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Abstract. A new global dataset of annually averaged ultrafine particle (UFP) concentrations at the Earth’s
surface for the years 2015–2017 has been developed through numerical simulations using the ECHAM/MESSy
Atmospheric Chemistry model (EMAC). We present total and size-resolved concentrations along with their inter-
annual variability. Size distributions of emitted particles from the contributing source sectors have been derived
based on literature reports. The model results of UFP concentrations are evaluated using particle size distribu-
tion and particle number concentration measurements from available datasets and the literature. While we obtain
reasonable agreement between the model results and observations (logarithmic-scale correlation of r = 0.76 for
non-remote, polluted regions), the highest values of observed, street-level UFP concentrations are systematically
underestimated, whereas in rural environments close to urban areas the model generally overestimates observed
UFP concentrations. As the relatively coarse global model does not resolve concentration gradients in urban
centres and industrial UFP hotspots, high-resolution data of anthropogenic emissions are used to account for
such differences in each model grid box, obtaining UFP concentrations with unprecedented 0.1◦× 0.1◦ hori-
zontal resolution at the Earth’s surface. This observation-guided downscaling further improves the agreement
with observations, leading to an increase in the logarithmic-scale correlation between observed and simulated
UFP concentrations to r = 0.84 in polluted environments (and 0.95 in all regions), a decrease in the root mean
squared logarithmic error (from 0.57 to 0.43), and removal of discrepancies associated with air quality and pop-
ulation density gradients within the model grid boxes. The model results are made publicly available for studies
on public health and other impacts of atmospheric UFPs, as well as for intercomparison with other regional and
global models and datasets.
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1 Introduction

Atmospheric aerosols in various size ranges have a signif-
icant impact on public health, the hydrological cycle and
climate. Close to the Earth’s surface, aerosol particles are
among the main pollutants and drivers of atmospheric chem-
istry in the boundary layer, being directly relevant for human
health (Burnett et al., 2014; Pope and Dockery, 2006; Cohen
et al., 2005). At the same time, aerosols can directly scatter
and absorb solar and thermal radiation, altering the radiative
balance of the Earth’s atmosphere (e.g. Bellouin et al., 2020).
Furthermore, atmospheric aerosols act as cloud condensation
nuclei (CCN) and thus influence cloud formation processes
and cloud properties. Consequently, changes in CCN concen-
trations may affect the hydrological cycle and indirectly the
radiative balance of the Earth’s atmosphere by altering cloud
cover and albedo (e.g. Christensen et al., 2020; Lohmann and
Feichter, 2005; Twomey, 1959).

Recently, multiple studies have concluded that the expo-
sure to particulate matter air pollution from a variety of
sources has major implications for public health (Lelieveld
et al., 2020, 2015; Chowdhury et al., 2022). The latest Global
Burden of Disease study has associated 4.2 million deaths
globally with the exposure to ambient particulate matter with
an aerodynamic diameter smaller than 2.5 µm (PM2.5) and
0.37 million deaths to ambient ozone pollution (Murray et al.,
2020). Evidence presented in recent studies indicates that the
long-time exposure to high concentrations of ultrafine par-
ticles (UFPs), i.e. particles with an aerodynamic diameter
smaller than 100 nm (WHO, 2006) which barely contribute
to PM2.5 mass, significantly impacts human health, leading
to the increased incidence of cardiovascular and cerebrovas-
cular diseases (Downward et al., 2018; Delfino et al., 2005;
Stone et al., 2017). The health impacts of UFPs may be at-
tributed to their high potential to penetrate more deeply into
the lungs and potentially into the bloodstream compared to
coarser size particles (Schraufnagel et al., 2019; Schrauf-
nagel, 2020; Hong and Jee, 2020).

Reflection and absorption of solar radiation can be ne-
glected for UFPs as the scattering and absorption coeffi-
cients typically peak at particle diameters between 400 and
1000 nm. However, aerosol particles with a minimum diam-
eter of approximately 40 nm and larger can serve as CCN,
while particle numbers strongly decrease for sizes greater
than 200–300 nm in general (Andreae, 2009). Thus, UFPs
significantly contribute to CCN concentrations.

Atmospheric aerosols can either be directly emitted into
the atmosphere (primary) by natural or anthropogenic pro-
cesses or be nucleated from precursor gases (secondary),
with the latter being considered to be the largest source of
atmospheric aerosols (Gordon et al., 2017). Freshly nucle-
ated secondary particles usually have a diameter between 1
and 20 nm (Curtius, 2006) and can grow by coagulation and
condensation of trace gases (Kulmala et al., 2004). While pri-
mary aerosols from natural sources (e.g. desert dust and sea

salt) are emitted at diameters predominantly in the microme-
tre range and larger (Dentener et al., 2006), anthropogenic
particles (e.g. from combustion processes) are usually emit-
ted at much smaller sizes, contributing to UFPs (Kwon et al.,
2020; Paasonen et al., 2016).

Despite the importance of UFPs for atmospheric processes
and human health, very little is known about their global dis-
tribution at the Earth’s surface. A simulation of global par-
ticle number concentrations at the Earth’s surface was per-
formed by Gordon et al. (2017), however focusing on new
particle formation (NPF) and CCN up to an altitude of 460 m
above the surface, and by Chen et al. (2021) with a nested
high-resolution simulation over eastern Asia (0.33◦× 0.33◦)
and a particular focus on organic aerosols. Local (surface
or vertical) distributions of particle number concentrations
and size distributions were measured and modelled by Ket-
zel et al. (2021) and Frohn et al. (2021, both street- and
address-level UFP concentrations in Denmark), Fountoukis
et al. (2012) and Saha et al. (2021, high-resolution UFP con-
centrations over Europe and the United States, respectively),
Kukkonen et al. (2016, dispersion of particle numbers in
European cities), Franco et al. (2022, NPF and growth in
the Amazon rainforest), Williamson et al. (2019) and Liu
and Matsui (2022, both NPF and the contribution of organic
aerosols in the remote atmosphere from the surface to the up-
per troposphere), and Weigel et al. (2021, NPF in the South
Asian monsoon).

Thus, present knowledge on global surface UFP concen-
trations is mostly limited to local model studies and in situ
measurements of particle size distributions (PSDs), from
which UFP concentrations can be inferred. While the num-
ber of PSD measurements is increasing (Wu and Boor, 2021;
Rose et al., 2021), they are still sparse and mostly not con-
tinuous over time. Furthermore, there are no clear method-
ological guidelines for measuring PSDs or particle number
concentrations (PNCs) (Trechera et al., 2023), and measure-
ment size limits vary greatly. However, new recommenda-
tions have recently been suggested (CEN/TS 17434:2020,
2020; CEN/TS 16976:2016, 2016; ACTRIS, 2021).

To generate a first, global, annually averaged UFP dataset
for the years 2015–2017 we used the ECHAM/MESSy At-
mospheric Chemistry model (EMAC; Jöckel et al., 2006),
including gas-phase and heterogeneous chemistry with com-
prehensive chemical mechanisms, aerosol microphysics with
size-resolved particulate matter and cloud interactions. Such
data can be applied to investigate the impact of UFPs on pub-
lic health, CCN formation and cloud properties, as well as for
intercomparison studies with other regional and global mod-
els and datasets.

Several emission inventories describe the total emitted
mass of aerosol and gas species on a global grid (e.g. Hoesly
et al., 2018; Crippa et al., 2020; Granier et al., 2019). How-
ever, the inference of the number of emitted particles is very
sensitive to their size distribution as small changes can lead
to large deviations in the resulting particle number concen-
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trations. Information on these size distributions is rare, and
the uncertainties are high (Paasonen et al., 2016). For that
reason we use existing information on PSDs of emitted parti-
cles from the literature and evaluate our results against mea-
surement data in China, India, Europe, the United States and
various remote regions.

Another challenge in the global modelling of UFPs is
the limited model resolution. Studies showed that UFP con-
centrations return to background levels within a distance of
about 1000 m from the source (e.g. Karner et al., 2010, for
roadways). Thus, UFP concentrations can show sharp urban
to rural gradients (e.g. Saha et al., 2021) that cannot be cap-
tured efficiently by a global model that is limited in the hor-
izontal grid size. As a result, high local UFP concentrations
in densely populated urban areas may be artificially diluted
by the surrounding regions in the grid boxes. This may result
in an underestimation of UFP concentrations in city centres,
while concentrations in remote regions close to urban areas
may be overestimated. This shortcoming in the evaluation of
model results is studied in depth as the inability of localized
measurements to represent the grid box environment (repre-
sentation error) in Schutgens et al. (2016a, b, 2017).

The correlation between the underestimation of the model
on the one hand and local high-resolution anthropogenic
emissions at the measurement sites relative to the average
anthropogenic emissions at model resolution on the other
hand is used here to derive UFP concentrations at 0.1◦×0.1◦

horizontal resolution. We show that this improves the agree-
ment between observations and simulations, reduces the spa-
tial representation error, and decreases inconsistencies intro-
duced by the difficulties of the coarse model resolution to
capture population density and air pollution gradients.

2 Global model and methods

The ECHAM/MESSy Atmospheric Chemistry (EMAC)
model (Jöckel et al., 2006) is a combination of the fifth-
generation European Centre Hamburg general circulation
model, ECHAM5 (Roeckner et al., 2003), which serves as
the dynamical base model, and the second version of the
Modular Earth Submodel System, MESSy2 (Jöckel et al.,
2010), comprising various submodels that describe the chem-
istry and physics of the atmosphere.

The simulation used for this study is performed at a spec-
tral, horizontal resolution of T63 (1.875◦× 1.875◦ or ap-
prox. 180× 180 km at the Equator) with 31 vertical, hybrid
terrain-following and pressure levels up to 10 hPa altitude
and the surface level extending up to approximately 45–70 m
above the surface, depending on latitude and season. The
model simulation is “nudged” (Jeuken et al., 1996; Jöckel
et al., 2006) towards meteorological reanalysis data of the
years 2014–2017 (ERA-Interim; Berrisford et al., 2011) from
the European Centre for Medium-Range Weather Forecasts
(ECMWF).

