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Abstract. Accurate quantification of long-term trends in stratospheric ozone can be challenging due to their
sensitivity to natural variability, the quality of the observational datasets, and non-linear changes in forcing pro-
cesses as well as the statistical methodologies. Multivariate linear regression (MLR) is the most commonly used
tool for ozone trend analysis; however, the complex coupling in many atmospheric processes can make it prone
to the issue of over-fitting when using the conventional ordinary-least-squares (OLS) approach. To overcome this
issue, here we adopt a regularized (ridge) regression method to estimate ozone trends and quantify the influence
of individual processes. We use the Stratospheric Water and OzOne Satellite Homogenized (SWOOSH) merged
dataset (v2.7) to derive stratospheric ozone profile trends for the period 1984–2020. Besides SWOOSH, we also
analyse a machine-learning-based satellite-corrected gap-free global stratospheric ozone profile dataset from a
chemical transport model (ML-TOMCAT) and output from a chemical transport model (TOMCAT) simulation
forced with European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis.

For 1984–1997, we observe smaller negative trends in the SWOOSH stratospheric ozone profile using ridge
regression compared to OLS. Except for the tropical lower stratosphere, the largest differences arise in the mid-
latitude lowermost stratosphere (> 4 % per decade difference at 100 hPa). From 1998 and the onset of ozone
recovery in the upper stratosphere, the positive trends estimated using the ridge regression model (∼ 1 % per
decade near 2 hPa) are smaller than those using OLS (∼ 2 % per decade). In the lower stratosphere, post-1998
negative trends with large uncertainties are observed and ridge-based trend estimates are somewhat smaller
and less variable in magnitude compared to the OLS regression. Aside from the tropical lower stratosphere,
the largest difference is around 2 % per decade at 100 hPa (with ∼ 3 % per decade uncertainties for individual
trends) in northern mid-latitudes. For both time periods the SWOOSH data produce large negative trends in
the tropical lower stratosphere with a correspondingly large difference between the two trend methods. In both
cases the ridge method produces a smaller trend. The regression coefficients from both OLS and ridge models,
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which represent ozone variations associated with natural processes (e.g. the quasi-biennial oscillation, solar
variability, El Niño–Southern Oscillation, Arctic Oscillation, Antarctic Oscillation, and Eliassen–Palm flux),
highlight the dominance of dynamical processes in controlling lower-stratospheric ozone concentrations. Ridge
regression generally yields smaller regression coefficients due to correlated explanatory variables, and care must
be exercised when comparing fit coefficients and their statistical significance across different regression methods.

Comparing the ML-TOMCAT-based trend estimates with the ERA5-forced model simulation, we find ML-
TOMCAT shows significant improvements with much better consistency with the SWOOSH dataset, despite
the ML-TOMCAT training period overlapping with SWOOSH only for the Microwave Limb Sounder (MLS)
measurement period. The largest inconsistencies with respect to SWOOSH-based trends post-1998 appear in the
lower stratosphere where the ERA5-forced model simulation shows positive trends for both the tropics and the
mid-latitudes. The large differences between satellite-based data and the ERA5-forced model simulation confirm
significant uncertainties in ozone trend estimates, especially in the lower stratosphere, underscoring the need for
caution when interpreting results obtained with different regression methods and datasets.

1 Introduction

With the success of the Montreal Protocol and its amend-
ments, the emission of major ozone-depleting substances
(ODSs) has greatly reduced and observations show de-
creases in their atmospheric concentrations (e.g. Anderson
et al., 2000; Solomon et al., 2006; Chipperfield et al., 2017;
Montzka et al., 2021). However, quasi-global total column
ozone does not show a statistically significant ozone increase
(WMO, 2022, and references therein). To a certain extent,
there is a scientific consensus that the ODS-related posi-
tive ozone trends are balanced by the negative contributions
from atmospheric dynamics (e.g. Weber et al., 2022; Bog-
nar et al., 2022). As the impacts of chemical and dynamical
processes on ozone variability are variable across the strato-
sphere, accurate quantification of stratospheric ozone trends
remains an unresolved challenge.

An important aspect of long-term ozone trends that has
been confirmed by various recent studies is that there is
an ozone increase in the upper stratosphere (e.g. Harris et
al., 2015; Chipperfield et al., 2017; Sofieva et al., 2017; Ball
et al., 2017; Steinbrecht et al., 2017; Petropavlovskikh et
al., 2019; Godin-Beekmann et al., 2022), partly due to the
decreased ODS concentrations and partly due to the strato-
spheric cooling resulting from increased greenhouse gases
(GHGs). However, our understanding about the evolution of
lower-stratospheric ozone remains highly uncertain. Various
observation-based studies suggest that there has been a con-
tinued decline in lower-stratospheric ozone since 1998, in
both the tropics and the mid-latitudes (e.g. Ball et al., 2018,
2019a; Wargan et al., 2018; Orbe et al., 2020; Bognar et
al., 2022), while model simulations do not reproduce these
trends (Ball et al., 2020; Dietmüller et al., 2021; Davis et
al., 2023; Li et al., 2022a). It is well established that ozone
in the lower stratosphere is sufficiently long-lived and pri-
marily controlled by transport and circulation changes (e.g.
Chipperfield et al., 2018). The increasing GHGs induce a
strengthening of tropical upwelling and enhance the strato-

spheric circulation, which causes tropical ozone to decline
in the lower stratosphere (Marsh et al., 2016). Besides, the
non-linear quasi-biennial oscillation (QBO) and the El Niño–
Southern Oscillation (ENSO) influence the dynamical vari-
ability in the lower stratosphere and drive the large inter-
annual ozone variability in this region (Ball et al., 2019a;
Diallo et al., 2018). The asymmetrical change pattern in the
Brewer–Dobson circulation (BDC), with a relative slowdown
in the Northern Hemisphere (NH), also provides evidence
pointing to dynamically driven ozone variability in the lower
stratosphere (e.g. Mahieu et al., 2014; Stiller et al., 2017;
Prignon et al., 2021; Bognar et al., 2022). Considering the
inconsistencies between observations and model simulations,
it is important to gain better insight about the causes of un-
certainties in the estimates of the lower-stratospheric ozone
trends.

