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Fig. S1 Relationships between the residual of the 𝑅 decomposition (𝑅!"#) and local 5 

anomalies of two indicators of cloud-base CCN concentration. The CCN indicators 6 

include sulfate aerosol mass concentration at 910 hPa (𝑠) and cloud-droplet number 7 

concentration from pixels with the largest 10% cloud optical thickness (𝑁$$). Linear 8 

regression coefficients are plotted for (a) 𝜕𝑅!"#/𝜕 ln 𝑠 and (b) 𝜕𝑅!"#/𝜕 ln𝑁$$. Stippling 9 

indicates regression coefficients that are significantly different from zero with the false 10 

discovery rate limited to 0.1 (Wilks, 2016). The averages of 𝜕𝑅!"#/𝜕 ln 𝑠 and 11 

𝜕𝑅!"#/𝜕 ln𝑁$$ over ocean between 55°S and 55°N are −0.08 ± 0.01 W m-2 and −0.26 ±12 

0.01 W m-2, respectively (95% CIs). Cloud radiative effects are computed with only fully 13 

cloud-covered pixels included in the cloud histograms (MODISCLD). Note that the 14 

contour values are one order of magnitude smaller than those in Fig. 2 of the main text.  15 
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Fig. S2 Sensitivity test showing how the spatial average of 𝜕𝑅/𝜕 ln𝑁$ depends on the 18 

retrieval method for 𝑁$. The Z18, BR17, and G18 cases retrieve 𝑁$ using filtering 19 

methods recommended by Zhu et al. (2018), Bennartz and Rausch (2017), and 20 

Grosvenor et al. (2018), respectively. These filtering methods select 𝑁$ in different 21 

subsets of liquid-cloud pixels. The Z18 case is presented in the main text, where it is 22 

referred to as 𝑁$$. Squares show mean values, and vertical lines show 95% CIs. Cloud 23 

radiative effects are computed with only fully cloud-covered pixels included in the cloud 24 

histograms (MODISCLD).   25 
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 27 

Fig. S3 Validation of the 𝑅′ decomposition using synthetic-data test cases. (a) Locations 28 

of the 1° × 1° grid boxes used in the test cases. The center of the grid box is labeled on 29 

the map. (b) Joint histogram showing the kernel-based estimate of 𝑅%!
&  plotted as a 30 

function of the theoretical estimate of 𝑅%!
& . Each data point in the histogram represents 31 

one test case. (c) Similar to (b), but for 𝑅'()
& . (d) Joint histogram showing the magnitude 32 

of the residual of the decomposition, |𝑅!"#& |, plotted as function of the maximum of |𝑅%!
& | 33 

and |𝑅'()
& |. Values in (d) are computed using the kernel method. The color scale is 34 

logarithmic, and the bin spacing is 1 W m-2 in (b-c) and 0.5 W m-2 in (d).  35 
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Supplementary Tables 36 

 37 

Table S1 List of GCMs used in the study. CMIP6 output is used to compute Δ ln 𝑠, and 38 

CMIP5 and AeroCom output is used to compute the GCM estimates of ERFaci in Fig. 5 39 

of the main text. CMIP6 and CMIP5 models are listed according to their Source ID on 40 

the CMIP online archives (https://esgf-node.llnl.gov/projects/cmip6/; https://esgf-41 

node.llnl.gov/projects/cmip5/), and AeroCom models are listed according to the naming 42 

convention of Gryspeerdt et al. (2020). 43 

 44 

CMIP6 Models  CMIP5 Models AeroCom Models 
BCC-ESM1 CanESM2 ECHAM6-HAM2.2 
CESM2 HadGEM2-A HadGEM3-UKCA 
CESM2-FV2 IPSL-CM5A-LR CAM5.3 
CESM2-WACCM MIROC5 CAM5.3-MG2 
CESM2-WACCM-FV2 MRI-CGCM3 CAM5.3-CLUBB 
CNRM-ESM2-1  CAM5.3-CLUBB-MG2 
EC-Earth3-AerChem  SPRINTARS 
GISS-E2-1-G  SPRINTARS-KK 
GISS-E2-1-H  UKESM1-A 
HadGEM3-GC31-LL   
IPSL-CM5A2-INCA   
IPSL-CM6A-LR-INCA   
KIOST-ESM   
MIROC6   
MIROC-ES2L   
MPI-ESM-1-2-HAM   
MRI-ESM2-0   
NorESM2-LM   
NorESM2-MM   
UKESM1-0-LL   