Global anthropogenic emissions of reactive gases and
aerosols at the surface from the simulated years are taken
from the Community Emissions Data System (CEDS; Mc-
Duffie et al., 2020a, b). We consider primary emitted black
carbon (BC), organic carbon (OC) and sulfate (SO4; 2.5 %
of SO2 emissions according to Dentener et al., 2006) as di-
rect aerosol sources at the surface. The CEDS anthropogenic
emissions from the sectors energy generation (ENE), in-
dustries (IND), land transportation (TRA), domestic energy
use (DOM), waste (WST), agricultural soils (AGR), solvent
production and application (SLV; no primary particle emis-
sions), and ship and other navigation (SHIP) are consid-
ered. Emissions from biomass burning (BB) and agricultural
waste and residue burning (AWB) were calculated daily us-
ing the BIOBURN submodel based on observed dry mat-
ter burned and fire type compiled by Andreae (2019). The
biomass burning emissions for OC and BC were increased
by a factor of 4.48 and 2.8, respectively, based on the work
of Pan et al. (2020) and a comparison with observations in
the Amazon Basin (Holanda Bruna, personal communica-
tion, 2023). Aircraft emissions of reactive gases, BC and
OC were taken from the CAMS global aviation emissions
(CAMS-GLOB-AIR; Granier et al., 2019). Sea salt (see al-
gorithm from Guelle et al., 2001) and dust emissions (see
algorithm from Klingmüller et al., 2018) are calculated on-
line using the submodel ONEMIS (Kerkweg et al., 2006).
All emissions are distributed to six different emission height
levels based on the description by Pozzer et al. (2009).

Aerosols are treated using the MESSy submodel GMXe
(Pringle et al., 2010). Aerosol microphysics are based on
aerosol size distributions with currently seven interactive
lognormal modes that cover the typical size spectrum of
aerosol species and differentiate into four hydrophilic (nucle-
ation, Aitken, accumulation and coarse) and three hydropho-
bic (Aitken, accumulation and coarse) aerosol modes. All
aerosols are approximated as spherical particles. The prop-
erties of aerosols in each mode are completely defined by
the total mass (internal mixture of contributing species), den-
sity, number concentration, median radius and width of the
lognormal distribution. After each simulation step aerosols
may transfer between modes depending on size changes. Or-
ganic aerosol species are additionally described by the Or-
ganic Aerosol Composition and Evolution (ORACLE; Tsim-
pidi et al., 2018) submodel, taking into account the parti-
tioning between aerosols and the gas phase. ORACLE dis-
tinguishes between primary and secondary organic aerosols
from different sources and volatilities (in up to five logarith-
mically spaced saturation concentration bins, ranging from
10−2 to 106 µg m−3, depending on the emission sector).

Heterogeneous and gas-phase chemistry are treated with
the submodel MECCA (Sander et al., 2019) with the Mainz
Isoprene Mechanism (MIM1; Pöschl et al., 2000; Jöckel
et al., 2006) as the chemical mechanism, comprising more
than 100 gas-phase species and more than 250 reactions.
Dry deposition, sedimentation and wet deposition are simu-
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lated with the submodels DDEP, SEDI (both Kerkweg et al.,
2006) and SCAV (Tost et al., 2006), respectively. The sub-
model NAN (Ehrhart et al., 2018) is used to estimate bi-
nary and ternary nucleation following Dunne et al. (2016),
pure organic nucleation (Kirkby et al., 2016), and nucleation
from oxidized organic species and sulfuric acid (Riccobono
et al., 2014). The parameterization of ion-induced nucleation
is included in NAN, using ion pair production and steady-
state ion concentrations from the submodel IONS (Ehrhart
et al., 2018). IONS calculates the ion pair production from
galactic cosmic rays and from radon decay. The latter is
obtained from the diagnostic radon (DRADON) submodel
(Jöckel et al., 2010).

Aerosols at the surface simulated with the EMAC model
have been extensively evaluated in many publications, with a
focus on either PM2.5 mass or aerosol optical depth (Pozzer
et al., 2012, 2015; Lelieveld et al., 2019; Pozzer et al., 2022).
Chowdhury et al. (2022) conducted an evaluation for aerosol
optical depth, PM2.5, and black carbon and organic aerosols
in PM2.5 using a similar setup as used in this study.

The number of emitted aerosols (Naer) is calculated as

Naer =
6 ·Maer

π · ρaer · d
3
med
· exp

(
−4.5ln2σln

)
, (1)

where the emitted aerosol mass Maer is given by the respec-
tive emission dataset. ρaer is the density of the considered
aerosol species, and σln is the width of the lognormal mode
in the model. The fraction is just the geometrical derivation
of the number of spherical particles from total mass, given a
diameter dmed, while the exponential function corrects for the
lognormal volume distribution (compare Eqs. 8.34 and 8.51
from Seinfeld and Pandis, 2016). The median diameter of the
emitted particles (dmed) depends on the considered sector and
species. AsNaer ∝ 1/d3

med, the number of emitted particles is
highly sensitive to the emission median diameter; i.e. a dou-
bling of the diameter leads to a reduction in the number of
emitted particles by a factor of 8.

In order to emit the aerosols with a realistic size distribu-
tion for each sector, a detailed investigation of the emission
size distributions is performed based on the findings of Paa-
sonen et al. (2016). Paasonen et al. (2016) used an emission
model (Amann et al., 2011) in combination with emission
factors and size distributions from the literature in order to
obtain global emission particle size distributions for differ-
ent sectors. As the median emission diameter dmed is a global
quantity in the EMAC model, we derived the median of the
present global size distributions from Paasonen et al. (2016)
and used them as dmed for the corresponding sectors in our
model. The distributions along with their median diameters
are depicted in Fig. 1.

Additionally, the aerosol median emission diameter from
biomass burning and AWB is estimated to be 130 nm based
on the average of multiple studies on biomass burning emis-
sions summarized in a review (Reid et al., 2005), confirmed

by Janhäll et al. (2010, who measured 120 nm) and the re-
spective size distribution from Paasonen et al. (2016) for
AWB (median diameter of 126 nm). Ship aerosol emissions
are assumed to be represented by a median diameter of 40 nm
based on studies by Kasper et al. (2007, who found 20–
40 nm for low-speed marine diesel engines), Diesch et al.
(2013, small nucleation mode from 10–20 nm and Aitken
mode around 35 nm) and Petzold et al. (2008, 52 nm in fresh
plume and up to 100 nm in aged plume). Aerosols from air-
craft emissions are emitted at a diameter of 40 nm as well,
based on studies from Petzold and Schröder (1998) and Pet-
zold et al. (2003), who distinguished a mode between 30 and
45 nm and an additional smaller accumulation mode around
180 nm. Dust particles are emitted only in the accumulation
and coarse modes according to Klingmüller et al. (2018) and
play a negligible role in UFP concentrations (d’Almeida,
1987). For the emissions of sea salt we use the diameters
from the algorithm of Monahan (1986), also only emitting
particles in the accumulation and coarse modes.

As only a few measurements of PSDs are available, which
can be used to directly infer UFP concentrations, measure-
ments of total PNCs are additionally used for the model eval-
uation as they are often dominated by UFPs, especially close
to UFP sources (e.g. Baldauf et al., 2016; Kumar et al., 2014).
Figure 2 shows a typical simulated PSD (blue line) as the sum
of the four soluble and three insoluble modes. The solid red
line shows the upper bound for UFPs at 100 nm. The dashed
red line is the variable lower bound, used exclusively for
comparison to observations, as measurement devices entail
a cut-off particle diameter below which no particles are de-
tected. The published global UFP dataset includes arbitrarily
small particles and does not use a lower cut-off value.

The UFP concentration in the simulation NUFP is cal-
culated using the particle number concentration Ntot,i , the
width σi and the median diameter Dm,i of each mode i:

NUFP =

7∑
i=1

Ntot,i

2
·

{
erf

(
ln
(
Dup/Dm,i

)
√

2ln(σi)

)

− erf

(
ln
(
Dlow/Dm,i

)
√

2ln(σi)

)}
, (2)

where Dup is the fixed upper bound of 100 nm, and Dlow is
the variable lower detection limit associated with the mea-
surement device below which no particles can be detected.
The cut on the detection limit is applied on the simulation for
comparisons with observations. For the final global dataset
we report the total number of UFPs, and thus Dlow is set to
0 nm, and the second error function in Eq. (2) equates to −1.

The total PNC is the sum of the particle number con-
centrations Ntot,i for each mode (i.e. Dup =+∞, and the
terms in the curly brackets in Eq. (2) add up to +2 for
Dlow = 0). However, PNC measurements also have a lower
cut-off value, which has to be considered for model evalua-
tion when comparing simulated and measured PNCs.
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Figure 1. Normalized size distributions of primary emitted particles from different sectors (IND: industries, ENE: energy generation, TRA:
land transportation, AGR: agricultural soils, WST: waste, DOM: domestic energy use) taken from Paasonen et al. (2016) with corresponding
median diameters derived from these distributions (black line). The median diameters are taken as median diameters for the sector emissions
in our simulation.

Figure 2. Typical particle size distribution (PSD) taken from the
simulation in an urban region. The dashed lines represent the sol-
uble and insoluble aerosol modes. The PSD is the sum of all these
modes (blue line), typically dominated by the soluble modes. UFPs
are defined as all particles with a diameter below 100 nm (right red
line), while the total particle number concentration is the full inte-
gral over the PSD. For comparison between observed and simulated
concentrations, the lower bound (dashed red line) is considered a
cut-off, which depends on the detection limit of the measurement
device. The final dataset includes all UFPs without lower bounds.

