE database and
emissions modeling tools will support increased detail on
compound functionality when provided by future studies.

VOCs account for 97 % of the ozone potential approxi-
mated by maximum incremental reactivity (MIR), and the
total ozone potential decreases by 8.9 % due to the shift in
mass from VOC to IVOC. The national-scale source distribu-
tion of O3 potential changes little between the conventional
and ROC approaches (Fig. 6). Ozone potential is dominated
by on-road and nonroad gasoline sources in the highest ROC
volatility bins, driven by alkane, aromatic, and oxygenated
species, as expected (Fig. S23). Among on-road light duty
gasoline vehicles, 72 % of ROC emissions, 68 % of O3 po-
tential, and 79 % of OA potential are predicted to come from
pre-Tier 2 vehicles, while these vehicles account for 19 % of
the fuel used in 2017 (Fig. S25). Heavy-duty diesel vehicles
without particulate filters or selective catalytic reduction sys-
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Figure 5. Total US mobile source emissions for 2016 with aggre-
gate O3 and OA potential calculated at the species level.

Figure 6. Mobile sector contributions to ROC classes and derived
quantities like O3 and OA potential. Values are presented for the
conventional and ROC-based approaches.

tems contribute 87 % of ROC emissions, 85 % of O3 poten-
tial, and 91 % of OA potential while using 31 % of the fuel
for the heavy-duty diesel on-road category.

National-scale HAP emissions changed substantially with
updates in VOC speciation and introduction of IVOCs with
many species decreasing by nearly 20 % or more including
toluene (−19 %), hexane (−22 %), 1,3-butadiene (−34 %),
and ethylbenzene (−29 %) and others increasing substan-
tially including formaldehyde (+22 %), acrolein (+20 %),
and acetaldehyde (+19 %) (Fig. S25). These results empha-
size the need for more research on HAP emission factors, but
we keep them constant for the CMAQ simulations to focus
on OA and O3 changes.

3.4 Air quality model results

Mobile ROC emissions were generated for the year 2017
to be comparable with the EQUATES 2017 emission in-
puts. Differences between the EQUATES mobile inputs and
those for the CMAQ–ROC simulation (Table S9) are con-
sistent with the changes in the 2016 emission results de-
picted in Fig. 4. The CMAQ–ROC simulation predicts lower
OC concentrations throughout the domain due to elimination
of pcSOA. CMAQ–ROC predictions compared well against
both O3 and OC measurements at air quality system (AQS)
sites in 2017 (Figs. S28, S29 and Table S10). Normalized
mean biases for OC improved (in absolute terms and on
average) by 11.3 % in spring, 4.3 % in autumn, and 7.6 %
in winter. In summer, the OC underprediction increased by
12 %. Overprediction in the northeast, Ohio Valley, Upper
Midwest, and northwest in winter is consistent with tim-
ing and geography of residential wood combustion emis-
sions, which may be overrepresented in both simulations.
Root mean square error and correlation coefficient differ-
ences between the EQUATES and CMAQ–ROC simulations
are small. CMAQ predicts both the annual mean and variabil-
ity of OC concentrations well at selected US cities (Figs. S34,
S35), with the exception of New York City where the model
overpredicted OC by more than a factor of 2.

The predicted annual population-weighted average OA at-
tributable to mobile sources is 0.26 µg m−3, or 9 % of the
OA from all anthropogenic and biogenic sources. Mobile
source contributions to POA and SOA are similar on aver-
age, with apparent spatial differences (Fig. 7). Average total
mobile source OA appears stable between winter and sum-
mer seasons (Fig. S30), and this is a result of trade-offs be-
tween higher POA concentrations in winter and higher SOA
in summer (Figs. S31, S32). In rural areas, model-predicted
mobile OA contributions asymptote at 4.5 % of total OA, and
in some urban areas they can exceed 23 % (annual averages;
Fig. S33). The ratio of SOA to OA is equal to 70 % in rural ar-
eas and decreases with increasing population to 20 %–40 %.
Diurnal profiles at select cities indicate SOA formation peaks
at noon in Los Angeles, Denver, Chicago, and New York,
but that feature is not reproduced on average in Houston and
Raleigh (Figs. S34, S35).