Most importantly, not only is the quantification of strato-
spheric ozone trends sensitive to natural variability and non-
linear forcing processes, but also it depends on the quality of
the observational datasets and the time periods considered.
To determine the long-term ozone trends and the attribution
of ozone variability, composites of observations are generally
used by merging different ozone observational datasets into
a long, multi-decadal record. However, there are artefacts in
the uncertainty budget and sampling inconsistencies between
various datasets. Previous studies have used multiple com-
posites merged from different observing platforms and dis-
cussed the sensitivity of ozone trends to the inclusion of new
datasets (Ball et al., 2018, 2019a; Sofieva et al., 2017, 2023;
Steinbrecht et al., 2017; Petropavlovskikh et al., 2019; We-
ber et al., 2022; Godin-Beekmann et al., 2022). Here, we use
the merged Stratospheric Water and OzOne Satellite Homog-
enized (SWOOSH, version 2.7) dataset to assess the strato-
spheric ozone trends (Davis et al., 2016) for the 1984–2020
time period. In addition, a machine-learning-based satellite-
corrected gap-free global stratospheric ozone profile dataset
from a chemical transport model (ML-TOMCAT; Dhomse et
al., 2021a) is also used for comparison.
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To improve the assessment of the long-term ozone trends
and variability, multivariate linear regression (MLR) mod-
els with different configurations are most widely used by
separating the influence of various chemical and dynami-
cal processes on the ozone concentrations (e.g. Dhomse et
al., 2006, 2022; Chehade et al., 2014; Li et al., 2020, 2022a).
Szeląg et al. (2020) analysed the seasonal dependence of
stratospheric ozone trends from four merged satellite datasets
over 2000–2018 using a two-step MLR approach. Godin-
Beekmann et al. (2022) presented the evaluation of strato-
spheric ozone profile trends in the extra-polar region over the
period 2000–2020 with an updated version of the Long-term
Ozone Trends and Uncertainties in the Stratosphere (LO-
TUS) regression model which additionally included seasonal
trend terms. Bognar et al. (2022) used both MLR and dy-
namical linear modelling (DLM) methods (Laine et al., 2014;
Ball et al., 2017, 2019a) to determine the stratospheric ozone
trends during 2000–2021 with a combination of three satel-
lite datasets. Recently, Dhomse et al. (2022) used an en-
semble of MLR models and regularized regression methods
(ridge, lasso, and elastic net) to estimate the solar cycle signal
in the observed and simulated ozone profiles for 2005–2020.
With the extended datasets and improved statistical method-
ologies, there is better agreement about and reduced uncer-
tainties in different satellite-based ozone trends. However, it
should be noted that trends in the lower stratosphere are still
masked by large dynamical/natural variability.

Additional complications also arise from the use of chem-
ical/dynamical proxies in the MLR; some of them are in-
evitably correlated and coupled, causing an issue of over-
fitting (e.g. Dhomse et al., 2022), which will significantly
lead to inconsistent and unreliable parameter estimates in
regression modelling (e.g. Shariff and Duzan, 2018). To
overcome this over-fitting problem, regularized regression
models such as ridge regression are highly recommended
(e.g. Hoerl and Kennard, 1970). Previous studies have in-
dicated that ridge regression performs better than other es-
timators and can produce reliable results when explanatory
variables are correlated (e.g. Shariff and Duzan, 2018; Tirink
et al., 2020; Gana, 2022). In this paper, we use MLR mod-
els based on both ordinary-least-squares (OLS) and ridge re-
gression methods to compare and discuss their differences
in estimating stratospheric ozone trends. Besides SWOOSH
and ML-TOMCAT datasets, a chemical transport model
(TOMCAT) simulation forced with the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA5 reanal-
yses (Li et al., 2022a) is also used for comparison with
satellite-based ozone trends and ozone changes associated
with natural variability.

The paper is organized as follows. Section 2 describes the
merged satellite-based ozone dataset (SWOOSH), a TOM-
CAT model simulation forced with ECMWF ERA5 re-
analyses (hereafter ERA5), and a machine-learning-based
satellite-corrected TOMCAT product (ML-TOMCAT). Sec-
tion 3 describes the MLR models and regression methods

based on OLS and ridge. Section 4 presents results regard-
ing the ozone profile trends based on OLS and ridge regres-
sion methods and the ozone variations associated with natu-
ral processes. Our conclusions are summarized in Sect. 5.

2 Data

2.1 SWOOSH

The Stratospheric Water and OzOne Satellite Homogenized
(SWOOSH) dataset is a monthly mean record of strato-
spheric ozone and water vapour data from a subset of limb
sounding and solar occultation satellites operating from 1984
to the present (Davis et al., 2016). It is obtained from
https://csl.noaa.gov/groups/csl8/swoosh/ (last access: 10 Jan-
uary 2023). The SWOOSH (v2.7) record is comprised of sev-
eral individual satellite data from the Stratospheric Aerosol
and Gas Experiment (SAGE-II/SAGE-III v7/v4), the Up-
per Atmospheric Research Satellite Halogen Occultation
Experiment (UARS HALOE v19), the UARS Microwave
Limb Sounder (MLS v5/6), the Aura MLS (v5), the Aura
High Resolution Dynamics Limb Sounder (HIRDLS v7)
and the Atmospheric Chemistry Experiment Fourier Trans-
form Spectrometer (ACE-FTS v3.6) instruments, as well as
a combined data product. The corrections that vary with lati-
tude and height are determined from coincident observations
closely matched in space and time during time periods of in-
strument overlap. The primary SWOOSH product consists
of zonal-mean values at grids of 2.5, 5, and 10◦ resolution.
There are filled and unfilled versions of the dataset at both
geographical and equivalent-latitude coordinates. Many pre-
vious studies have demonstrated the reliability of this prod-
uct in analysing the variability and mechanisms associated
with stratospheric ozone (e.g. Lu et al., 2019; Shangguan et
al., 2019; Zhang et al., 2021; Hu et al., 2022). Here we use
the gap-filled SWOOSH data at grids of 2.5◦ and 12 levels
per decade ranging from 316 to 1 hPa (31 pressure levels).
These SWOOSH data are considered a beta product and will
continue to be updated as long as new data are available from
the Aura MLS instrument or a suitable replacement.

2.2 TOMCAT simulation

Chemical transport models (CTMs) are important tools for
understanding past ozone changes by combining up-to-date
knowledge about various physical and chemical processes
within a mathematically consistent framework. TOMCAT/S-
LIMCAT (hereafter TOMCAT) is a global 3-D off-line CTM
(Chipperfield, 2006), which contains a detailed description of
stratospheric chemistry (e.g. Feng et al., 2011, 2021; Dhomse
et al., 2015, 2016; Chipperfield et al., 2018) or tropospheric
chemistry (Monks et al., 2017) and uses winds and temper-
atures from meteorological analyses (usually ECMWF) to
specify the atmospheric transport and temperatures.
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Here we have performed a TOMCAT simulation (ERA5),
which is forced with ECMWF ERA5 (Hersbach et al., 2020)
reanalysis (e.g. Dhomse et al., 2019; Feng et al., 2021; Li
et al., 2022a). The ERA5 reanalysis has been released by
ECMWF to supersede ERA-Interim, which covered Jan-
uary 1979 to August 2019, with more and newer observa-
tions assimilated into ERA5. The inhomogeneities in reanal-
ysis datasets could introduce spurious transport features (e.g.
Schoeberl et al., 2003; Ploeger et al., 2015) and thus cause
an inability of chemical models to simulate the observed
stratospheric ozone changes (Li et al., 2022a). The TOM-
CAT simulation is identical to that used in Li et al. (2022a),
with 2.8◦× 2.8◦ (T42 Gaussian grid) horizontal resolution
and 32 hybrid sigma–pressure levels ranging from the sur-
face to about 60 km. The 6-hourly grid point meteorological
fields are interpolated linearly in time for the simulation.

2.3 ML-TOMCAT

We use a machine-learning-based method and chemically
self-consistent output from the TOMCAT 3-D CTM to cre-
ate a satellite-corrected long-term stratospheric ozone pro-
file dataset (ML-TOMCAT, Dhomse et al., 2021a). The
TOMCAT setup is described in Sect. 2.2 above. A random-
forest (RF) regression model, including five terms: passive
ozone (O3), HCl mixing ratio (HCl), methane mixing ra-
tio (CH4), Mg II solar flux term (MgII), and observation–
model total column ozone difference (dTCO) is applied to the
observation–model ozone difference by selecting 20 years
of UARS MLS (1991–1998) and Aura MLS (2005–2016)
measurements as a training period. The passive O3, HCl,
and CH4 are tracers taken from TOMCAT output fields;
dTCO is calculated from Copernicus Climate Change Ser-
vice (C3S) total ozone data; and the MgII index (Snow et
al., 2014) is obtained from http://www.iup.uni-bremen.de/
UVSAT/Datasets/mgii (last access: 10 January 2023). These
variables account for possible biases in CTM profiles due to
transport, solar flux variability, or the use of coarse spectral
bins (e.g. Dhomse et al., 2013; Sukhodolov et al., 2016; Feng
et al., 2021).