3 Observations

In order to evaluate the simulated UFP concentrations from
the EMAC model, observations were collected from different
stationary measurement sites at the Earth’s surface with a fo-
cus on polluted regions. The simulation has been performed
for the years 2015–2017 with 1 year of spin-up (2014),
whereas we evaluated the simulation for the year 2015 only.
Thus, if available, the simulations were compared to observa-
tions in 2015. However, to increase the number of available
datasets to compare with simulation results, we additionally
used annual averages of observed UFP concentrations and
PNCs from all available years for the evaluation. This is
noted accordingly in the following sections. Observational

data were collected for UFP concentrations and PNCs and
were compared to the respective calculated simulated values
according to the lower cut-off value of the respective mea-
surement devices. The sources of the observational data of
UFPs (derived from PSDs) and PNCs are listed below.

3.1 EBAS

EBAS is a database for atmospheric measurement data oper-
ated by the Norwegian Institute for Air Research (NILU) and
contains measurements for different programmes of which
we used the following:

– The European Monitoring and Evaluation Programme
(EMEP) monitors air pollutants in Europe.

– The Global Atmosphere Watch – World Data Centre for
Aerosols (GAW-WDCA) is a data repository for mi-
crophysical, optical and chemical properties of atmo-
spheric aerosol.

– The Aerosol, Clouds and Trace Gases Research In-
frastructure (ACTRIS) contains long-term atmospheric
measurement data.

The data were obtained from the EBAS database (http://
ebas.nilu.no/, last access: 17 February 2022). We analysed
all available PSDs (mostly in Europe and remote regions)
and PNC measurements (Europe, North America and remote
regions) taken in 2015.

3.2 Field measurements, literature and published
datasets

We derived UFP concentrations from PSDs measured by
groups involved in the present study in India, China and
the Amazon rainforest. In India PSDs were measured in
Delhi (Thamban et al., 2021), Mahabaleshwar and Hyder-
abad (both Sebastian et al., 2022). Measurements in China
were taken in Shanghai (unpublished), Beijing (Liu et al.,
2020), Lin’an (Shen et al., 2022) and Gucheng (Li et al.,
2021). Additionally, we used measurements from the Ama-
zon Tall Tower Observatory (ATTO) centrally located in
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the rainforest in Brazil, about 150 km northeast of Manaus
(Franco et al., 2022). The observational datasets are comple-
mented by including literature and published datasets from
China and India (Gani et al., 2020; Wu et al., 2008), as well
as from the Atmospheric Tomography mission (ATom) air-
craft campaign (Brock et al., 2019).

4 Results

Annual averages of modelled UFP (UFPM) concentrations
in 2015 on a global scale are displayed in Fig. 3, ranging
from about 40 cm−3 over parts of the ocean to up to more
than 12 000 cm−3 in China, India, Indonesia and Papua New
Guinea (considering averages over model grid boxes). UFPM
concentrations are generally high across Europe, ranging
from 2000 to 6000 cm−3; however, they are lower than in
several Asian hotspot areas. In North America, UFPM con-
centrations are simulated to be higher along the East Coast,
with additional hotspots in and around the big cities along
the West Coast, reaching up to 8000 cm−3 in and around San
Francisco and Los Angeles. We also simulate high UFPM
concentrations close to 10 000 cm−3 in the West Coast of
South America and regional enhancements along the East
Coast. Southern Australia, northern Africa and the Middle
East (the Persian Gulf region) also show enhanced UFPM
concentrations exceeding 8000 cm−3.

Continental polar regions in North America, Europe, Asia
and Antarctica are simulated to have UFPM concentrations
mostly below 500 cm−3 due to the absence of pollution par-
ticle sources. Low UFPM concentrations (down to 150 cm−3)
are also simulated across the Amazon rainforest and in major
desert regions (e.g. the Sahara). However, there is a lack of
measurement data of PNCs and UFP concentrations in desert
regions that hinders the evaluation of the model results. Low
UFP concentrations in the boundary layer over the Amazon
forest have been reported previously and have been attributed
to missing sources of primary UFPs and the growth of sec-
ondary particles during transport from the upper troposphere
through the condensation of oxidized organic species, reach-
ing the boundary layer through convective downdrafts (Zhao
et al., 2020; Wang et al., 2016; Andreae et al., 2018).

UFPM concentrations over the oceans are highly variable,
with relatively high values exceeding 2500 cm−3 over the Pa-
cific and Indian oceans downwind of pollution sources on
land and very low values below 50 cm−3 over the South-
ern Ocean and tropical Atlantic and Pacific oceans. Low
UFP concentrations in the tropical ocean environment have
been observed by the ATom aircraft campaign as well, po-
tentially caused by the efficient removal of small particles
by coagulation and again the downward transport of aged
secondary particles from the upper troposphere (Williamson
et al., 2019).

PNCs were previously modelled by Gordon et al. (2017)
at relatively low global resolution, Saha et al. (2021) for

the United States only and Chen et al. (2021) with a fo-
cus on eastern Asia. Gordon et al. (2017) concentrated on
cloud condensation nuclei and averaged over a vertical col-
umn of 460 m. We generally simulate higher concentrations
compared to Gordon et al. (2017), mostly capturing UFP
hotspots, in accordance with observations, especially after
the redistribution based on anthropogenic emissions (see
Sect. 4 and 4.2). The comparably lower concentrations sim-
ulated by Gordon et al. (2017) might partially result from the
larger vertical column in the simulation, the coarser resolu-
tion or the different emission diameters (globally 60 nm for
all fossil-fuel-related emissions). Our simulated UFP con-
centrations agree very well with the PNC simulation from
Chen et al. (2021) in most continental regions, especially
in Europe, North and South America, Africa, Australia, and
eastern Asia (which they focused on). However, simulated
PNCs in India are considerably lower than our UFP concen-
trations (supported by observations; see Sect. 4.1.3). Addi-
tionally, we simulate higher UFP concentrations at marine
southern mid-latitudes (in reasonable agreement with mea-
surements taken during the ATom campaign; see Sect. 4.1.5)
than Chen et al. (2021).

The simulated spatial distribution of UFPs over the con-
tiguous United States matches that of Saha et al. (2021).
They used a land use regression model to produce a high-
resolution (200× 200 m) product of UFP concentrations. We
reach similar values in the urban regions in the United States
after the redistribution based on anthropogenic emissions as
described in Sect. 4.2; however the values are still lower than
the highest values simulated by Saha et al. (2021). The dif-
ference might be due to the fact that UFP concentrations are
a subset of PNCs. Ketzel et al. (2021) simulated PNCs at
the street- and address-level on the same order of magnitude
as our simulation up to the urban background level but with
much higher peak values, reaching more than 30 000 cm−3

in traffic hotspots, which we cannot resolve. Our simulated
UFP concentrations are much lower than the modelled re-
sults from Fountoukis et al. (2012), which reach around
20 000 cm−3, even for background regions in Europe in May
2008, and up to more than 100 000 cm−3 in local hotspots in
southeastern Europe. However, the general increasing trends
from western to eastern Europe agree.

Trechera et al. (2023) analysed observations of PNCs and
UFP concentrations in Europe from 2017 to 2019, focus-
ing on daily and seasonal patterns, UFP drivers, and regional
trends. They again find increasing UFP concentrations from
northern to southern and from western to eastern Europe. Our
simulation also exhibits the west–east tendency in Europe,
however no clear pattern from north to south. Seasonality
and drivers of UFP concentrations and composition will be
the subject of follow-up studies.

UFPs have widely differing size distributions across the
globe. Figure 4 illustrates this based on three size bins, i.e.
1.7–20, 20–50 and 50–100 nm. Freshly nucleated particles
between 1.7 and 20 nm mostly dominate in remote environ-
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Figure 3. Annual average of global UFP concentrations simulated with EMAC for the year 2015 at model resolution of 1.875◦×1.875◦ and
from the lowest vertical model level (surface level).

ments, especially over oceans. PSDs usually peak at diam-
eters between 20 and 50 nm in polluted regions, represent-
ing a mixture of freshly emitted primary particles from fos-
sil fuel combustion and rapidly grown secondary particles.
Biomass burning particles are typically emitted at larger di-
ameters (see Fig. 1). Additionally, high concentrations of or-
ganic vapours lead to strong condensational growth in forest
regions. Thus, UFPs are dominated by 50–100 nm particles
there.

The interannual variability in UFP concentrations is pre-
sented in Fig. 5. We observe strong interannual variation, ex-
ceeding 1000 cm−3 and (up to 50 %) along the Intertropi-
cal Convergence Zone (ITCZ), which is mostly caused by
meteorological differences in the different years, potentially
caused by the strong El Niño in 2015, followed by weaker
La Niña and El Niño events in 2016 and 2017. The meteo-
rological influence on UFP concentrations could be the ba-
sis for future studies. We additionally find absolute interan-
nual variation exceeding 1000 cm−3 over polluted regions,
although below 20 % in relative terms. This is mostly due
to a decreasing trend in emissions over southern and eastern
Asia, Europe, and the United States. However, we observe an
increasing trend in UFP concentrations over parts of Africa,
especially over Nigeria and South Africa.

4.1 Evaluation

In the following, we present the evaluation of the simu-
lated UFPM concentrations based on observational data. Sec-
tion 4.1.1 to 4.1.4 evaluate urban and rural regions in four
comparably highly polluted regions for which measurement
data are available, namely Europe, North America, India and
China. In Sect. 4.1.5 remote regions in polar, forest, moun-
tain and ocean environments with a lower population den-

Figure 4. Fraction of UFPs in different size ranges, represent-
ing freshly nucleated particles (1.7–20 nm), fossil fuel emissions or
grown nucleation particles (20–50 nm), and further grown or larger
emitted particles (50–100 nm).

sity are evaluated. Mountain environments are defined cover-
ing altitudes from 1500 to 3000 m a.s.l., while measurements
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Figure 5. Absolute interannual variation in UFP concentrations cal-
culated based on the years 2015–2017. It is defined by the maximum
minus the minimum annually averaged UFP concentrations.

above 3000 m a.s.l. were excluded as they are mostly located
in the free troposphere, and this study concentrates on bound-
ary layer processes and the respective evaluation.