  45 



Table S2 Parameters for estimating SW ERFaci from liquid clouds following the method 46 

of Bellouin et al. (2020; hereafter B20). The table includes the parameter, its notation in 47 

B20, the original 66% CI that B20 estimated for the global mean, and the revised 66% 48 

CI that we estimate for the mean over ocean between 55°S and 55°N. 49 

 50 

Parameter Notation in B20 Original 66% CI  Revised 66% CI  
present-day aerosol 

optical thickness 
𝜏" 0.13 to 0.17 0.11 to 0.15 

change in aerosol 
optical thickness 

between preindustrial 
and present day 

Δ𝜏" 0.02 to 0.04 0.015 to 0.031 

#$
# %&'!

 (W m-2) 𝑆' -27 to -26 -30 to -29 
#$

# %& ()*
 (W m-2) 𝑆ℒ,'* -56 to -54** -75 to -73** 

#$
#-"#"

 (W m-2) 𝑆-,'* -153 to -91** -184 to -111** 

𝜕 ln𝑁.
𝜕 ln 𝜏"

 𝛽%&'/%& 0 0.3 to 0.8 0.3 to 0.8 

𝑑 ln LWP
𝑑 ln𝑁.

 𝛽%& ℒ/%&' -0.36 to -0.011 -0.36 to -0.011 

𝑑𝐶121
𝑑 ln𝑁.

 𝛽-/%&' 0 to 0.1 0 to 0.1 

effective cloud fraction 
for Twomey effect 

𝑐' 0.19 to 0.29 0.20 to 0.29 

effective cloud fraction 
for LWP adjustment 

𝑐3 0.21 to 0.29 0.26 to 0.34 

effective cloud fraction 
for cloud-fraction 

adjustment 

𝑐- 0.59 to 1.07 0.61 to 0.96 

 51 

*These terms represent 𝑆ℒ,, and 𝑆-,, as defined in equations 19 and 21 of B20. 52 

**B20’s original assessment of 𝜕𝑅/𝜕 ln LWP and 𝜕𝑅/𝜕𝐶./. represents top-of-atmosphere 53 

net radiation. They assess the SW component of 𝜕𝑅/𝜕 ln LWP and 𝜕𝑅/𝜕𝐶./., then scale 54 

the values by 0.9 to account for an offsetting change in top-of-atmosphere longwave 55 

flux. In our analysis, we estimate the SW component of ERFaci, so we do not apply the 56 

scaling factor of 0.9.  57 



Table S3 Estimates of SW aerosol indirect effects and effective radiative forcing 58 

averaged over ocean between 55°S and 55°N. The values in the table are plotted in Fig. 59 

3 and Fig. 5 in the main text, except for the values in the fifth column, which are 60 

included here to facilitate comparisons with other studies. In that column, 𝑅01. 61 

represents the radiative impacts of overall cloud-albedo anomalies (𝑅01.& ≡ 𝑅%!
& + 𝑅'()

& +62 

𝑅!"#& ), and ERFaci,res is the residual of the ERFaci decomposition. The first value in each 63 

table entry is the MODISCLD estimate, and the second value is the MODISCLD+PCL 64 

estimate. Uncertainties are 95% CIs.  65 

 66 

Regressions against ln 𝑠 

𝜕𝑅4$/𝜕 ln 𝑠 𝜕𝑅()*/𝜕 ln 𝑠 𝜕𝑅56/𝜕 ln 𝑠* 𝜕𝑅()*756/𝜕 ln 𝑠 𝜕𝑅8&1/𝜕 ln 𝑠** 𝜕𝑅/𝜕 ln 𝑠 

−1.24 ± 0.13	
−1.28 ± 0.13 

+0.81 ± 0.17	
+0.32 ± 0.24 

−2.33 ± 0.47	
−1.55 ± 0.36 

−1.53 ± 0.57	
−1.22 ± 0.55 

−0.52 ± 0.16	
−1.15 ± 0.24 

−2.86 ± 0.57	
−2.70 ± 0.55 

Regressions against ln𝑁@. 