The results show that ML-TOMCAT ozone concen-
trations are in excellent agreement with SWOOSH data
and that they are well within uncertainties of the obser-
vational datasets at almost all stratospheric levels. ML-
TOMCAT is also ideally suited for the evaluation of chem-
ical model ozone profiles and observation-based datasets
from the tropopause up to 0.1 hPa. The ML-TOMCAT
ozone profile data (v1.0) on pressure and altitude lev-
els in mixing ratios and number density units are avail-
able via https://doi.org/10.5281/zenodo.5651194 (Dhomse et
al., 2021b).

3 Methods

3.1 Multivariate linear regression models

Here we use multivariate linear regression (MLR) models to
estimate the stratospheric ozone trends and to separate the
influence of important chemical and dynamical processes on
the ozone variations. The MLR setup is a modified version
of that used in Dhomse et al. (2022). Briefly, it has 77 terms,
including 24 monthly linear trend terms and 24 intercept
terms for the independent linear trends (ILTs; e.g. Weber et
al., 2018) before and after the turnaround year (1997) close to
the timing of the peak stratospheric halogen loading; 24 QBO
terms at 30 and 50 hPa; and 5 proxies for the 11-year solar
cycle, El-Niño–Southern Oscillation (ENSO), Arctic Oscil-
lation (AO), Antarctic Oscillation (AAO), and Eliassen–Palm
(EP) flux. QBO, ENSO, AO, and AAO indices are from the
Climate Prediction Center (https://www.cpc.ncep.noaa.gov/,
last access: 10 January 2023). The proxy for EP flux uses the
50 hPa vertical component (Fz50 ) with 2-month mean values
(averaged over previous and current months) integrated over
mid-latitudes between 45 and 75◦ in each hemisphere from
the ECMWF ERA5 reanalysis. The effects of the aerosol
loading from volcanic eruptions (e.g. Mt Pinatubo, 1991) are
not considered in the MLR as we remove the data from 1991
to 1994. Here, we use 12 (monthly) trend terms instead of
1 (annual) as it is better at capturing seasonal patterns and
has better sensitivity to short-term fluctuations and improved
flexibility that means better goodness of fit (R2). Also, more
proxies are considered to account for the dynamical vari-
ability in stratospheric ozone and to separate the influence
of individual processes (e.g. Dhomse et al., 2022; Weber et
al., 2022).

We apply the MLR to monthly mean ozone anomalies and
get

dO3(t)=
77∑
j=1

βj ×Pj (t)+ ε(t),

where dO3(t) denotes monthly mean ozone anomaly time se-
ries from 1984–2020 obtained by referencing the monthly
mean O3(t) to the climatological mean for each calendar
month. The explanatory proxies Pj include 77 terms which
are de-trended (except for the linear trend terms) and nor-
malized between 0 and 1. The coefficients βj are obtained
by least-squares fitting of the residuals. By de-trending, the
long-term trends in various proxies are moved to the linear
trend terms; that is, the independent linear trends in the MLR
combine both the dynamic and the ODS-related chemical
trends (Weber et al., 2022).

As noted earlier, as most atmospheric processes are not
completely independent, the MLR models suffer from over-
fitting issues to a certain extent. Here we use both ordinary-
least-squares (OLS) and regularized (ridge) linear regres-
sion models for comparison to quantify the estimated ozone
trends and the influence of individual processes.
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3.2 OLS regression

Ordinary-least-squares (OLS) regression is a common
method used to study the relationship between explanatory
variables and response variables in regression models. The
OLS method aims to minimize the sum of squared errors
(SSE) between the observed values (yi) and predicted values
(ŷi). The cost function being minimized is written as

minimize

(
SSE=

n∑
i=1

(yi − ŷi)2

)
.

It should be noted that the OLS with unbiased estimators per-
forms well only when all key regression assumptions are sat-
isfied, e.g. a linear relationship, more observations (n) than
features (p), and no or little collinearity among the explana-
tory variables. Additionally, the OLS model is designed to
minimize the residual errors but with relatively high vari-
ance, which means small changes in explanatory variables
can lead to large changes in the estimated regression coef-
ficients. Thus, care is needed when analysing the results of
parameter estimates and inference under the OLS procedure.

3.3 Ridge regression

To overcome the over-fitting issue in regression, several
methods have been developed, and the most common is ridge
regression (Hoerl and Kennard, 1970). Ridge regression is a
type of regularized regression which adds a penalty (called
an L2 penalty) as described in Hastie et al. (2009) and Kuhn
and Johnson (2013) to constrain the magnitudes and fluctu-
ations of the coefficient estimates. This constraint helps to
reduce the variance of the model at the expense of no longer
being unbiased, which is a reasonable compromise. The cost
function with a penalty term is written as

minimize

(
SSE+α

p∑
j=1

β2
j

)
.

The penalty is calculated as the square of the magnitude of
coefficients. By adding this penalty term, all coefficients of
the regression variables (βj ) will be constrained or shrunk,
but not to zero, so they all remain in the model. The strength
of the penalty term is controlled by a tuning parameter (α).
When this tuning parameter is set to zero, ridge regression
equals OLS regression. If α =∞, all coefficients in the re-
gression are shrunk to zero. The ideal penalty is therefore
somewhere in between 0 and ∞, which helps to control
the model in terms of over-fitting or under-fitting. Here we
use cross-validation (CV) to identify the optimal α value
(Pedregosa et al., 2011). The ridge regression model used
here is from the Python scikit module (for details see https:
//scikit-learn.org/stable/modules/linear_model.html, last ac-
cess: 10 January 2023).

Figure 1 shows the SWOOSH ozone anomalies and fit-
ting from OLS and ridge regression models near the Equator

(∼ 1◦ N) at pressure levels of 1, 10, and 46.4 hPa. The cross-
validated mean square error (MSE), that is, the average of all
the test MSEs calculated from different training and testing
sets, and coefficients for the ridge regression model are also
shown as the α value grows from 0.01 to 100. In all cases
shown in Fig. 1, we find a slight improvement in the MSE
as the penalty (α) gets larger, suggesting that a regular OLS
model likely over-fits the training data. As the penalty contin-
ues to increase, coefficients in the ridge regression model are
shrunk until close to zero. The vertical dashed lines represent
the optimal α value with the minimum MSE (α0 = 0.174,
0.048, and 0.026 in ridge regression for ozone anomaly data
at pressure levels of 1, 10, and 46.4 hPa). Monthly mean
ozone anomalies as well as the OLS and ridge fitting from
ML-TOMCAT and simulation ERA5 are shown in the Sup-
plement (Figs. S1–S2).