Annual averages of observed UFP (UFPO) concentrations
and PNCs (PNCO) were either derived from daily PSDs (by
integrating the number of aerosol particles per size bin from
the lowest measurement bin up to the bin crossing the up-
per size threshold of 100 nm) and PNCs – removing outliers
differing by a factor greater than 10 from the median value
and subsequently calculating the annual average – or directly
provided. The daily averaged number concentrations of the
model aerosol modes were integrated for the same size re-
gion as the observations (from the lower detection limit of
the measurement device up to the highest measurement bin
with a mean diameter below 100 nm) according to Eq. (2).
UFPM concentrations were sampled at the vertical grid box
covering the measurement site altitude.

The evaluation in this section concentrates on the mod-
elled (UFPM or PNCM) and observed (UFPO or PNCO) con-
centrations. The downscaled (i.e redistributed within each
grid box) concentrations (UFPR or PNCR) are the subject of
Sect. 4.2. We used three different statistical measures for the
evaluation based on daily model output and observations if
available:

– PF2, percentage of modelled values that are simulated
within the range of a factor of 2 of the observed values;

– NRMSE, root mean squared error (RMSE) normalized
by the range of the observations; and

– M/O, geometric mean of the ratio between the mod-
elled (M) and observed daily mean (O).

4.1.1 Europe

UFPO concentrations in Europe were derived from daily
PSDs provided by the EBAS database. An overview of
the different measurements in Europe and a comparison to

UFPM are presented in Table 1. We used all available obser-
vations from the EBAS database from 2015 in Europe from
rural and urban stations. The remote stations as defined above
are excluded here and are discussed separately in Sect. 4.1.5.
Additionally, we excluded measurements in Athens (GR) and
Preila (LT) due to apparent inconsistencies in the observa-
tional datasets.

The simulation shows reasonable agreement with the ob-
servations at most measurement stations with PF2≥ 40 %,
NRMSE≤ 0.4 and 0.5≤M/O ≤ 2.0. However, there are
some exceptions. At the measurement stations of Madrid,
Leipzig-Eisenbahnstrasse, Leipzig-Mitte and Dresden-Nord,
the model strongly underestimates the UFP concentrations.
This is due to a combination of two effects. Firstly, UFP
concentrations are typically related to anthropogenic emis-
sions (see Sect. 4.2 for details). The high UFP concentra-
tions in the densely populated urban centres are artificially
diluted in the simulation by lower concentrations in the sur-
roundings covered by the grid box. This spatial representa-
tion error after Schutgens et al. (2016a) can partly be cor-
rected for by redistributing UFP concentrations using high-
resolution anthropogenic emission datasets, discussed in de-
tail in Sect. 4.2. Secondly, the measurements were performed
close to busy streets (the Leipzig-Eisenbahnstrasse, Leipzig-
Mitte and Dresden-Nord sites particularly measure traffic
emissions) with high primary UFP emissions from vehi-
cles, which would require impracticable street-level horizon-
tal resolution to resolve.

The model overestimates UFPM concentrations at the sta-
tions of L’Observatoire pérenne de l’environnement (OPE;
France) and Finokalia (GR). OPE is located at a remote re-
gion close to Nancy, and the grid box is thereby highly in-
fluenced by the urban region. Finokalia on the other hand
is located in a rural environment close to the coast of the
island Crete. The interference of the oceanic influence and
surrounding enhanced anthropogenic emissions from the is-
land leads to enhanced UFP concentrations within the grid
box.

Multiple measurements in one city provide an interesting
case of the variability in UFPs within one modelled grid box.
Measurements were performed at four different locations in
Leipzig (shown in Fig. 6), varying by up to a factor of 3,
while simulated UFPM concentrations (dashed grey line) ap-
proximately coincide with the observations taken at some
distance from heavy traffic locations (Leipzig). The station at
Leipzig-Eisenbahnstrasse is at a curbside and measures very
high UFPO concentrations. It can be noted that the model
is capable of reproducing urban background conditions, i.e.
the average over urban regions and their surroundings in the
grid box, while not replicating local UFP hotspots, for ex-
ample roadsides or near industrial emitters, due to limited
horizontal resolution. It is expected that dilution and coag-
ulation during atmospheric transport from these hotspots to
the surroundings will quickly reduce the UFP concentrations
to levels that are realistically represented by the urban back-
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Table 1. Summary of observations of UFP (UFPO) concentrations (cm−3) derived from PSDs across Europe for 2015, with data archived
in the EBAS database. The geographical location is indicated by latitude (Lat) and longitude (Long), and the elevation of the site above the
sea surface is indicated by the altitude a.s.l. in metres (Alt). The lower cut-off value (Cut) from the measurement device (also applied on
the simulation) is expressed in nanometres. The annual averages of the UFPO and UFPM concentrations for the grid box encompassing the
station are compared, and different measures of agreement are listed. The same comparisons are performed after the redistribution of the
model (Redistributed model, UFPR), which are discussed in detail in Sect. 4.2. All included measurement stations contained at least 200 d of
valid measurements in 2015. Abbreviations: DD – Dresden, NOAK – National Atmospheric Observatory Košetice, ECO – Environmental-
Climate Observatory, LE – Leipzig, OPE – Observatoire pérenne de l’environnement.

Observations Model results Redistributed model

Station Lat Long Alt Cut UFPO UFPM PF2 NRMSE M/O UFPR PF2 NRMSE M/O

Annaberg-Buchholz (DE) 50.57 13.0 545 9.4 6649 3597 55 0.21 0.55 3317 49 0.22 0.51
Cabauw Zijdeweg (NL) 51.97 4.93 1 9.1 6324 4539 77 0.22 0.72 3828 62 0.26 0.6
DD-Nord (DE) 51.06 13.74 120 4.8 10 526 4289 29 0.34 0.39 7690 67 0.25 0.7
DD-Winckelmannstr (DE) 51.04 13.73 112 9.4 5474 4218 85 0.16 0.78 7562 77 0.22 1.39
ECO Lecce (IT) 40.34 18.12 36 9.4 5372 3741 59 0.36 0.62 4821 62 0.37 0.8
Finokalia (GR) 35.34 25.67 250 8.6 1421 3628 34 0.6 2.3 3917 28 0.67 2.48
Hohenpeissenberg (DE) 47.8 11.01 985 9.4 2302 2479 78 0.25 1.08 2234 76 0.23 0.97
K-puszta (HU) 46.58 19.35 125 6.0 4040 5127 67 0.27 1.32 4966 66 0.26 1.28
LE-Eisenbahnstr (DE) 51.35 12.41 120 4.8 14 410 4358 15 0.37 0.3 5020 23 0.35 0.34
LE-Mitte (DE) 51.34 12.38 111 4.8 10 624 4251 27 0.34 0.39 5521 47 0.3 0.5
LE-West (DE) 51.32 12.3 122 4.8 6222 4451 74 0.21 0.69 4686 77 0.21 0.73
Leipzig (DE) 51.35 12.43 118 4.8 4882 4300 88 0.17 0.86 4953 91 0.17 0.99
Madrid (ES) 40.46 −3.73 669 14.4 11 311 2916 22 0.17 0.28 6192 59 0.15 0.59
Melpitz (DE) 51.53 12.93 87 4.8 7018 4343 72 0.19 0.62 4400 72 0.19 0.63
Montseny (ES) 41.78 2.36 700 8.9 3056 2375 69 0.21 0.78 2371 69 0.21 0.78
NOAK Kosetice (CZ) 49.58 15.08 534 8.6 2569 4332 57 0.3 1.79 3701 66 0.24 1.53
Neuglobsow (DE) 53.14 13.03 62 9.4 2808 3515 69 0.17 1.3 2986 74 0.15 1.11
OPE (FR) 48.56 5.5 392 9.7 1834 2865 63 0.32 1.6 2786 64 0.31 1.55
Prague-Suchdol (CZ) 50.12 14.38 277 5.6 6421 4412 74 0.15 0.7 6124 89 0.13 0.97
SIRTA Palaiseau (FR) 48.71 2.16 162 10.0 4239 3441 82 0.2 0.84 5391 79 0.24 1.31
Schauinsland (DE) 47.9 7.92 1205 9.4 1545 1833 78 0.19 1.22 1783 80 0.19 1.19
Vielsalm (BE) 50.3 6.0 496 8.8 2082 2596 75 0.22 1.26 2628 73 0.23 1.27

ground (e.g. Karner et al., 2010, finding a distance of 1000 m
for roadways). This is in agreement with a study from Salma
et al. (2014), showing measured UFP concentrations at dif-
ferent locations across Budapest, Hungary. They measured
on average a factor of 3 higher UFP concentrations in the city
centre compared to the urban background and an additional
factor of 2 higher concentrations in street canyons.

4.1.2 North America

In North America only measurements of PNCs are available.
Annual averages of observed PNCs (PNCO) at urban sites in
the United States are taken from a study by Saha et al. (2021).
The measurements were performed in different years, from
2009 to 2016. The results are summarized in Table 2. We
note that the model again underestimates PNCO at central
urban stations, mostly by a factor ranging from 1.5 to 2.5.

Additional observations of PNCO in the United States and
Canada were obtained from the EBAS database providing
daily measurements. They are compared to annual averages
of the simulation for days with valid measurements, shown in
Table 3. PNCM in Bondville, Egbert and at the Appalachian
State University (ASU) agree reasonably well with the ob-

Figure 6. Monthly averaged UFP concentrations in the simulation
(grey, dashed) and measured at different stations in Leipzig, Ger-
many (thick, solid lines). The daily fluctuating UFP concentrations
are shown with thin, transparent lines in the same colour.
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Table 2. Summary of observations of PNCs (annual averages, cm−3) in urban regions across the United States for different years taken from
a study by Saha et al. (2021). The geographical location is indicated by latitude (Lat) and longitude (Long). The annual averages of observed
(PNCO) and modelled (PNCM) PNCs (2015 for PNCM, variable years for the observations) for the grid box encompassing the station are
compared. The measurements applied a cut-off minimum diameter (Cut, in nanometres). The same cut-off was used to calculate simulated
PNCM. Simulated PNCs after the emission-sector-based redistribution are displayed as well (PNCR), discussed in Sect. 4.2.