𝜕𝑅4$/𝜕 ln𝑁@. 𝜕𝑅()*/𝜕 ln𝑁@. 𝜕𝑅56/𝜕 ln𝑁@.* 𝜕𝑅()*756/𝜕 ln𝑁@. 𝜕𝑅8&1/𝜕 ln𝑁@.** 𝜕𝑅/𝜕 ln𝑁@. 

−4.38 ± 0.11	
−4.54 ± 0.12 

+1.60 ± 0.21	
+0.77 ± 0.31 

−3.99 ± 0.60	
−2.46 ± 0.46 

−2.39 ± 0.73	
−1.68 ± 0.71 

−3.04 ± 0.19	
−4.37 ± 0.29 

−7.03 ± 0.72	
−6.83 ± 0.69 

Components of SW ERFaci 

IRFaci ALWP ACF* ALWP + ACF 
IRFaci + ALWP + 

ERFaci,res** ERFaci 

−0.77 ± 0.25	
−0.79 ± 0.26 

+0.41 ± 0.23	
+0.08 ± 0.18 

−1.42 ± 0.49	
−0.88 ± 0.34 

−1.02 ± 0.43	
−0.80 ± 0.39 

−0.44 ± 0.16	
−0.86 ± 0.39 

−1.86 ± 0.62	
−1.74 ± 0.59 

*This component represents aerosol-driven changes in the overall cloud amount with 67 

the normalized distribution of cloud albedo held fixed. Some studies refer to this 68 

component as the “extrinsic” component of aerosol indirect effects. 69 

**This component represents aerosol-driven changes in the normalized distribution of 70 

cloud albedo with the overall cloud amount held fixed. Some studies refer to this 71 

component as the “intrinsic” component of aerosol indirect effects.  72 



Supplementary Text 73 

 74 

Validation of 𝑅′ Decomposition 75 

 Our radiative decomposition method partitions 𝑅′ into components associated 76 

with cloud-amount anomalies, 𝑟2 anomalies, LWP anomalies, and a residual: 77 

 78 

𝑅′ = 𝑅34& + 𝑅%!
& + 𝑅'()

& + 𝑅!"#& .	 79 

 80 

We validate this decomposition using synthetic-data test cases performed with pixel 81 

data from the MODIS MYD06_L2 dataset collection 6.1 (Platnick et al., 2015). Each 82 

case uses pixels from a 1° × 1° ocean grid box from the entire month of June 2013. Let 83 

𝑟2,5, LWP5, and 𝜏5 represent the retrieved cloud-droplet effective radius, liquid water path, 84 

and cloud visible optical thickness, respectively, for a pixel 𝑗 containing a liquid cloud. 85 

For the test cases, we define the original cloud population as the set of all liquid-cloud 86 

pixels in the grid box with optical properties given by 𝑟2,5, LWP5, and 𝜏5. We then modify 87 

the cloud properties to create a second cloud population, denoted by 𝑟̃2,5, LWPC5, and 𝜏̃5, 88 

while holding the total number of liquid-cloud pixels constant. The difference in the 89 

monthly-mean grid-box-mean SW CRE between the two cloud populations, 𝑅′, is then 90 

computed. We decompose 𝑅′ separately using theoretical calculations and the 91 

radiative-kernel method, and we compare the estimates for validation. 92 

 The first step is to define the modified liquid-cloud population. We define the 93 

following relationships between the original and modified clouds: 94 

 95 

𝛿%!,5 ≡ 𝑟̃2,5 − 𝑟2,5 = 𝜒%!𝑟2,5 , 96 

 97 

𝛿'(),5 ≡ LWPC6 − LWP5 = G
𝜒'(),7LWP5 , 𝑟2,5 < 14	𝜇m
𝜒'(),8LWP5 , 𝑟2,5 ≥ 14	𝜇m. 98 

 99 

where 𝛿 represents the difference between the original and modified cloud properties 100 

and 𝜒%!, 𝜒'(),7, and 𝜒'(),8 are prescribed constants. A piecewise relationship for 𝛿LWP5 101 

is chosen because precipitating and non-precipitating clouds can be approximately 102 

distinguished based on the clouds that have 𝑟2 ≥ 14	𝜇m and 𝑟2 < 14	𝜇m, respectively 103 