As expected, goodness-of-fit (R2) values for ridge regres-
sion are smaller than OLS whenever the ozone data are noisy
and the regression model is not able to attribute ozone vari-
ations to any explanatory variables (e.g. upper stratosphere).
However, R2 differences are smaller when one or multiple
variables are able to explain ozone variations (e.g. lower
stratosphere). We use the Cochrane–Orcutt method to cor-
rect for the first-order autocorrelation (AR1) in the resid-
uals of an OLS regression model. The procedure is per-
formed iteratively with the covariance matrix updated for
each iteration until the autocorrelation coefficient has con-
verged sufficiently (Cochrane and Orcutt, 1949; Prais and
Winsten, 1954). This correction for AR1 in the OLS re-
gression model is widely used for the trends from monthly
mean ozone time series (e.g. Dhomse et al., 2006; Ball et
al., 2019a; Petropavlovskikh et al., 2019; Bognar et al., 2022;
Godin-Beekmann et al., 2022). However, ridge regression,
which constrains the fit coefficients by introducing a penalty
term, is different from the linear unbiased estimates of the
usual least-squares method. If we still apply the AR1 correc-
tion to ridge regression similarly to OLS regression, the esti-
mated regression coefficients can be affected; the correlation
between the regression model and underlying data becomes
very poor after “correction”, and the regression in this case is
under an “under-fitting” state with a very large tuning param-
eter. Besides, the autocorrelation coefficient does not always
converge during iteration, which makes it impossible to ob-
tain the covariance matrix as in OLS regression. Given all
this, we do not apply the AR1 correction to ridge regression
here, and care must be taken regarding the limitations and
assumptions of the Cochrane–Orcutt method.

4 Results and discussion

4.1 Ozone profile trends with OLS and ridge regression

Figure 2 shows the annual mean stratospheric ozone pro-
file trends (percent per decade) comparing between OLS
and ridge regression methods for three latitude bands (60–
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Figure 1. (a–c) Monthly mean ozone anomalies (blue dots) and the OLS (red line) and ridge fitting (dash-dotted green line) from SWOOSH
data during 1984–2020 at the pressure levels of 1 hPa (a, d, g), 10 hPa (b, e, h), and 46.4 hPa (c, f, i) for the 1◦ N latitude. (d–f) Cross-
validated MSE values as well as (g–i) the ridge regression trace of the coefficients that change with alpha (α) are also shown. The vertical
dashed red line indicates the optimal tuning value (α0) for ridge regression where MSE is minimum.

35◦ S, 20◦ S–20◦ N, and 35–60◦ N) from SWOOSH, ML-
TOMCAT, and the model simulation ERA5 over the period
1984–1997. The trend results as well as the 2σ uncertain-
ties (the standard deviation of the trends) for several pressure
levels (1, 2, 10, 46.4, and 100 hPa) are given in Table 1. The
annual mean trend is the average of the 12-monthly means,
and the uncertainty in the annual trend is the standard devia-
tion from taking the mean from the monthly values.

With ridge regression, the stratospheric ozone profile
trends from SWOOSH data show smaller declines during
1984–1997 compared to OLS-based trend estimates. As
shown in Fig. 2a–c and Table 1, large OLS–ridge differ-
ences appear in the upper stratosphere (∼ 1 % per decade
at 2 hPa) and the lowermost stratosphere (> 4 % per decade
at 100 hPa). Compared with the trend profiles derived from
OLS regression, the ridge regression model has less variabil-
ity and smaller absolute fit coefficients (especially at mid-
latitudes). These differences in trend values are likely due
to the fundamental differences between the two regression
methods. The largest ozone decreases appear in the tropical
lower stratosphere (with about −30 % per decade for OLS
and −12 % per decade for ridge regression) although there
are large uncertainties (> 20 % per decade). These large un-

certainties to some extent are associated with the consider-
able dynamical variability near the tropopause (e.g. Sofieva
et al., 2014; Thompson et al., 2021; Bognar et al., 2022) and
are also related to the quality of the satellite data and limi-
tations in sampling and resolution (Davis et al., 2016). The
negative ozone trend estimates from ML-TOMCAT and sim-
ulation ERA5 show very good agreement with those from
SWOOSH data at mid-latitudes in both the Northern Hemi-
sphere (NH) and the Southern Hemisphere (SH). Large dif-
ferences appear in the tropical middle and lower stratosphere
where ML-TOMCAT and the ERA5-forced model simula-
tion show positive trends with a range of 2 %–4 % per decade
near 30 hPa, but SWOOSH data show a near-zero trend. We
note that there are large uncertainties in the lower strato-
sphere for both satellite data and model simulations.

As shown in Fig. 3, upper-stratospheric ozone has in-
creased since 1998 across all three latitude bands and the
increases based on ridge regression are slightly smaller. Ta-
ble 2 gives some trend results and corresponding 2σ uncer-
tainties from SWOOSH data during 1998–2020. The signifi-
cant positive ozone trends (∼ 2 % per decade for OLS regres-
sion) in the upper stratosphere are consistent with the sta-
tistically significant trends shown in previous studies (Ball
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Figure 2. Profiles of annual mean stratospheric ozone trends (percent per decade) derived from OLS and ridge regression methods for three
latitude bands (60–35◦ S, 20◦ S–20◦ N, and 35–60◦ N) from (a–c) SWOOSH, (d–f) ML-TOMCAT, and (g–i) model simulation ERA5 over
the period 1984–1997. Shaded regions indicate 2σ uncertainties.

Table 1. Stratospheric ozone trends with 2σ uncertainties (in percent per decade) from SWOOSH during 1984–1997 based on OLS and
ridge regression.

Levels (hPa) 60–35◦ S 20◦ S–20◦ N 35–60◦ N

OLS Ridge OLS Ridge OLS Ridge

1 −3.2 (2.6) −1.8 (2.7) −1.2 (2.0) −0.4 (2.2) −5.0 (2.3) −3.7 (2.4)
2 −5.4 (2.6) −4.0 (2.7) −4.2 (2.1) −3.2 (2.2) −6.2 (2.4) −4.6 (2.5)
10 −0.2 (2.1) 0.0 (2.3) −1.2 (2.9) −0.9 (2.7) −2.8 (1.9) −2.2 (1.9)
46.4 −3.4 (2.8) −3.0 (2.8) −2.9 (3.6) −2.2 (3.7) −3.1 (2.6) −1.5 (2.7)
100 −9.7 (6.0) −4.7 (6.4) −29.6 (24.2) −12.2 (26.6) −11.8 (6.5) −5.8 (7.0)

et al., 2017; Sofieva et al., 2017; Steinbrecht et al., 2017;
Bourassa et al., 2018; WMO, 2018; Petropavlovskikh et
al., 2019; Godin-Beekmann et al., 2022; Bognar et al., 2022).
The largest increase based on ridge regression is 1.1± 1.1 %
per decade near 2 hPa at NH mid-latitudes, 1.1± 1.0 % per
decade near 2 hPa in the tropics, and 1.3± 0.8 % per decade
at 3.8 hPa at SH mid-latitudes. In the middle and lower
stratosphere, ozone trends are generally negative except for
the non-significant positive trends near 20 hPa at SH mid-
latitudes, where a large difference of ∼ 1.3 % per decade
occurs between OLS and ridge regression methods. Neg-
ative trends with larger uncertainties are observed in the
lower stratosphere, which are most pronounced in the trop-

ics (−6.1± 12.0 % per decade at 100 hPa), followed by the
decrease at NH mid-latitudes (−1.6± 3.2 % per decade at
100 hPa). The largest difference between OLS and ridge re-
gression methods occurs in the tropical lowermost strato-
sphere with a difference of ∼ 9 % per decade at 100 hPa
(but with larger uncertainties> 10 % per decade for both re-
gression methods), followed by the NH mid-latitudes with
> 2 % per decade difference at 100 hPa (∼ 3 % per decade
uncertainties). Note that, despite the large differences be-
tween OLS- and ridge-based trends, they are still within the
uncertainties of the individual trends. The observed ozone
decreases in the lower stratosphere are similar to recent
records (e.g. Ball et al., 2019a; 2020; Godin-Beekmann et
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al., 2022), which could be explained by the increased tropi-
cal upwelling and mid-latitude mixing (Wargan et al., 2018;
Ball et al., 2020; Orbe et al., 2020; Davis et al., 2023). Never-
theless, the modelled lower-stratospheric trends do not match
those derived from observations.