Location Lat Long Year Cut PNCO PNCM PNCR

Rochester (NY) 43.14 −77.54 2013 10 4450 3799 6294
Boston (MA) 42.33 −71.10 2016 10 12 200 4614 9169
Somerville (MA) 42.40 −71.09 2009 6 10 000 4687 8640
Queens (NY) 40.73 −73.82 2009 20 8210 4787 12 722
Long Island (NY) 40.74 −73.58 2009 20 7600 4787 9975
Livermore (CA) 37.69 −121.78 2012 7 8220 6090 6553
Red Wood (CA) 37.48 −122.20 2015 7 11 910 6090 9757
San Pablo (CA) 37.96 −122.36 2012 7 10 480 6090 12119
Santa Rosa (CA) 38.44 −122.71 2012 7 8660 6090 11 526
Anaheim (CA) 33.83 −117.94 2016 7 13 950 8019 12 100
Central LA (CA) 34.07 −118.23 2016 7 17 780 8019 14 929
Compton (CA) 33.90 −118.21 2012 7 14 000 8019 14 916
Rubidoux (CA) 34.00 −117.42 2016 10 12 930 7975 11 858

Table 3. Summary of observations of PNCO (cm−3) across the United States and Canada in 2015, with data archived in the EBAS database.
The geographical location is indicated by latitude (Lat) and longitude (Long), and the elevation of the site above the sea surface is indicated
by the altitude a.s.l. in metres (Alt). The annual averages of PNCO and PNCM for the grid box encompassing the station are compared,
and different measures of agreement are listed. The same comparisons are performed after the redistribution of the model (Redistributed
model), which are discussed in Sect. 4.2. All included measurement stations contained at least 250 d of valid measurements in 2015. There
is no particle size cut-off value given in the datasets, and thus none is applied on the simulation. Abbreviations: ASU – Appalachian State
University, SGP – Southern Great Plains observatory.

Observations Model results Redistributed model

Station Lat Long Alt PNCO PNCM PF2 NRMSE M/O PNCR PF2 NRMSE M/O

ASU, Boone (NC, US) 36.21 −81.69 1076 2930 2471 58 0.26 0.81 3317 55 0.3 1.09
Bondville (IL, US) 40.05 −88.37 213 4095 4130 55 0.26 0.96 4343 55 0.27 1.01
Egbert (ON, CA) 44.23 −79.78 255 4962 3238 53 0.26 0.68 2775 49 0.27 0.58
SGP E13 (OK, US) 36.60 −97.48 318 3600 6966 40 0.61 1.82 7457 38 0.67 1.95
Trinidad Head (CA, US) 41.05 −124.15 107 1526 2882 48 0.59 1.8 2800 49 0.57 1.75

servations with respect to the aforementioned criteria (see
Sect. 4.1.1), while at the Southern Great Plains (SGP) obser-
vatory and at Trinidad Head the concentrations are overesti-
mated by the model. The SGP site is located in the middle of
wheat fields and pastures and is thereby efficiently shielded
from major UFP sources in the encompassing grid box. The
Trinidad Head measurement was performed directly at the
Californian coast, and the corresponding grid box is influ-
enced by a mixture of anthropogenic, rural and oceanic in-
fluences, leading to strong UFP gradients (comparable to Fi-
nokalia in Europe).

4.1.3 India

Annually averaged UFPO concentrations in Delhi (Tham-
ban et al., 2021), Mahabaleshwar and Hyderabad (both from
Sebastian et al., 2022) were obtained from a collaboration

with groups performing field measurements. Additionally,
we adopted daily measurements of PSDs from Gani et al.
(2020) for the Indian Institute of Technology Delhi (IITD),
which we converted to UFP concentrations and combined
with the measurements of Thamban et al. (2021). The evalu-
ation for India is summarized in Table 4.

The simulation grid cell covering Delhi underestimates
UFPO concentrations at all three urban measurement stations
in Delhi. The higher UFPO concentrations over the IITD
compared to the two other measurements may be due to its
proximity to a major highway. In contrast, our simulations
are biased high over Hyderabad. The measurement station in
Hyderabad is a suburban university campus, approximately
15 km from the city centre, where UFP concentrations are ex-
pected to be significantly reduced compared to the downtown
regions with strong traffic emissions. The consequent UFP
gradients may not be adequately resolved by our model cal-
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Table 4. Summary of UFPO concentrations (cm−3) derived from PSDs in India for different years. The geographical location is indicated by
latitude (Lat) and longitude (Long). The annual averages of UFPO and UFPM concentrations (2015 for UFPM, variable years for the observa-
tions) for the grid box encompassing the station are compared. The measurements applied a cut-off minimum diameter (Cut, in nanometres).
The same cut-off was used to calculate simulated UFPM. Simulated UFP concentrations after the emission-sector-based redistribution are
displayed as well (UFPR), which are discussed in Sect. 4.2. Abbreviations: IITM – Institute of Information Technology & Management,
IITD – Indian Institute of Technology Delhi, MRIU – Manav Rachna International University.

Station Lat Long Year Cut UFPO UFPM UFPR Reference

Delhi IITM 28.61 77.1 2018/2019 14.1 19 750 15 339 28 789 Thamban et al. (2021)
Delhi IITD 28.55 77.19 2017/2018/2019 14.1 42 972 15 339 24 917 Thamban et al. (2021), Gani et al. (2020)
Delhi MRIU 28.45 77.28 2018/2019 14.1 17 350 15 339 15 959 Thamban et al. (2021)
Mahabaleshwar 17.92 73.66 2015 5.5 2441 2248 2316 Sebastian et al. (2022)
Hyderabad 17.46 78.32 2019/2020/2021 10 4680 6350 11 131 Sebastian et al. (2022)

culations (spatial representation error after Schutgens et al.,
2016a).

4.1.4 China

Observations of PSDs in China were obtained through col-
laboration with relevant groups for Shanghai (unpublished),
Beijing in 2018/19 (Liu et al., 2020), Lin’an (Shen et al.,
2022) and Gucheng (Li et al., 2021). Additionally, we in-
cluded observations from Beijing from 2004–2006 (Wu
et al., 2008). We compare the UFP concentrations derived
from our simulation to the PSD measurements from these
sites. The results are summarized in Table 5.

UFPM concentrations in Shanghai and Beijing are slightly
lower (approximately 20 %) than UFPO concentrations for
the years closest to 2015 (2014 for Shanghai, 2018/19 for
Beijing), unlike other urban locations discussed above. How-
ever, UFPO concentrations in Beijing from 2004–2006 are
underestimated by more than a factor of 2 by UFPM. A prob-
able reason for this is the various air pollution reduction mea-
sures in place in China, especially in Beijing. In Beijing,
PM2.5 concentrations decreased from 89 µg cm−3 in 2013 to
58 µg cm−3 in 2017 and 42 µg cm−3 in 2019 (Zeng et al.,
2019; Lu et al., 2020), implying a simultaneous reduction in
UFP sources. Due to the air pollution reduction measures, in-
dustrial areas are also moved further away from city centres,
potentially decreasing the association with UFP concentra-
tions (see also Sect. 4.2).

UFPM overestimates UFPO strongly in Lin’an and slightly
in Beijing’s suburban Gucheng. Lin’an is influenced by the
neighbouring city of Hangzhou with approximately 10 mil-
lion inhabitants, Gucheng by sharing the grid box with cen-
tral Beijing.

4.1.5 Remote regions

We considered remote measurements over the open ocean,
in forests, on mountains and at polar sites, of both PNCs
and UFP concentrations. The simulation and measurement
results are summarized in Table 6. Simulated average con-

centrations are all within a factor of 2 of the observations. In
particular, the northern hemispheric polar regions show good
agreement, while there is a stronger overestimation and un-
derestimation of UFPO at the two measurement stations in
Antarctica, both at elevated altitudes.

The annual average forest UFPO concentrations at ATTO
in Brazil (Franco et al., 2022) and Hyytiälä (EBAS database)
are both underestimated by the simulation. The timeline anal-
ysis of the measurements in the Amazon forest (ATTO)
shows this pronounced underestimation only in winter; i.e.
UFPM shows a stronger seasonality than UFPO. The poten-
tial causes will be the subject of future studies, also consid-
ering data from an upcoming measurement campaign.

Measurements over the open ocean were taken from the
ATom aircraft campaign (Brock et al., 2019), conducted in
different seasons from 2016 to 2018. We collected all mea-
surements that were performed below 200 m over the ocean
and compared them to daily averaged UFPM concentrations
in the lowest vertical model level of the corresponding hori-
zontal grid cell at the respective day of the year. UFPO con-
centrations over the Southern Ocean are mostly underesti-
mated by the simulation, while concentrations over the Pa-
cific are overestimated. Considering generally higher UFPM
concentrations over the Pacific Ocean and lower UFPM con-
centrations over the Southern Ocean (compare Fig. 3), the
open-ocean UFP variance seems to be overestimated by the
model.

4.1.6 Global

Figure 7 summarizes the evaluation results of all measure-
ment stations presented and compares the annual averages of
the observed to the simulated UFP concentrations in a scat-
terplot. The shapes of the symbols represent the five studied
regions. Population density data (represented by the colour
scheme in Fig. 7) are taken from CIESIN (2018), sampled at
the measurement stations with a resolution of 0.1◦× 0.1◦.

The logarithms of UFPO and UFPM concentrations are
correlated by r = 0.93 (r = 0.76 excluding remote regions),
while the RMSLE (root mean square logarithmic error) is
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Table 5. Summary of UFPO concentrations (cm−3) derived from PSDs in China for different years. The geographical location is indicated
by latitude (Lat) and longitude (Long). The annual averages of UFPO and UFPM concentrations (2015 for the simulation, variable years
for the observations) for the grid box encompassing the station are compared. The measurements applied a cut-off minimum diameter (Cut,
in nanometres). The same cut-off was used to calculate simulated UFPM. Simulated UFP concentrations after the emission-sector-based
redistribution are displayed as well (UFPR), which are discussed in Sect. 4.2.