(Freud and Rosenfeld, 2012; Suzuki et al., 2010). We prescribe separate relationships 104 

for precipitating and non-precipitating clouds to mimic the fact that they can have 105 

distinct responses to CCN anomalies. Calculations are performed with 𝜒%!, 𝜒'(),7, and 106 

𝜒'(),8 ranging from -0.1 to 0.1 in increments of 0.005 at three grid boxes corresponding 107 

to typical midlatitude, stratocumulus, and trade-cumulus conditions (Fig. S3a). Each 108 

combination of 𝜒%!, 𝜒'(),7, 𝜒'(),8, and grid-box location is referred to as a test case. 109 

 We next estimate the difference in liquid-cloud SW CRE between the original and 110 

modified cloud populations for each test case under idealized conditions. Assuming that 111 

the ocean surface is black, that cloud droplets have a constant asymmetry factor of 𝑔 =112 

0.85, and neglecting SW absorption by clouds and atmospheric gases, the top-of-113 

atmosphere albedo above each liquid-cloud pixel, 𝛼5, can be estimated using the two-114 

stream radiative transfer approximation (Petty, 2006): 115 

 116 



𝛼5 =
(1 − 𝑔)𝜏5

1 + (1 − 𝑔)𝜏5
. 117 

 118 

The cloud visible optical thickness 𝜏 is proportional to LWP/𝑟2 in this cloud model, so the 119 

albedo difference between the original and modified cloud populations can be 120 

expressed as 121 

 122 

𝛿𝛼5 ≡ 𝛼R5 − 𝛼5 = 𝛿𝛼'(),5 + 𝛿𝛼%!,5 123 

 124 

where 125 

 126 

𝛿𝛼'(),5 =
𝛿LWP5
LWP5

(1 − 𝑔)𝜏5
S1 + (1 − 𝑔)𝜏5T

8 127 

 128 

and 129 

 130 

𝛿𝛼%!,5 = −
𝛿𝑟2,5
𝑟2,5

(1 − 𝑔)𝜏5
S1 + (1 − 𝑔)𝜏5T

8. 131 

 132 

Here, 𝛿𝛼'(),5 and 𝛿𝛼%!,5 are the components of	𝛿𝛼5 that are caused by 𝛿LWP5 and 𝛿𝑟2,5, 133 

respectively. We next average over all liquid-cloud pixels to determine the components 134 

of 𝑅′ at the monthly-mean grid-box-mean scale: 135 

 136 

𝑅'()
& = SW↓𝑓:0;

1
𝑁W𝛿𝛼'(),5 ,

,

5<7

 137 

 138 

𝑅%!
& = SW↓𝑓:0;

1
𝑁W𝛿𝛼%!,5

,

5<7

, 139 

 140 

where SW↓ is the monthly-mean insolation; 𝑁 is the number of liquid-cloud pixels in the 141 

grid box; and 𝑓:0; ≡ 𝑁/𝑁=>=, where 𝑁=>= is the total number of pixels in the grid box. The 142 

liquid-cloud fraction is held constant in the test cases, so 𝑅34& = 0. 143 

 We next decompose 𝑅′ using the radiative kernel method. For consistency with 144 

the theoretical calculations, the kernel for this analysis is computed with a surface 145 

albedo of zero and with no SW absorption by water vapor or ozone. We then bin the 146 

liquid-cloud pixels into joint histograms partitioned by 𝑟2 and LWP. Let 𝐶%? and 𝐶X%? 147 

represent the joint histograms of the original and modified cloud populations, 148 

respectively. We define the cloud-fraction anomalies as 𝐶%?& = 𝐶X%? − 𝐶%?, and we estimate 149 

𝑅%!
& , 𝑅'()

& , and 𝑅!"#&  with the kernel method. 150 

 This set of calculations produces estimates of 𝑅%!
&  for 𝑅'()

&  from two independent 151 

methods for each of the ~2 × 10@ test cases. The theoretical and kernel-based 152 

estimates approximately agree across all test cases, and the residual of the kernel 153 



decomposition is almost always one order of magnitude smaller than 𝑅%!
&  and 𝑅'()

&  (Fig. 154 

S3). This verifies that the kernel method accurately decomposes 𝑅′ into 𝑟2-driven and 155 

LWP-driven components with a relatively small residual. 156 

 157 

Assumptions about Cloud Vertical Structure 158 

 𝜏 and LWP can be expressed as 159 

 160 

𝜏 = Z
3𝑄2𝑞?(𝑧)
4𝜌?𝑟2(𝑧)