CMAQ–ROC mobile and VCP IVOC concentrations are
enhanced in urban areas with minimal seasonal differences
predicted (Figs. S36, S37). Mobile sources are predicted to
contribute 20 %–25 % to total IVOCs depending on location
and time of year, while VCP sources contribute 59 %–66 %
(Fig. S36), although IVOCs from other sources are under-
represented. The composition of ambient IVOCs predicted
by CMAQ–ROC and the speciation of IVOC emissions from
mobile and VCP emissions are consistent with results from
Zhao et al. (2022) (Fig. S38). Since ambient IVOC con-
centration measurements for 2017 are lacking, we extrap-
olated concentrations to the CalNex campaign in 2010 and
find acceptable agreement with campaign-average hydrocar-
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Figure 7. Annual average concentration (a–c) of total OA (a, d), POA (b, e), and SOA (c, f) from mobile sources predicted by CMAQ for
2017 with the ROC mobile emission inventory. The fractional contributions of mobile sources to the total of each pollutant category from
all sources are in panels (d)–(f). In all panel subtitles, “Max” refers to the spatial maximum of the annual average spatial field, while “Avg”
refers to the population-weighted average of the annual average spatial field.

bon and oxygenated IVOC observations (Sect. S8, Fig. S39a,
b). Extrapolation of CMAQ–ROC SOA to 2010 underpre-
dicts mean CalNex SOA observations by 46 % (Fig. S39c,
d). Potential explanations include underestimated emissions
from other sources (e.g., cooking), mischaracterized chemi-
cal processing (e.g., SOA yields), or errors in modeling re-
gional pollution in Southern California (Lu et al., 2020).

The US annual GROC emission rate for mobile
(2.49 Tg yr−1) is 20 % less than that of VCPs (3.09 Tg yr−1),
but the mobile IVOC emissions (0.25 Tg yr−1) are only one-
third those of VCPs (0.77 Tg yr−1). Gas-phase oxidation is
responsible for less than half (42 % and 44 %) of the loss of
mobile and VCP SOA-forming GROC but 88 %–90 % of the
IVOC loss (Fig. 8). The annual production and loss of total
OA from mobile and VCPs is similar, and loss is distributed
evenly across deposition processes and transport out of the
model domain. The annual rate of OA production (emission
plus chemical production) estimated by CMAQ and normal-
ized to total ROC emissions (i.e., the sum of NMOGs plus
conventional OM) is 0.16 g OA (g ROC)−1, which is approx-
imately equal to that estimated from the data in Fig. 5. This
agreement is surprising considering that the latter calcula-
tion does not account for variations in OA partitioning, NOx

effects on SOA yields, or competitive losses from wet scav-
enging and dry deposition. Seasonal trends for OA, SOA and
POA production rates and ambient concentrations normal-
ized to OM and NMOG emissions are tabulated in Table S11
and discussed in Sect. S9. These data may inform simple
(e.g., screening) models of the impact of anthropogenic emis-
sions on human exposure.

Figure 8. Domain-wide predicted budget of (a) mobile and volatile
chemical product (VCP) gas-phase emissions and loss due to chem-
istry, deposition, or transport and (b) OA production and losses for
2017. In panel (a), loss terms are only depicted for categories of
compounds that lead to organic particle formation.

4 Conclusions

This study implements a detailed source- and species-level
procedure for converting conventional OM and NMOG mo-
bile emissions to metrics compatible with the most recent
science and speciation developed for atmospheric ROC.
Although many AQMs have implemented online or pre-
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processing emission adjustments to account for these phe-
nomena (Koo et al., 2014; Murphy et al., 2017), the pro-
cedure should be embedded within emission models and
databases for several reasons. Most importantly, this detailed
approach considers a more diverse population of sources of
different ages, fuels, and control technologies that are typi-
cally averaged together before they are passed to the AQM.
Additionally, the new procedure enables near-explicit spe-
ciation of each emission source before mapping to model
species used in a particular chemical mechanism. Having
a detailed speciation of major emission sources is critical
for assessing and revising chemical mechanisms (Pye et al.,
2023). Finally, operationalizing conversions from OM to
CROC and NMOGs to GROC alleviates AQM users from
the burden of interrogating their emissions files to determine
whether complex scaling operations are needed. From the
broader perspective of facilitating transfer of knowledge be-
tween the scientific and regulatory communities, the SPECI-
ATE database is now capable of ingesting speciation profiles
with factors aligned with the most recent research studies
and has enhanced flexibility to accommodate future updates.
Nonetheless, for model applications seeking to scale legacy
emission inputs, we provide updated factors normalized to
several levels of source aggregation in Table S12 and discuss
the uncertainty introduced with this approach in Sect. S10.