Station Lat Long Year Cut UFPO UFPM UFPR Reference

Shanghai 31.17 121.43 2014 13.4 12 800 10 850 23 623 Unpublished
Beijing 39.94 116.29 2018/2019 5.6 14 812 11 489 20 123 Liu et al. (2020)
Beijing 39.9 116.38 2004–2006 3.0 24 900 11 408 21 041 Wu et al. (2008)
Lin’an 30.28 119.75 2015 3.8 4928 11 815 12 447 Shen et al. (2022)
Gucheng 39.15 115.73 2018/2019 12.9 8284 10 678 9680 Li et al. (2021)

Table 6. Summary of UFPO concentrations (cm−3) and PNCO in remote regions. Four different settings are distinguished, namely ocean,
forest, mountain and polar. The geographical location is indicated by latitude (Lat) and longitude (Long), and the elevation of the site
above the sea surface is indicated by the altitude a.s.l. in metres (Alt). The annual averages of the observed (Obs) and simulated (Mod)
concentrations for the grid box encompassing the station are compared, and different measures of agreement are listed (see Table 6). We
applied the measurement detection limit on the simulation for all UFP concentrations, while information on the detection limit was not
available for the PNC measurements.

Station Setting Lat Long Alt Meas Obs Mod PF2 NRMSE M/O Reference

ATom campaign Ocean – – < 200 UFP 403 800 – – – Brock et al. (2019)
ATTO (Brazil) Forest −2.14 −59.0 120 UFP 376 199 – – – Franco et al. (2022)
BEO Moussala (BG) Mountain 42.18 23.59 2925 UFP 542 940 45 0.51 1.58 EBAS
Hyytiälä (FI) Forest 61.85 24.3 179 UFP 1430 1140 59 0.21 0.77 EBAS
Sammaltunturi Pallas (FI) Polar 67.97 24.12 565 UFP 556 489 43 0.24 0.71 EBAS
Trollhaugen (NO) Polar −72.02 2.53 1309 UFP 154 62 31 0.23 0.36 EBAS
Värriö (FI) Polar 67.75 29.61 390 UFP 697 800 44 0.34 0.93 EBAS
Zeppelin mountain (NO) Polar 79.9 11.86 473 UFP 161 185 40 0.42 0.55 EBAS
Zugspitze (DE) Mountain 47.41 10.98 2650 UFP 944 655 57 0.22 0.65 EBAS
Alert (NU, CA) Polar 82.50 −62.34 2182 PNC 205 279 47 0.26 1.48 EBAS
Barrow (AK, US) Polar 71.32 −156.61 11 PNC 277 417 33 0.44 0.98 EBAS
South Pole Polar −90.00 −24.80 2841 PNC 192 238 56 0.21 1.5 EBAS

0.55.1 The geometric mean of the ratio between the modelled
and observed mean values is M/O = 0.82.

In remote areas all simulated concentrations are within a
factor of 2 of the observed ones. For these areas the popula-
tion density (and respective anthropogenic emissions) within
the encompassing grid box is mostly uniform at low num-
bers of inhabitants; i.e. the grid cells only cover remote ar-
eas. Thus, the grid cell average of UFP concentrations is not
influenced by densely populated and typically much more
polluted regions.

All other measurement stations considered have in com-
mon that the encompassing grid boxes include an urban city
centre with its surroundings and thus have high variance in
anthropogenic emissions within the grid box. Figure 7 indi-
cates a link between local population density and UFP con-
centrations. In fact, the logarithm of the population density
is positively correlated to the logarithm of the UFPO con-

1We use the correlation and RMSE of the logarithmic values
here as several orders of magnitudes are covered, and the influence
of the lower UFP concentrations would be negligible otherwise.

centrations in non-remote regions with r = 0.80. Thus, it can
be expected that the actual UFP concentrations in grid boxes
encompassing urban regions and its surroundings are non-
uniform, with higher UFP concentrations at higher popula-
tion density and lower UFP concentrations at lower popula-
tion density. This inability of in situ observations to represent
the grid box environment is defined as the spatial representa-
tion error and is studied by Schutgens et al. (2016a) and was
found to be the strongest close to sources, in agreement with
our evaluation results.

The spatial representation error is illustrated in Fig. 7.
At low UFPO concentrations in non-remote regions the
local population density is lower (background, suburban
and rural stations in grid boxes including urban centres),
while UFPM concentrations are higher than UFPO concen-
trations (M/O = 1.32 for a population density smaller than
100 individuals km−2), as the model grid boxes are influ-
enced by the urban regions. At higher UFPO concentrations
population density increases as well, and the simulation un-
derestimates UFPO concentrations on average by a factor of
almost 2 (M/O = 0.62 for a population density in excess
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Figure 7. Summary of all measurement stations in a scatterplot
showing observed UFPO concentrations on the x axis and simu-
lated UFPM concentrations on the y axis. Different symbols indi-
cate the different regions. The colour represents the local popula-
tion density, sampled at the measurement stations with a resolution
of 0.1◦× 0.1◦.

of 1000 individuals km−2), as these urban stations are sur-
rounded by suburban and rural regions that lower the simu-
lation grid cell average of UFPM concentrations.

The main cause of the spatial representation error is the
limited model resolution of approx. 180× 180 km (at the
Equator). Consequently, the correlation between the loga-
rithm of the local population density and UFPM concen-
trations in non-remote regions is only r = 0.57, thus much
lower than the correlation to UFPO concentrations. To over-
come this, an increase in model resolution of at least a factor
of 3 (in one dimension) would be necessary, which would
lead to an unreasonably high demand of computing time.
Thus, an alternative approach was developed to mimic a res-
olution increase, by retroactively (after the simulation) re-
distributing UFPM concentrations per grid box based on lo-
cal high-resolution primary anthropogenic emissions relative
to the grid box averaged primary anthropogenic emissions,
guided by observations. This is discussed in the following
section.

4.2 Downscaling based on primary anthropogenic
emissions

Our results, in line with the observations, corroborate that
UFP concentrations at the Earth’s surface are strongly in-
fluenced by anthropogenic activity. Although our access to
long-term measurements is limited, the data available from
several urban stations show a high variance in UFPO con-
centrations among different sites in a city (e.g. for Leipzig,
Germany, and Los Angeles, the United States), being en-
hanced when model grid boxes contain urban and rural en-
vironments (e.g. Salma et al., 2014). Population density and
UFPO concentrations are highly correlated, while the eval-

uation of UFPM concentrations indicates discrepancies due
to sharp gradients of anthropogenic emissions within areas
covered by the model grids.

Primary anthropogenic emissions (PAEs) from the CEDS
database are available at a resolution (that is higher than
the model resolution) of 0.5◦× 0.5◦ (hereafter referred to
as PAECEDS;0.5) and were regridded to the simulation mesh
(resulting in grid box averaged emissions PAECEDS;GB). Pri-
mary anthropogenic emissions from the Emissions Database
for Global Atmospheric Research (EDGAR) v6.1 (Crippa
et al., 2022) are available at an even higher resolution of
0.1◦× 0.1◦ (hereafter referred to as PAEEDGAR;0.1). Stud-
ies showed that locally enhanced UFP concentrations usually
reach (urban) background levels within 1000 m from sources
(e.g. Karner et al., 2010), and the curbside UFP concentra-
tions are highly localized. Hence, this section aims to use
local PAECEDS;0.5 and PAEEDGAR;0.1 and the relation to the
respective grid box average at coarser resolution to fine-tune
the simulation results guided by the observations, gaining im-
proved resolution (downscaling) and closer agreement with
observations (reducing the spatial representation error), espe-
cially in urban centres and their surroundings. It is important
to mention that we do not modify the total number of UFPM
concentrations per grid box in the following but that UFPM
concentrations are merely redistributed within each grid box.

Figure 9 illustrates the two-step downscaling procedure
by the example of New Delhi and surroundings, using
PAECEDS;0.5 to downscale to 0.5◦× 0.5◦ and PAEEDGAR;0.1
for further downscaling, obtaining a UFP dataset with 0.1◦×
0.1◦ horizontal resolution. As a basis we calculate rela-
tive anthropogenic emissions (RAEs), i.e. the local anthro-
pogenic particle number emissions relative to the average
emissions of the grid box at coarser resolution:

RAECEDS = PAECEDS;0.5/PAECEDS;GB,

RAEEDGAR = PAEEDGAR;0.1/PAEEDGAR;0.5.

RAECEDS (top left in Fig. 9) and RAEEDGAR (top
right in Fig. 9) can be interpreted as the local excess or
deficit of PAECEDS;0.5 (PAEEDGAR;0.1) over PAECEDS;GB
(PAEEDGAR;0.5), respectively. We limit RAECEDS to a maxi-
mum value of 10 and RAEEDGAR to 7 due to missing obser-
vational datasets at locations with higher RAE.

In the first step we investigated the relationship between
RAECEDS and the underestimation of UFPO concentrations
and PNCO at each station (UFPO /UFPM or PNCO /PNCM)
for all evaluation results in grid boxes with anthropogenic
emissions exceeding two million particles per square metre
and second.2 The relationship is displayed in Fig. 8a. As ex-
pected, there is a logarithmic correlation (r = 0.42) between
the two quantities. We perform a linear fit that crosses the

2All high-resolution pixels in the remaining (less anthropogeni-
cally influenced) grid boxes are bilinearly interpolated with respect
to the coarser resolution.
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Figure 8. Scatterplot of the relative anthropogenic emissions
(RAEs) against the model–measurement discrepancy (observed and
simulated UFP concentrations). The RAEs of the CEDS database
relative to the model grid box are directly compared to the model–
measurement discrepancy (a), while the RAEs of CEDS relative to
the CEDS grid box are compared to the remaining discrepancy after
the first downscaling (b). We use the same colour code for the popu-
lation density and shapes for the regions as in Fig. 7. The black lines
show a linear fit crossing the (1,1) point. Higher RAEs correspond
to a more pronounced underestimation of the observations.

point (1,1); i.e. y = cCEDS · (x− 1)+ 1, where y is the ra-
tio Nobs/Nmod and x is the RAECEDS. This function was
chosen as it is the only global function that conserves the
average grid box UFPM concentrations after applying it to
the model results. The fit parameter c was determined to be
cCEDS = 0.127 using a logarithmic least squares fit. Thus,
if RAECEDS increases by 1, the model underestimation in-
creases by 0.127. The fit function is shown as a black line
in Fig. 8a. This relationship is used to downscale simulated
UFPM concentrations, yielding redistributed UFP (UFP0.5)
concentrations.