Compared to the trend estimates from simulation ERA5 in
Fig. 3, the ML-TOMCAT dataset shows more consistent re-
sults with the SWOOSH data, with negative ozone trends in
the tropical and NH mid-latitude lower stratosphere. The bet-
ter agreement between ML-TOMCAT and SWOOSH, due to
satellite corrections derived from the same MLS measure-
ments, shows some improvements in this machine-learning-
based dataset compared to the TOMCAT CTM. The largest
differences between SWOOSH-based and ML-TOMCAT-
based ozone trends appear in the SH mid-latitude lower
stratosphere, where ML-TOMCAT shows positive trends,
and in the tropical middle and lower stratosphere with close-
to-zero trends near 60 hPa (although these trends have large
uncertainties). On the other hand, trends from model sim-
ulation ERA5 show the largest inconsistencies with respect
to SWOOSH-based trends in the lower stratosphere. Sim-
ulation ERA5 shows positive trends for all three latitude
bands, but these trends are more pronounced in the SH mid-
latitudes (5.4±2.0 % per decade at 100 hPa for ridge regres-
sion). These differences between satellite-based datasets and
model simulation suggest there are still large uncertainties in
the lower stratosphere where dynamical processes dominate
(Dietmüller et al., 2021; Li et al., 2022a). Ball et al. (2020) re-
ported significant discrepancies in observation–model lower-
stratospheric ozone trends by using various satellite-based
datasets and chemistry–climate models (CCMs). Although
the inconsistencies vary with various datasets and fit meth-
ods (Dietmüller et al., 2021; Bognar et al., 2022), models
generally do not reproduce the observations, and the reason
for this remains an open question.

Similarly to SWOOSH-derived trends, the ridge-based
trends from ML-TOMCAT and simulation ERA5 are smaller
in magnitude when compared to OLS-based trends. An evi-
dent OLS–ridge difference appears at near 10 hPa in the trop-
ical stratosphere, where OLS-based trends from both ML-
TOMCAT and simulation ERA5 show a small peak (∼ 1 %
per decade) but ridge-based trends are close to zero. This
difference between OLS and ridge regression might be as-
sociated with the regression methods and correction used for
the autoregression (AR1). Although the AR1 correction is
applied to OLS regression, we should be aware of the limi-
tations of the Cochrane–Orcutt method; i.e. it is specifically
designed to handle first-order autocorrelation (AR1). If the
autocorrelation in the residuals follows a higher-order AR
process or a different pattern, this method may not be ap-
propriate or effective. Besides, the estimated regression co-
efficients and their interpretation can be affected for the cor-
rected model with the application of the Cochrane–Orcutt
method.

The seasonal variations in stratospheric ozone trends from
SWOOSH data during 1998–2020 are averaged over three
latitude bands (60–35◦ S, 20◦ S–20◦ N, 35–60◦ N) and com-
pared using both OLS and ridge regression methods, as
shown in Fig. 4. There is a strong seasonal dependence in
stratospheric ozone trends, with the signs of positive and
negative trends varying with season and altitude. OLS-based
trend estimates are in good agreement with those in pre-
vious studies (e.g. Szeląg et al., 2020). Positive trends are
observed in the upper stratosphere (10–1 hPa) for almost
all seasons, with the maximum (> 2 % per decade) in lo-
cal winter at mid-latitudes, while in the tropics (near 1–
3 hPa) negative trends of more than −1 % per decade appear
in December–January–February (DJF). In the middle strato-
sphere (32–10 hPa), there is a hemispheric asymmetric struc-
ture with positive trends (1 % per decade–2 % per decade) in
the SH mid-latitudes and negative trends (−1 % per decade)
in the NH mid-latitudes in June–July–August (JJA). In the
lower stratosphere (100–32 hPa), there are persistent negative
trends for all seasons in the tropics, with the largest negative
trends in May (<−4 % per decade) and negligible trends in
March and April near 60 hPa. Trends in the NH mid-latitudes
are more negative in the lowermost stratosphere compared to
those in the SH mid-latitudes. In the SH mid-latitudes, there
exists a clear transition from negative trends in February–
July to positive trends in August–October. The ridge regres-
sion method shows very similar results to those using OLS
except that the absolute ridge-based trends and fit coefficients
are smaller.

Figure 5 shows the comparison of seasonal variations in
stratospheric ozone trends over the post-1998 period from
ML-TOMCAT data and model simulation ERA5 based on
the ridge regression. Trends from ML-TOMCAT data show
more consistency with those from SWOOSH data in sea-
sonal dependence, while model-based estimates show signif-
icant differences. In the SH lowermost stratosphere, simula-
tion ERA5 shows positive trends for all seasons, which is dif-
ferent from the trend pattern with seasonal dependence from
SWOOSH and ML-TOMCAT data. In the tropical middle
and lower stratosphere, there are large differences in seasonal
ozone trends between model simulation and satellite data.
Trends from simulation ERA5 show more positive trends
for all seasons in the tropical lower stratosphere, which is
opposite to the negative trends from SWOOSH and ML-
TOMCAT. Also, simulation ERA5 shows more significant
positive trends in the tropical lowermost stratosphere dur-
ing winter and spring compared to ML-TOMCAT. In the NH
lower stratosphere, the negative trends from ML-TOMCAT
show better agreement with those from SWOOSH, while
simulation ERA5 still shows opposite and weak positive
trends in most months. The reason for the better agree-
ment between ML-TOMCAT and SWOOSH-based trend es-
timates may be from the fact that denser MLS measurements
that are part of SWOOSH are also used for the training of
ML-TOMCAT model. These seasonal trends provide more
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Figure 3. Same as Fig. 2 but for the post-1998 time period (1998–2020).

Table 2. Stratospheric ozone trends with 2σ uncertainties (in percent per decade) from SWOOSH during 1998–2020 based on OLS and
ridge regression.

Levels (hPa) 60–35◦ S 20◦ S–20◦ N 35–60◦ N

OLS Ridge OLS Ridge OLS Ridge

1 0.0 (1.2) −0.2 (1.2) −0.2 (0.9) −0.1 (1.0) 0.1 (1.0) −0.2 (1.1)
2 1.5 (1.2) 0.9 (1.2) 1.6 (1.0) 1.1 (1.0) 1.7 (1.1) 1.1 (1.1)
10 0.6 (1.0) 0.3 (1.0) 0.6 (1.5) 0.1 (1.2) 0.3 (0.8) 0.1 (0.9)
46.4 −0.3 (1.3) −0.3 (1.3) −1.8 (1.7) −1.7 (1.7) −0.3 (1.2) −0.4 (1.2)
100 0.4 (2.7) 0.0 (2.9) −15.4 (11.1) −6.1 (12.0) −3.8 (2.9) −1.6 (3.2)

information beyond the annual mean trends, which is helpful
in further understanding the role of dynamical variability in
short-term trends as well as the prediction of ozone recovery.