𝑑𝑧
A

B
 161 

and 162 

 163 

LWP = Z 𝑞?(𝑧)𝑑𝑧
A

C<B
, 164 

 165 

where 𝑧 is height above cloud base, ℎ is cloud geometric thickness, 𝑞?(𝑧) is the vertical 166 

profile of liquid water content, 𝑟2(𝑧) is the vertical profile of cloud droplet effective radius, 167 

𝜌? is liquid-water density, and 𝑄2 ≈ 2 is the extinction efficiency at visible wavelengths. 168 

The MODIS observations can be used to directly infer 𝜏 and 𝑟2 near cloud top, but they 169 

do not constrain the other parameters in these equations. Thus, MODIS infers LWP 170 

indirectly by assuming vertical profiles of 𝑞?(𝑧) and 𝑟2(𝑧). Because 𝜏 is proportional to 171 

the integral of 𝑞?(𝑧)/𝑟2(𝑧), different profiles of 𝑞?(𝑧) and 𝑟2(𝑧) can be consistent with the 172 

observed value of 𝜏. This means that the true LWP can differ from the MODIS estimate 173 

if the true profiles of 𝑞?(𝑧) and 𝑟2(𝑧) differ from the assumed profiles. This LWP bias can 174 

occur despite the fact that 𝜏 is well constrained by the observations. 175 

 We investigate the implications of assumptions about cloud vertical structure by 176 

considering three idealized cloud profiles. First, case VU assumes that 𝑞?(𝑧) and 𝑟2(𝑧) 177 

are vertically uniform inside the cloud. This assumption is made in the operational 178 

MODIS retrieval algorithm. Second, case AD assumes that 𝑞?(𝑧) and 𝑟2(𝑧) vary 179 

vertically according to the adiabatic cloud model (Brenguier et al., 2000). In this case, 180 

𝑁$ is constant and 𝑞?(𝑧) increases linearly with height. Third, case 2L assumes that the 181 

cloud has two vertically uniform layers following the assumptions in the radiative kernel 182 

calculations. The top layer has optical thickness 𝜏7 = 3, LWP denoted by LWP1, and 183 

effective radius 𝑟2,7 = 𝑟2,./D, where 𝑟2,./D is the cloud droplet effective radius at cloud top. 184 

The bottom layer has optical thickness of 𝜏8 = 𝜏 − 𝜏7, LWP denoted by LWP2, and 185 

effective radius 𝑟2,8 = 𝑚𝑟2,./D + 𝑏, where 𝜏 is the total cloud optical thickness and 𝑚 and 186 

𝑏 are constants. 187 

 For all three cases, 𝜏, LWP, and 𝑟2,./D can be related to one another with analytic 188 

expressions. The VU and AD cases satisfy the following relations: 189 

 190 

VU case: 𝜏 = EF!'()9:
GH;%!,<=>

 191 

 192 

AD case: 𝜏 = IF!'()?@
7BH;%!,<=>

 193 

 194 



where LWPVU and LWPAD are the LWP values inferred from the VU and AD 195 

assumptions, respectively (Wood and Hartmann, 2006). The 2L case is represented by 196 

two cloud layers that each satisfy the VU relation: 197 

 198 

2L case: 𝜏 = EF!
GH;

e'()A
%!,A

+ '()B
%!,B

f 199 

 200 

For a given 𝜏 and 𝑟2,./D, the LWP inferred from these assumptions differ from one 201 

another by 17% or less. 202 

 We next examine how the assumptions about cloud vertical structure affect 203 

estimates of the 𝑅′ components. Consider two liquid-cloud pixels in which 𝜏 and 𝑟2,./D 204 

are known from MODIS observations. Differentiating the above equations leads to the 205 

following relations: 206 

 207 

VU case: 𝛿 ln 𝜏 ≈ 𝛿 ln LWPJK − 𝛿 ln 𝑟2,./D 208 

 209 

AD case: 𝛿 ln 𝜏 ≈ 𝛿 ln LWPLM − 𝛿 ln 𝑟2,./D 210 

 211 

2L case: 𝛿 ln 𝜏 ≈ g NA
NAONB

𝛿 ln LWP7 +
NB

NAONB
𝛿 ln LWP8h − g

NA
NAONB

𝛿 ln 𝑟2,7 +
NB

NAONB
𝛿 ln 𝑟2,8h 212 

 213 

where 𝛿 represents the difference between the two pixels. The first and second terms 214 