This procedure is repeated for the relationship between
RAEEDGAR and the remaining model–observation discrep-
ancies after the first downscaling (Fig. 8b). We determine
cEDGAR to be c = 0.148, and thus UFP0.5 can be further
downscaled to the urban and industrial environments, yield-
ing redistributed UFP0.1 (hereafter referred to as UFPR) con-
centrations (rightmost plot in Fig. 9). Summarized, we ob-
tain two downscaling functions that are applied sequentially
to simulated UFPM concentrations:

UFP0.5 = UFPM · (0.127 · (RAECEDS− 1)+ 1) ,
UFPR = UFP0.5 · (0.148 · (RAEEDGAR− 1)+ 1) .

To demonstrate the independence of the downscaling pro-
cedure from the data used for the fit, we randomly subdi-
vided the non-remote measurement stations into a training
and test dataset (25 for training, 24 for testing) in 5000 differ-
ent random ways, derived the fit parameters from the train-
ing dataset only, and subsequently applied them to the test

dataset. The results are displayed in Fig. 10. The fit parame-
ters cCEDS and cEDGAR range between 0.07 and 0.23 in 90 %
of the runs, while the average values are very close to the
values derived from the complete dataset, and all derived fit
parameters are greater than 0. The RMSLE consistently de-
creases with rising order of downscaling, with an average
improvement of 0.11 in total (95.6 % of the time RMSLE
decreases), while the logarithmic correlation increases on av-
erage by 0.07 (improves 95.1 % of the time). The bias M/O
evolves from 0.78 on average in the model output resolu-
tion (2.4 % of the time between 0.9 and 1.1) to 0.92 after the
CEDS downscaling (55.3 % of the time between 0.9 and 1.1)
to 1.04 (66.2 % of the time between 0.9 and 1.1) after the
final downscaling, slightly overestimating the observed val-
ues. We conclude that the fit parameters can be applied to
data points outside the training dataset. However, as we want
to maximize the number of measurement stations to use for
the global downscaling, we use the complete evaluation re-
sults for the downscaling as described before.

The resulting UFPR concentrations are included in Ta-
bles 1–5 in the last columns. At measurement sites in Eu-
rope, urban regions in the United States, India and China
the agreement with measurements generally improves. For
instance, UFPR concentrations in Madrid, the measurement
station with the strongest underestimation in this analysis
(triangle in the top-right corner in Fig. 8a), are increased by a
factor of 2.1, strongly improving the agreement (see Table 1:
PF2 from 22 % to 59 %, M/O from 0.28 to 0.59). The re-
maining underestimation is likely caused by the influence of
nearby roads with heavy traffic, which are of localized rele-
vance only.

UFPR in Beijing and Shanghai is strongly increased by
the redistribution as well, which can even lead to an overes-
timation of the observed UFPO concentrations (see Table 5).
However, for Beijing the redistributed UFPR falls between
the high UFPO from 2004–2006 and the lower UFPO from
2018/19. This is in line with the emission reduction in China
(see Sect. 4.1.4). UFPR concentrations over Beijing’s subur-
ban Gucheng, sharing the model grid box with Beijing, are
reduced, approaching UFPO concentrations.

Similarly, UFPR concentrations are strongly increased at
the measurement stations Delhi IITM and Delhi IITD, re-
sulting in UFPR concentrations in between the two UFPO
concentrations. Moreover, UFPR is only slightly increased at
Delhi MRIU due to the lower local PAEHR, remaining simi-
lar to UFPO.

The left panel of Fig. 11 shows the comparison between
UFPR and UFPO concentrations (analogously to Fig. 7) af-
ter the applied redistribution. In spite of the redistribution
of UFPs within grid cells, there is still an overestimation of
M/O = 1.27 (1.32 before) at low population density below
100 individuals km−2. On the other hand, in densely popu-
lated regions (more than 1000 individuals km−2), simulated
and observed UFP concentrations are of the same magnitude
(M/O = 1.01). Thus, the biases described in Sect. 4.1.6 are
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Figure 9. Illustration of the downscaling procedure using anthropogenic particle number emissions from the CEDS (Hoesly et al., 2018)
and EDGAR (Crippa et al., 2022) emission databases, using the example of New Delhi and surroundings. Relative anthropogenic emissions
(RAEs; local anthropogenic particle number emissions relative to the average over the initial grid box, displayed on the top) are set in relation
to the model–observation discrepancy (observed and modelled UFP concentrations), displayed in Fig. 8. The resulting relation is used for
downscaling UFP concentrations from the model resolution (1.875◦× 1.875◦) to 0.5◦× 0.5◦ (CEDS) and 0.1◦× 0.1◦ (EDGAR) horizontal
resolutions in two steps. The average of the RAE over each grid box of the coarser resolution (black boxes) equals 1, and thus the respective
average UFP concentrations per grid box remain unchanged. Note that the colour scale for UFP concentrations differs from Fig. 3.

Figure 10. Results of 5000 independent training and test runs for
the fit parameter estimation (25 stations in training dataset, 24 in test
dataset). The fit parameters are displayed in the top panel, while
the statistical measures are displayed below at different orders of
downscaling, along with the absolute change in RMSLE and the
logarithmic correlation. We show box-and-whisker plots, where the
boxes illustrate the 25 %–75 % interval and the whiskers the 5 %–
95 % interval. The median values are marked by the vertical white
line and mean values by the light grey circles.

strongly reduced though not fully eliminated, especially for
scarcely populated regions.

Evaluation results before and after the downscaling are
displayed in the right panel of Fig. 11. The strong improve-
ment in municipal regions is apparent when considering the
urban measurement stations in the United States (top right),
aligning closely around the centre line. An increase in corre-
lation is also clearly visible in China, Europe and India.

All UFPR concentrations differing by more than a factor of
2 from UFPO can be attributed to nearby major traffic nodes
and motorways (Leipzig-Eisenbahnstrasse) or alternatively
coastal sites (Finokalia), a shielded location in a wheat field
(Southern Great Plains E13) and the influence of a neigh-
bouring megacity (Lin’an and Hyderabad). These discrepan-
cies between UFPR and UFPO may perhaps be resolved with
very high (< 1 km) horizontal resolution, which is compu-
tationally impracticable with a global model and cannot be
achieved with downscaling due to missing emission datasets
with respective horizontal resolution.

Finally, the logarithmic correlation between population
density and UFPR concentrations increases to r = 0.77 (r =
0.57 for UFPM) after redistribution, which is similar to
the logarithmic correlation between population density and
UFPO concentrations (r = 0.80). This indicates an improved
representation of the anthropogenic influence in the down-
scaled dataset.

Figure 12 shows UFPR concentrations in Asia after the
applied downscaling, revealing more detailed features in

https://doi.org/10.5194/acp-23-13191-2023 Atmos. Chem. Phys., 23, 13191–13215, 2023



13206 M. Kohl et al.: Global ultrafine particles simulation

Figure 11. (a) The same as Fig. 7 but after the redistribution of UFPM concentrations (downscaling) based on the relative anthropogenic
emissions per grid box (more details in the text). (b) Evaluation results before and after the downscaling (DS) for China, North America,
Europe and India (from top left to bottom right). Note that the value range differs in all subpanels.

Figure 12. Annual average of UFPR concentrations in Asia sim-
ulated with EMAC for the year 2015 after the downscaling based
on primary anthropogenic emissions at a resolution of 0.1◦× 0.1◦.
Note that the colour scale from Fig. 7 is extended as UFPR concen-
trations can exceed 40 000 cm−3.

anthropogenically influenced regions, especially in eastern
China and northern India. Note that the colour scale is ex-
tended as UFPR concentrations can exceed 40 000 cm−3 in
Indian industrial regions, as well as in parts of urban envi-
ronments in Mumbai, New Delhi, Shanghai, Riyadh, Kuwait
and Cairo.

5 Limitations and uncertainties

As the resulting UFPM and UFPR concentrations are an in-
tricate interplay of emission parameters, numerical simula-
tion, evaluation and observation-guided redistribution, it is
not possible to directly infer quantitative uncertainties for
the provided datasets. However, the final results in Fig. 11
show that 90 % of the annually averaged UFPR concentra-
tions are within a factor of 2 of UFPO concentrations (84 %
for UFPM), and all simulated UFPR concentrations are within
a factor of 3 of the observations after the emission-grid-based
redistribution. Additional limitations and uncertainties are
qualitatively discussed next.

Median diameters of directly emitted particles per sector
were estimated based on the emission size distributions from
Paasonen et al. (2016) and measurement reports in the litera-
ture with associated uncertainties. Additionally, we assumed
the diameters to be globally identical for each sector and used
the same diameters for all species. These simplifications lead
to limitations in the precision by which the different sectors
and species contribute to the total UFPM and UFPR num-
ber, respectively. Anthropogenic emissions are distributed in
each time step based on monthly averages from the emis-
sion datasets. This potentially introduces bias due to the non-
linearity of chemical and microphysical processes. Future
studies will include emission time factors to improve the time
resolution of emissions.

Apart from UFP concentrations, we also used PNCs for
the evaluation. PNCs are a proxy for UFP concentrations, as
UFPs tend to dominate the total particle number (e.g. Bal-
dauf et al., 2016; Kumar et al., 2014). However, locally there
can be deviations. To increase the number of measurements
for the evaluation we additionally used observations from
years that differ from the simulation year (2015). Different
meteorological conditions and emissions potentially lead to
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biases in the evaluation. The downscaling was performed us-
ing evaluation results from differing years as well, while the
simulation results were only taken from 2015. Thus, poten-
tial errors arise from the interference of the downscaling and
general temporal trends, as seen from the analysis of the in-
terannual variability in Sect. 4. The interannual variability
(up to 50 % at low absolute UFP concentrations and below
20 % over polluted regions over a time span of 3 years) has
been attributed to meteorological variations (along the ITCZ
and mostly over the oceans) and decreasing (southern and
eastern Asia, Europe, and the United States) or increasing
(Nigeria and South Africa) long-term trends.