The post-1998 seasonal ozone profile trends averaged over
the three latitude bands (60–35◦ S, 20◦ S–20◦ N, 35–60◦ N)
from SWOOSH, ML-TOMCAT, and simulation ERA5 are
presented and compared in Fig. S3 with ridge regression.
The differences in the seasonal ozone profile trends using
OLS and ridge regression methods are also shown in Fig. S4.
Consistent with the monthly mean trend variations shown in
Figs. 4–5, the ozone profile trends during post-1998 time pe-
riods show seasonal and altitude dependence for all datasets.
The ML-TOMCAT dataset shows similar seasonal trends to
those using SWOOSH data, while model simulation ERA5
shows larger inconsistencies especially in the lower strato-

sphere. The considerable differences suggest that there is a
large degree of uncertainty in the estimates of seasonal ozone
trends, particularly in the lower stratosphere, where dynami-
cal processes dominate; in addition there is larger uncertain-
ties in the satellite data. Therefore, caution is needed when
discussing the results for this region, as neither regression
method can reliably capture the large variability.

As shown in Fig. S4, the positive trends at SH mid-
latitudes in the middle stratosphere (near 20–30 hPa) from
SWOOSH data are constrained by ∼ 2 % per decade in
September–October–November (SON) with ridge regres-
sion. Meanwhile, the negative trends in the NH mid-latitudes
in JJA are also constrained by ∼ 0.7 % per decade compared
to OLS regression. In the tropical lowermost stratosphere
(near 100 hPa), the observed negative trends are constrained
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Figure 4. Pressure–season variation in linear trends in ozone (percent per decade) from SWOOSH data over 1998–2020 for three selected
latitudinal bands (60–35◦ S, 20◦ S–20◦ N, 35–60◦ N) based on (a–c) OLS and (d–f) ridge regression methods.

Figure 5. Pressure–season variation in linear trends in ozone (percent per decade) from (a–c) ML-TOMCAT and (d–f) simulation ERA5
over 1998–2020 for three selected latitudinal bands (60–35◦ S, 20◦ S–20◦ N, 35–60◦ N) based on the ridge regression method.

with ridge regression by more than 2 % per decade for all sea-
sons. For ML-TOMCAT and simulation ERA5, trends in the
tropical lower stratosphere also show large differences with
a wide variability for different seasons. Despite these differ-
ences between OLS- and ridge-based ozone profile trends,
the even larger uncertainties, e.g. in the lower stratosphere
(Fig. S3), suggest the ozone trends from the two regression
models are not different from each other.

4.2 Ozone variations associated with natural processes

The QBO at 30 and that at 50 hPa are important proxies
used in the regression model to represent the variability in
stratospheric ozone in the tropics as well as at higher lati-
tudes (Anstey and Shepherd, 2014; Lu et al., 2019; Xie et
al., 2020; Zhang et al., 2021; Wang et al., 2022). Figures 6–7

show the seasonal responses of stratospheric ozone to QBO
at 30 and 50 hPa from SWOOSH, ML-TOMCAT, and simu-
lation ERA5 over the long period 1984–2020 based on ridge
regression. Similar results based on OLS regression are also
presented in Figs. S5–S6. It is obvious that the seasonal cy-
cle modulates the QBO at higher latitudes with more signif-
icant responses during local winter–spring (Tung and Yang,
1994; Wang et al., 2022). A double-peaked vertical structure
of stratospheric ozone anomalies associated with QBO is also
clear in the tropics for all seasons. All datasets show very
consistent influences of QBO on ozone; however, there ex-
ist large seasonal QBO pattern differences between various
datasets. In the mid-latitude lower stratosphere, model simu-
lation ERA5 shows more negative ozone anomalies from the
two QBO phases in all seasons compared to SWOOSH and
ML-TOMCAT. In the tropics, there are more positive ozone
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responses to QBO in simulation ERA5 at near 30 hPa for all
seasons (Fig. 6h) as well as below 50 hPa in DJF (Fig. 7h)
when compared to ML-TOMCAT. The positive QBO influ-
ences on the tropical ozone and negative influences on the
subtropical region are associated with the QBO phase chang-
ing from the Equator to the subtropics, which is consistent
with previous studies of QBO signals in total column ozone
(Tung and Yang, 1994; Chehade et al., 2014; Li et al., 2022a).

Figure 8 shows the solar cycle response in stratospheric
ozone variations derived from SWOOSH, ML-TOMCAT,
and simulation ERA5 based on OLS and ridge regression
methods. Similarly to the trend results, the coefficients of
solar cycle ozone response from ridge regression are rela-
tively small in magnitude. Besides, the OLS-based solar re-
sponse from SWOOSH data displays a U-shaped structure in
the upper stratosphere with maxima stretching from the trop-
ics (5–10 hPa) to mid-latitudes (1–3 hPa). A significant nega-
tive peak is observed near 30 hPa in the tropics, which is also
found in ML-TOMCAT and simulation ERA5 (although it
is not statistically significant). The U-shaped structure in the
upper stratosphere is not well reproduced by ML-TOMCAT
and simulation ERA5 as the solar cycle ozone response is
overestimated at most latitudes and pressure levels, while the
locations of the maximum solar responses in the tropics and
mid-latitudes are consistent. Differences between the OLS-
and ridge-based solar response include (1) the location of
the maximum solar cycle ozone response in the tropical up-
per stratosphere (which is near 3–5 hPa for ridge regression),
(2) the location of the negative peak solar response in the
tropics (which is up to ∼ 10 hPa for all datasets in ridge re-
gression), and (3) the significant solar signals near 30–50 hPa
in the NH extratropics (which is absent from ridge regres-
sion). These features show many similarities as well as differ-
ences when compared to those in previous observations and
model simulations (Soukharev and Hood, 2006; Maycock et
al., 2018; Ball et al., 2019b; Dhomse et al., 2022). The fact is
that estimates of a realistic solar cycle signal are challenging
as they are not only dependent on the chosen dataset, but
also associated with the regression methods, model setup,
and proxies used in the MLR analysis (Smith and Matthes,
2008; Chiodo et al., 2014; Ball et al., 2016).

The solar response in tropical stratospheric ozone (20◦ S–
20◦ N) is quantified and compared based on different datasets
with OLS and ridge regression methods, as shown in Fig. 9.
The OLS-based solar response profile from SWOOSH shows
a single and broad peak response (2.8 %) at 10 hPa, which is
consistent with the results of Ball et al. (2019b). The ridge-
based profile shows a different structure with a significant
peak signal (1.5 %) near 4.6 hPa and an insignificant neg-
ative signal near 10 hPa. In the tropical lower stratosphere
there is a secondary ozone peak for both OLS- and ridge-
based response, which has been reported in previous studies
and is thought to be a dynamical response to the solar cycle
(Dhomse et al., 2016). ML-TOMCAT and simulation ERA5
display a consistent structure with SWOOSH although they

overestimate the peak response as well as the signals in the
upper stratosphere (above 2 hPa). Again, the differences be-
tween OLS- and ridge-based solar cycle signal (SCS) profiles
indicate that how the MLR model is applied may play a role
in the appearance of the solar cycle ozone response (Smith
and Matthes, 2008).

In addition, ozone variations associated with natural pro-
cesses (ENSO, AO, AAO, and EP flux) based on different
datasets are shown in Fig. 10 with ridge regression. The
ENSO coefficient indicates a significant negative influence
on the tropical lower-stratospheric ozone, while there are
positive patterns in the northern middle–high latitudes due
to enhanced transport from the tropics during warm ENSO
events (Frossard et al., 2013; Rieder et al., 2013). In the
southern mid-latitudes, the ENSO coefficients are statisti-
cally insignificant, implying that ENSO-related ozone vari-
ations differ by hemisphere with the ENSO phase (Ziemke et
al., 2010; Oman et al., 2013).