on the right side of these equations represent the 𝛿LWP-driven and 𝛿𝑟2,./D-driven 215 

components of 𝛿 ln 𝜏, respectively. These components are identical for the VU and AD 216 

cases because LWPVU is directly proportional to LWPAD. The components of 𝛿 ln 𝜏 from 217 

the VU and AD cases are also similar to those from the 2L case. For instance, if typical 218 

values of 𝜏 = 10 and 𝑟2,./D = 14	𝜇m are assumed and 𝛿 ln 𝜏 and 𝛿 ln 𝑟2,./D are varied 219 

between 0 and 1, then the 𝛿LWP-driven and 𝛿𝑟2,./D-driven components of 𝛿 ln 𝜏 differ by 220 

2% or less between the three cases. This means that different common assumptions 221 

about cloud vertical structure will lead to similar estimates of 𝑅%!
&  and 𝑅'()

& . 222 

 223 

Estimating ERFaci from the Method of Bellouin et al. (2020) 224 

We compare our estimates of SW ERFaci from liquid clouds with estimates from 225 

the assessment of the WCRP reported by Bellouin et al. (2020; hereafter B20). B20 226 

assess the components of ERFaci according to 227 

 228 

 IRFPQ0 =
𝜕𝑅

𝜕 ln𝑁$
𝜕 ln𝑁$
𝜕 ln 𝜏R

Δ𝜏R
𝜏R,)M

𝑐, , 

 

 

 
 A'() =

𝜕𝑅
𝜕 ln LWP

𝑑 ln LWP
𝑑 ln𝑁$

𝜕 ln𝑁$
𝜕 ln 𝜏R

Δ𝜏R
𝜏R,)M

𝑐', 
 

 229 

and 230 

 231 



 
A34 =

𝜕𝑅
𝜕𝐶./.

𝑑𝐶./.
𝑑 ln𝑁$

𝜕 ln𝑁$
𝜕 ln 𝜏R

Δ𝜏R
𝜏R,)M

𝑐3, 

 

 

where 𝜏R is aerosol optical depth, “PD” represents present day, and Δ represents the 232 

difference between present day and preindustrial conditions. All terms in these 233 

equations are global averages, and 𝑐,, 𝑐', and 𝑐3 are effective cloud fractions that 234 

account for spatial correlations between the other variables. We estimate the 235 

components of ERFaci following the method of B20, but we modify the values so that 236 

they represent averages over our study domain rather than the entire globe. 𝑐,, 𝑐', 𝑐3, 237 

𝜕𝑅/𝜕 ln𝑁$, and 𝜕𝑅/𝜕 ln LWP are computed following B20’s method but restricting the 238 

calculation to ocean grid boxes between 55°S and 55°N. We use B20’s estimates of 239 

𝜕𝑅/𝜕𝐶./., 𝜕 ln𝑁$/𝜕 ln 𝜏R, 𝑑 ln LWP/𝑑 ln𝑁$, and 𝑑𝐶././𝑑 ln𝑁$ because they are 240 

assessed from studies that mostly investigate clouds in oceanic and coastal 241 

environments. One exception is the upper bound of 𝑑𝐶././𝑑 ln𝑁$, which is assessed 242 

over the entire globe using GCM output. Finally, we scale B20’s estimate of 𝜏R,)M by a 243 

factor of 〈𝜏R,)M〉/Q"P1/〈𝜏R,)M〉S:/TP:, where 〈𝜏R,)M〉/Q"P1 is the average of 𝜏R,)M over ocean 244 

between 55°S and 55°N and 〈𝜏R,)M〉S:/TP: is the average of 𝜏R,)M over the entire globe. 245 

Similarly, we scale B20’s estimate of Δ𝜏R by 〈Δ𝜏R〉/Q"P1/〈Δ𝜏R〉S:/TP:. These scaling factors 246 

are calculated with data from the Monitoring Atmospheric Composition and Climate 247 

Reanalysis (Benedetti et al., 2009) for consistency with B20. The original and modified 248 

values of all parameters are listed in Table S2.  249 
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