We define UFPs as all particles with a diameter smaller
than 100 nm in the model without a lower cut on the particle
diameter. Particles with a diameter below 1.7 nm are typi-
cally regarded as molecular clusters, and nucleation rates are
reported as the frequency that clusters reach this threshold
(e.g. by the CLOUD experiment; Kirkby et al., 2011). As a
consequence, freshly formed particles are introduced to the
model with a diameter of 1.7 nm. However, due to the lognor-
mal modal aerosol distribution (Pringle et al., 2010), smaller
particles down to infinitesimal small diameters are automati-
cally created by definition. As a result, small fractions (up to
around 2 % in polluted regions, with maximum values of up
to 20 % locally over the oceans) of the presented UFPs have
a diameter smaller than 1.7 nm. However, these particles are
not considered to be molecular clusters as the low diameter
is a result of computational effects.

In addition to the uncertainties introduced by the hori-
zontal resolution of the model, the vertical resolution of the
model, ranging from 45–70 m for the surface layer, adds ad-
ditional uncertainties. While the surface layer is mostly en-
tirely located in the boundary layer, decreases in UFP con-
centrations are still observed in general, as reported by Du
et al. (2017), Harrison et al. (2019), Heintzenberg et al.
(2011) and Villa et al. (2017), with the strongest decrease
with altitude being observed close to UFP sources. We anal-
ysed the relative change in UFP concentrations from the sur-
face layer to the next highest model level, exhibiting a de-
crease of 20 %–30 % in UFP concentrations on average over
polluted regions, with the reduction slightly exceeding 50 %
over central Africa. At higher latitudes, we even see increas-
ing UFP concentrations at the second lowest model level.
The decrease over polluted regions is in line with the ob-
servations from Du et al. (2017), Harrison et al. (2019) and
Heintzenberg et al. (2011), who observe a decrease of up to
30 % at comparable altitudes.3 Considering a linear decrease
and increase within the range of 30 % within the model sur-

3Villa et al. (2017) even observe a decrease of up to 80 %; how-
ever these measurements were performed directly at a highway and
at some distance from other sources, which is not representative of
a grid box covering approx. 180× 180 km and overestimates the ef-
fect.

face layer, this adds an additional uncertainty of ±15 % to
the simulated UFP concentrations.

Finally, an important uncertainty is the spatio-temporal
representativeness of the observations with respect to the
model grid box and time sampling. We report three differ-
ent types of representation errors:

1. purely spatial representation errors only due to the ex-
tent of the grid box at stations, for which timeline mea-
surements of 2015 (mostly hourly) were available, and
we collocated our simulation with the observations ac-
cording to Schutgens et al. (2016b), i.e. all observations
from the EBAS database;

2. spatio-temporal representation errors for measurement
stations, for which only annual averages were available
or the years differed from the evaluation year (2015);
and

3. (spatio-)temporal representation errors for the aircraft
measurements from ATom, for which we used daily av-
eraged model output, and the measurement years differ
from the simulation year. The spatial representation er-
ror is reduced by the fact that we have several measure-
ments for each grid box.

The horizontal downscaling of UFP concentrations ad-
dresses and reduces the spatial representation error for types
1 and 2, while the temporal representation error of types 2
and 3 cannot be addressed.

The analysis in Sect. 4.2 showed that even after down-
scaling discrepancies in the evaluation remain, which are
at least partly related to the representativeness of the mea-
surement locations for the modelled grid areas (Schutgens
et al., 2017, 2016a), also for UFPR. Model concentrations of
UFPs in rural regions in the vicinity of urban centres tend
to be overestimated by the model (i.e. UFPR). Hence, even
for UFPR the horizontal resolution is still a limiting factor.
To further reduce the spatial representation error, the simula-
tions would need to be performed at very high resolution re-
quiring currently impracticable computing resources, at least
for the global scale, as well as additional measurement data
for UFPs and meteorological parameters in urban and indus-
trialized regions including roadsides and background urban
environments. Salma et al. (2014) showed that UFP concen-
trations can typically vary by a factor of 6 from the urban
background to street canopies within cities, and Karner et al.
(2010) showed that UFP concentrations reach (urban) back-
ground concentrations within about a kilometre. A next step
could be to apply high-resolution dynamical downscaling of
concentrations guided by comprehensive measurements of
which data may become available in the future, using either
machine learning methods or a combination of operational
street pollution models and human exposure modelling as
done by Ketzel et al. (2021). Clearly, to make progress, a
much larger number of stations that continuously measure
aerosol size distributions will need to be implemented.
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6 Conclusions

We presented the first numerical simulation of ultrafine par-
ticles (UFPs) at the Earth’s surface with the global EMAC
model, which includes a relatively detailed representation of
aerosol formation and growth processes (i.e. the nucleation
and Aitken aerosol size modes). Total concentrations were
shown, along with interannual variability in the years 2015–
2017 and the dominating particle size segments around the
globe. Emissions of gaseous and aerosol species were taken
from the CEDS and CAMS databases, and the emission radii
for aerosol species were taken or derived from the literature
referring to the contributing source sectors.

Simulated UFP and particle number concentrations
(PNCs) were evaluated using particle size distributions and
PNCs from field measurements, the EBAS database, litera-
ture, and published datasets. We generally achieve reason-
able agreement between observed and simulated UFP con-
centrations, with good agreement for remote regions (forest,
mountain, polar and ocean) that are not directly influenced by
urban and other strong source regions (all simulated concen-
trations within a factor of 2 of the observations). In grid boxes
with a high variance in population density, we obtain larger
deviations with observations related to the coarse model res-
olution (approximately 180× 180 km at the Equator). UFP
concentrations in urban regions with a high population den-
sity are underestimated by the simulation, while they are
overestimated in less densely populated regions. This rep-
resentation error is associated with the high correlation be-
tween local population density and observed UFP concentra-
tions (logarithmic correlation of r = 0.80) and is studied in
depth by Schutgens et al. (2016a, b, 2017).

The relationship between the underestimation of the ob-
served UFP concentrations and the local high-resolution an-
thropogenic emissions relative to the grid box average was
used to redistribute UFPs within each grid box, leaving the
total number of particles unchanged. This yields a higher
resolution, i.e. downscaled data for grid boxes with dom-
inant anthropogenic influence; increases the agreement be-
tween observations and simulations (the logarithmic correla-
tion improves from 0.76 to 0.84 for non-remote regions and
root mean squared logarithmic error from 0.57 to 0.43); and
decreases the spatial representation error by improving the
representation of the anthropogenic impact on UFP concen-
trations.

We provide two global annually averaged datasets of
UFP concentrations for the year 2015 at different horizon-
tal resolutions (https://doi.org/10.17617/3.7945XI, Kohl and
Pozzer, 2023) that can be used for several purposes. The first
dataset is given at a resolution of 1.875◦× 1.875◦ (roughly
180× 180 km at the Equator) and is directly derived from the
simulation. This dataset can serve the purpose of global-scale
analyses of UFP concentrations, e.g. the comparison of dif-
ferent source regions, meteorology and atmospheric chem-
istry. The downscaled dataset has a much finer resolution

of 0.1◦× 0.1◦ (roughly 10× 10 km at the Equator and about
10× 8 km at mid-latitudes) and includes the within-grid-box
UFP redistribution based on anthropogenic emission data.
The latter is recommended to be used to characterize the
exposure to UFPs in public health studies with a focus on
densely populated regions, in particular the urban environ-
ment. Additionally, we make the 2015 UFP concentrations
available in three size bins (1.7–20, 20–50 and 50–100 nm).

Future applications may also include studies on seasonal-
ity, anthropogenic source sectors and the chemical composi-
tion of UFPs and their contribution to the health impacts of
fine particulate matter.

Code availability. The Modular Earth Submodel System
(MESSy) is continuously further developed and applied by a
consortium of institutions. The usage of MESSy and access to
the source code are licensed to all affiliates of institutions that are
members of the MESSy Consortium. Institutions can become a
member of the MESSy Consortium by signing the MESSy Mem-
orandum of Understanding. More information can be found on the
MESSy Consortium website (http://www.messy-interface.org, last
access: 17 February 2023). The code presented here is available as
git commit #49a7a544 in the MESSy repository, and all changes
have been included in the main repository.

Scientific colour maps (https://doi.org/10.5281/zenodo.5501399,
Crameri, 2021) are used in this study to prevent visual distortion
of the data and exclusion of readers with colour vision deficiencies
(Crameri et al., 2020).

Data availability. We provide datasets with annual averages of
UFP concentrations for the year 2015, both in model resolu-
tion (1.875◦× 1.875◦) directly derived from the model output,
and at a resolution of 0.1◦× 0.1◦ with the observation-guided
downscaling based on anthropogenic emissions. Additionally, we
provide number concentrations in three size bins, i.e. 1.7–20,
20–50 and 50–100 nm. The datasets are publicly available at
https://doi.org/10.17617/3.7945XI (Kohl and Pozzer, 2023).

Emission datasets from CEDS and EDGAR are available
at https://doi.org/10.5281/zenodo.3754964 (McDuffie et al.,
2020b) and https://edgar.jrc.ec.europa.eu/index.php/dataset_ap61
(Crippa et al., 2022), respectively. Emission size distri-
butions are available at https://previous.iiasa.ac.at/web/
home/research/researchPrograms/air/PN.html (Paasonen,
2016). Gridded Population of the World (v4) is taken from
https://doi.org/10.7927/H4F47M65 (CIESIN, 2018). Measure-
ment data from the ATom aircraft campaign are taken from
https://doi.org/10.3334/ORNLDAAC/1671 (Brock et al., 2019).
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veloped the MESSy submodels NAN and IONS. MK analysed the
model results, evaluated the simulation, developed the downscaling
procedure and wrote the paper with the help of AP. JL and AP super-
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