The negative phase of AO (AAO) in the northern (south-
ern) extratropics leads to increased ozone with enhanced
ozone transport (Steinbrecht et al., 2011; Chehade et
al., 2014). These negative AO (AAO) indices in the extra-
tropics are characterized by a pronounced poleward deflec-
tion of planetary waves, which means an enhanced Brewer–
Dobson circulation and more ozone transport into the extrat-
ropics (Steinbrecht et al., 2011). As shown in Fig. 10, zonally
averaged ozone variations in the lower stratosphere are more
sensitive to the AO and AAO indices compared to those in
the middle and upper stratosphere.

Changes in the vertical component (Fz) of the strato-
spheric EP flux represent the ozone transport due to varia-
tions in planetary waves driving from the troposphere into
the stratosphere (Fusco and Salby, 1999; Weber et al., 2003;
Dhomse et al., 2006). In the tropics, the strengthened up-
ward transport is linked to an upward shift in the maximum
ozone mixing ratio in the middle stratosphere; as a result
there are two cells of opposite ozone pattern near 10 hPa.
A similar pattern appears at mid-latitudes due to enhanced
transport by the stratospheric residual circulation. The out-
of-phase relationship between the tropics and mid-latitudes
reflects the overturning Brewer–Dobson circulation (Ran-
del et al., 2002). In the lower stratosphere, the hemispheri-
cal asymmetric ozone pattern could potentially result from
the combination of changes in chemical and dynamical pro-
cesses (Banerjee et al., 2016; Abalos et al., 2017).

Both satellite data and model simulation capture these fea-
tures, although there are still some differences. In the lower
stratosphere, simulation ERA5 overestimates the positive
ENSO response in the extratropics more than ML-TOMCAT
does. In the tropical middle stratosphere near 30 hPa, again
ERA5 shows larger AO-related responses than SWOOSH or
ML-TOMCAT. Figure S7 shows the results from OLS re-
gression for comparison. With the correction for AR1 applied
to OLS regression, the uncertainties in the fit coefficients
for these dynamical proxies increase, which makes most of
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Figure 6. Pressure–season variation in the 30 hPa QBO response in ozone (%) from (a–c) SWOOSH, (d–f) ML-TOMCAT, and (g–i) simu-
lation ERA5 for three selected latitudinal bands (60–35◦ S, 20◦ S–20◦ N, 35–60◦ N) based on the ridge regression method.

Figure 7. Same as Fig. 6 but for the 50 hPa QBO response in ozone (%).
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Figure 8. Latitude–pressure cross sections of solar cycle response in stratospheric ozone (%) derived from SWOOSH, ML-TOMCAT, and
TOMCAT simulation ERA5 based on (a–c) OLS and (d–f) ridge regression methods. The stippling indicates regions that are significant at
the 95 % level.

Figure 9. Profiles of ozone solar cycle signal (SCS) for the tropical region (20◦ S–20◦ N) from SWOOSH, ML-TOMCAT, and TOMCAT
simulation ERA5 based on (a) OLS and (b) ridge regression methods. Error bars are 2σ uncertainties.

the contributions statistically insignificance. As the correc-
tion method can also change the estimated regression coeffi-
cients, the differences between OLS- and ridge-based results
should be considered with care. As a caveat, the regression
fit has been improved by accounting for various dynamical
proxies; however, these proxies are not independent and they
can only partly explain the complicated structure of dynam-
ical variability (Petropavlovskikh et al., 2019; WMO, 2022).
Thus, the use of these dynamical proxies requires care, espe-
cially for the lower-stratospheric region.

5 Summary and conclusions

In this study, we have investigated stratospheric ozone
trends and their attribution with ordinary (OLS) and regu-
larized (ridge) multivariate regression methods. The merged
satellite-based dataset (SWOOSH), TOMCAT model simu-
lation forced with ERA5 reanalysis data, and a machine-
learning-based satellite-corrected TOMCAT product (ML-
TOMCAT) are used and compared over the period 1984–
2020. We adopt the ridge regression method to overcome the
issue of over-fitting due to the complex coupling in many
atmospheric processes. We have analysed the ozone profile
trends and ozone variations associated with natural processes
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Figure 10. Latitude–pressure cross sections of the natural ozone variations (%) associated with (a–c) ENSO, (d–f) AO, (g–i) AAO, and
(j–l) EP flux (Fz50 ) derived from SWOOSH, ML-TOMCAT, and simulation ERA5 based on the ridge regression method. The stippling
indicates regions that are significant at the 95 % level.

based on both OLS and ridge regression methods. Our main
results are summarized as follows:

– As shown in Sect. 4, estimated ozone trends from the
OLS- and ridge-based regression models show signifi-
cant differences. With a penalty considered in ridge re-
gression, coefficients in the regression model are shrunk
to a certain extent, which is determined by the optimal
tuning value. This optimal tuning value changes with
altitude and latitude, indicating, as expected, that ozone
concentrations are controlled by different processes at
different altitudes and latitudes, and it is inappropriate
to use the same tuning value for the ridge regression
model for all locations. To avoid over-fitting-related is-
sues, we have applied ridge regression to quantify the
stratospheric ozone trends and changes and to compare
it with the conventional OLS regression method.

– We compare the stratospheric ozone profile trends for
the pre- and post-1998 periods as well as the seasonal
dependence with OLS and ridge regression. Both OLS
and ridge regression methods show a strong seasonal
dependence in stratospheric ozone trends. Trend esti-
mates at different altitudes and seasons are constrained
by ridge regression in magnitudes and fluctuations. For
example, ozone declines during 1984–1997 are smaller
in ridge regression, and the largest differences between
ozone trends using OLS and ridge regression are ap-
parent in the upper stratosphere (∼ 1 % per decade
at 2 hPa) and the lowermost stratosphere (> 4 % per
decade at 100 hPa) for SWOOSH data. From 1998, all
the datasets confirm stratospheric ozone recovery in
the upper stratosphere, but there are differences in the
magnitudes and the locations. In the NH mid-latitudes
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and the tropics, the largest positive trends are observed
at 2 hPa (1.1± 1.1 % per decade and 1.1± 1.0 % per
decade, respectively). On the other hand, positive trends
are somewhat larger at SH mid-latitudes (1.3±0.8 % per
decade) though they occur at 3.8 hPa. Negative trends
with large uncertainties are observed in the lower strato-
sphere and are most pronounced in the tropics. The
largest difference between OLS and ridge regression
methods appears in the tropical lower stratosphere (with
∼ 9 % per decade difference at 100 hPa), but it is within
the uncertainties of the individual trends (> 10 % per
decade). Comparing trend estimates from TOMCAT
model simulation, we find that ML-TOMCAT trends are
more consistent with those using SWOOSH data. The
differences between satellite-based datasets and model
simulations suggest there are still large uncertainties in
the lower stratosphere where dynamical processes dom-
inate.