The 2016 ROC emissions suggest slight decreases to total
O3 formation due to reapportionment of VOC to IVOC in this
approach, but 2017 CMAQ–ROC predictions do not mean-
ingfully change when evaluated at AQS sites. Meanwhile,
mobile SVOC and IVOC emissions enhance OA formation
by an additional 79 kt yr−1 compared to estimates from the
EQUATES configuration (319 kt yr−1). Gaps between total
OA measurements and CMAQ–ROC predictions will be ad-
dressed through improved modeling of other sources of ROC
(e.g., VCPs, wildfires, residential wood combustion, and
cooking). Within the mobile sector, results indicate substan-
tial contributions from on-road (46 %) and nonroad (41 %)
gasoline and somewhat less from on-road (5 %) and non-
road (3 %) diesel air, marine, and rail sources (4.7 %; Fig. 6).
The vast majority of ROC emissions and impacts are at-
tributable to older (pre-Tier 2 light duty gasoline and non-
DPF heavy duty diesel) vehicles and nonroad gasoline en-
gines. On-road pollution will continue to decrease as these
vehicles are phased out, increasing the importance of other
mobile source categories and other sources.

This study suggests several specific uncertainties per-
taining to mobile source emissions need further labora-
tory and field investigation. Developing complete ROC
volatility distributions for specific source classes and con-
trol types is critical, especially within the nonroad cate-
gory where fewer experimental data were available for this
study. The CROC / OM factors are uncertain across all mo-
bile sources. Ideally, IVOC and CROC emissions should
be sampled by a filter and a broad-spectrum adsorbent
tube in series to avoid filter artifacts (Khare et al., 2019).

If filter-based methods alone are used to inform organic
aerosol emission inventories, then reducing the uncertainty
in the relationship between particle emission factor and to-
tal CROC will strengthen our confidence in estimating or-
ganic aerosol emissions, particularly for lower-emitting tech-
nologies. Some CROC / OM ratios derived for this work are
between 0.85 and 1.15, indicating a limited role for parti-
tioning bias during source testing in those cases, but many
are greater than 1.30, especially the lower-emitting sources.
Lastly, more research is needed to determine the extent to
which NMOG measurements capture IVOCs (quantified by
the IVOC / NMOG or IVOC / GROC ratios). These param-
eters are especially important to understand for older vehi-
cles and equipment which drive historical and contemporary
emissions. We recommend that emissions tests specifically
measure and report CROC and GROC to facilitate compar-
ison among datasets and implementation in emission mod-
els. Currently, these measurements are beyond the scope of
typical regulatory requirements, and future progress requires
research beyond regulatory methods.
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Appendix A: Definitions of key terms

Abbreviation Definition
OM organic matter component of primary particle emissions as measured on a filter
NMOGs non-methane organic gas emissions
POA primary organic aerosol: particle-phase emissions after equilibrium is reached with ambient conditions.
OA particle-phase organic material at ambient conditions
LVOC low-volatility organic compounds (C∗≤ 0.32 µg m−3)
SVOC semivolatile organic compounds (0.32 < C∗≤ 320 µg m−3)
IVOC intermediate-volatility organic compounds (320 < C∗≤ 3.2× 106 µg m−3)
VOC volatile organic compounds (3.2× 106 µg m−3 < C∗)
CROC condensable reactive organic carbon: particle- and gas-phase LVOC+SVOC (carbon and noncarbon mass

are included)
GROC gaseous reactive organic carbon: particle- and gas-phase IVOC+VOC (carbon and noncarbon mass are

included)
ROC reactive organic carbon – all particle and gas organic compounds mass except methane. (carbon and

noncarbon mass are included)

Code availability. The CMAQ model source code used is avail-
able via Zenodo (https://doi.org/10.5281/zenodo.7869142, Murphy
and Pye, 2023). MOVESv3.1, used for this work, is available from
the U.S. EPA at https://www.epa.gov/moves (U.S. EPA, 2020b).
The functions to estimate OA and O3 potential are available as part
of a public repository archived at https://doi.org/10.23719/1527956
(Pye, 2022).
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