– Ozone variations associated with natural processes such
as QBO, solar variability, ENSO, AO, AAO, and EP
flux indicate that ridge regression shrinks the regres-
sion coefficients as some of the explanatory variables
are co-related. The differences between OLS- and ridge-
based results are associated with how the MLR model
is applied and should be considered with care. Despite
the differences in regression coefficients and statistical
significance, there are similar characteristics in natural
ozone variations for both regression methods. For exam-
ple, the positive QBO influences on the tropical lower-
stratospheric ozone and negative influences in the sub-
tropical region are consistent with QBO signals in to-
tal column ozone. The stratospheric ozone solar cycle
response shows a U-shaped spatial structure in the up-
per stratosphere. The enhanced transport from the trop-
ics during warm ENSO events leads to a significant
negative influence on the tropical lower-stratospheric
ozone and positive influences in the northern middle–
high latitudes. The negative phase of AO/AAO in the
northern/southern extratropics leads to increased ozone
with enhanced ozone transport. The stratospheric EP
flux represents planetary waves driving from the tro-
posphere into the stratosphere and affects the ozone
transport through Brewer–Dobson circulation. Again,
ML-TOMCAT shows more consistent results with those
using SWOOSH data, while simulation ERA5 shows
larger inconsistencies, especially in the lower strato-
sphere.

Finally, we argue that the considerable differences be-
tween the satellite data and model simulations highlight the
large uncertainties in our understanding about the lower-
stratospheric trends, which suggests that caution is needed
while interpreting results with different methodologies and
datasets.
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Szeląg, M. E., Sofieva, V. F., Degenstein, D., Roth, C., Davis,
S., and Froidevaux, L.: Seasonal stratospheric ozone trends
over 2000–2018 derived from several merged data sets, At-
mos. Chem. Phys., 20, 7035–7047, https://doi.org/10.5194/acp-
20-7035-2020, 2020.

Thompson, A. M., Stauffer, R. M., Wargan, K., Witte, J. C.,
Kollonige, D. E., and Ziemke, J. R.: Regional and Seasonal
Trends in Tropical Ozone from SHADOZ Profiles: Reference
for Models and Satellite Products, J. Geophys. Res.-Atmos.,
126, e2021JD034691, https://doi.org/10.1029/2021JD034691,
2021.

Tirink, C., Abaci, S., and Önder, H.: Comparison of Ridge Re-
gression and Least Squares Methods in the Presence of Mul-
ticollinearity for Body Measurements in Saanen Kids, Journal
of the Institute of Science and Technology, 10, 1429–1437,
https://doi.org/10.21597/jist.671662, 2020.

Tung, K. and Yang, H.: Global QBO in circulation and
ozone. Part I: Reexamination of observational evidence,
J. Atmos. Sci., 51, 2699–2707, https://doi.org/10.1175/1520-
0469(1994)051<2699:GQICAO>2.0.CO;2, 1994.

Wang, W., Hong, J., Shangguan, M., Wang, H., Jiang, W., and Zhao,
S.: Zonally asymmetric influences of the quasi-biennial oscilla-
tion on stratospheric ozone, Atmos. Chem. Phys., 22, 13695–
13711, https://doi.org/10.5194/acp-22-13695-2022, 2022.

Wargan, K., Orbe, C., Pawson, S., Ziemke, J. R., Oman, L. D.,
Olsen, M. A., Coy, L., and Emma Knowland, K.: Recent
decline in extratropical lower stratospheric ozone attributed
to circulation changes, Geophys. Res. Lett., 45, 5166–5176,
https://doi.org/10.1029/2018GL077406, 2018.

Weber, M., Dhomse, S., Wittrock, F., Richter, A., Sinnhu-
ber, B. M., and Burrows, J. P.: Dynamical control of
NH and SH winter/spring total ozone from GOME ob-
servations in 1995–2002, Geophys. Res. Lett., 30, 1583,
https://doi.org/10.1029/2002gl016799, 2003.

Weber, M., Coldewey-Egbers, M., Fioletov, V. E., Frith, S. M.,
Wild, J. D., Burrows, J. P., Long, C. S., and Loyola, D.: To-
tal ozone trends from 1979 to 2016 derived from five merged
observational datasets – the emergence into ozone recovery, At-
mos. Chem. Phys., 18, 2097–2117, https://doi.org/10.5194/acp-
18-2097-2018, 2018.

Weber, M., Arosio, C., Coldewey-Egbers, M., Fioletov, V. E.,
Frith, S. M., Wild, J. D., Tourpali, K., Burrows, J. P., and
Loyola, D.: Global total ozone recovery trends attributed to
ozone-depleting substance (ODS) changes derived from five
merged ozone datasets, Atmos. Chem. Phys., 22, 6843–6859,
https://doi.org/10.5194/acp-22-6843-2022, 2022.

WMO: Scientific Assessment of Ozone Depletion: 2018, Global
Ozone Research and Monitoring Project Report No. 58, World
Meteorological Organization, Geneva, Switzerland, ISBN 978-1-
7329317-1-8, 2018.

WMO: Scientific assessment of ozone depletion: 2022, Global
Ozone Research and Monitoring Project – GAW Report no. 278,
Geneva, Switzerland, ISBN 978-9914-733-97-6, 2022.

Xie, F., Zhang, J., Li, X., Li, J., Wang, T., and Xu, M.: Indepen-
dent and joint influences of eastern Pacific El Niño–southern
oscillation and quasi biennial oscillation on Northern Hemi-
spheric stratospheric ozone, Int. J. Climatol., 12, 5289–5307,
https://doi.org/10.1002/joc.6519, 2020.

Zhang, J., Zhang, C., Zhang, K., Xu, M., Duan, J., Chipper-
field, M. P., Feng, W., Zhao, S., and Xie, F.: The role of
chemical processes in the quasi-biennial oscillation (QBO)
signal in stratospheric ozone, Atmos. Environ., 244, 117906,
https://doi.org/10.1016/j.atmosenv.2020.117906, 2021.

Ziemke, J. R., Chandra, S., Oman, L. D., and Bhartia, P.
K.: A new ENSO index derived from satellite measure-
ments of column ozone, Atmos. Chem. Phys., 10, 3711–3721,
https://doi.org/10.5194/acp-10-3711-2010, 2010.

https://doi.org/10.5194/acp-23-13029-2023 Atmos. Chem. Phys., 23, 13029–13047, 2023

https://doi.org/10.5194/amt-16-1881-2023
https://doi.org/10.1029/2006GL027029
https://doi.org/10.1029/2010GL046634
https://doi.org/10.5194/acp-17-10675-2017
https://doi.org/10.5194/acp-17-11177-2017
https://doi.org/10.5194/acp-17-11177-2017
https://doi.org/10.1002/2015JD024277
https://doi.org/10.1029/2006JD007107
https://doi.org/10.5194/acp-20-7035-2020
https://doi.org/10.5194/acp-20-7035-2020
https://doi.org/10.1029/2021JD034691
https://doi.org/10.21597/jist.671662
https://doi.org/10.1175/1520-0469(1994)051<2699:GQICAO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1994)051<2699:GQICAO>2.0.CO;2
https://doi.org/10.5194/acp-22-13695-2022
https://doi.org/10.1029/2018GL077406
https://doi.org/10.1029/2002gl016799
https://doi.org/10.5194/acp-18-2097-2018
https://doi.org/10.5194/acp-18-2097-2018
https://doi.org/10.5194/acp-22-6843-2022
https://doi.org/10.1002/joc.6519
https://doi.org/10.1016/j.atmosenv.2020.117906
https://doi.org/10.5194/acp-10-3711-2010

	Abstract
	Introduction
	Data
	SWOOSH
	TOMCAT simulation
	ML-TOMCAT

	Methods
	Multivariate linear regression models
	OLS regression
	Ridge regression

	Results and discussion
	Ozone profile trends with OLS and ridge regression
	Ozone variations associated with natural processes

	Summary and conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

