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Abstract. The SO2 emission rates from three power plants in North Carolina are estimated using the HYSPLIT
Lagrangian dispersion model and aircraft measurements made on 26 March 2019. To quantify the underlying
modeling uncertainties in the plume rise calculation, dispersion simulations are carried out in an ensemble using
a total of 15 heat release parameters. For each heat release, the SO2 emission rates are estimated using a transfer
coefficient matrix (TCM) approach and compared with the Continuous Emissions Monitoring Systems (CEMS)
data. An “optimal” member is first selected based on the correlation coefficient calculated for each of the six
segments that delineate the plumes from the three power plants during the morning and afternoon flights. The
segment influenced by the afternoon operations of Belews Creek power plant has negative correlation coefficients
for all the plume rise options and is first excluded from the emission estimate here. Overestimations are found for
all the segments before considering the background SO2 mixing ratios. Both constant background mixing ratios
and several segment-specific background values are tested in the HYSPLIT inverse modeling. The estimation
results by assuming the 25th percentile observed SO2 mixing ratios inside each of the five segments agree well
with the CEMS data, with relative errors of 18 %, −12 %, 3 %, 93.5 %, and −4 %. After emission estimations
are performed for all the plume rise runs, the lowest root mean square errors (RMSEs) between the predicted and
observed mixing ratios are calculated to select a different set of optimal plume rise runs which have the lowest
RMSEs. Identical plume rise runs are chosen as the optimal members for Roxboro and Belews Creek morning
segments, but different members for the other segments yield smaller RMSEs than the previous correlation-
based optimal members. It is also no longer necessary to exclude the Belews Creek afternoon segment that has a
negative correlation between predictions and observations. The RMSE-based optimal runs result in much better
agreement with the CEMS data for the previously severely overestimated segment and do not deteriorate much
for the other segments, with relative errors of 18 %, −18 %, 3 %, −9 %, and 27 % for the five segments and 2 %
for the Belews Creek afternoon segment. In addition, the RMSE-based optimal heat emissions appear to be more
reasonable than the correlation-based values when they are significantly different for CPI Roxboro power plant.
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1 Introduction

Both Eulerian and Lagrangian atmospheric transport mod-
els have been widely used to provide forecasts or analy-
ses of atmospheric components for a wide range of pur-
poses varying from emergency response to climate change
predictions. However, in many applications, such as vol-
canic eruptions, wildfire events, accidental radionuclide re-
leases from nuclear power plants, and climate change pre-
dictions, emissions are the most critical model input pa-
rameters but are mostly unknown and difficult to quantify.
Even when emission inventories are made available through
bottom-up approaches, some of the emissions are often asso-
ciated with large uncertainties and systematic biases due to
outdated databases, inaccurate emission factors, and invalid
assumptions regarding operations, processes, and/or activi-
ties (throughput) during the bottom-up emission estimation.
Therefore, various inverse modeling methods using so-called
top-down approaches have been developed in order to esti-
mate emissions by combining direct observations and the ac-
cumulated knowledge already built into atmospheric trans-
port models. Lagrangian particle dispersion models are par-
ticularly suited to applications related to point source emis-
sion estimations because they effectively avoid calculation
outside air pollutant plumes and do not have the numerical
diffusion problems of most Eulerian models. Many source
term estimation applications have been developed using var-
ious dispersion models and inverse modeling schemes (e.g.,
Stohl et al., 2012; Winiarek et al., 2012, 2014; Saunier et al.,
2013; Chai et al., 2015; Bieringer et al., 2017; Hutchinson
et al., 2017; Chai et al., 2018; Kim et al., 2020).

The National Oceanic and Atmospheric Administration
(NOAA) Air Resources Laboratory’s (ARL) HYSPLIT La-
grangian model is one of the most extensively used atmo-
spheric transport models to simulate the atmospheric trans-
port, dispersion, and deposition of pollutants and hazardous
materials (Draxler and Hess, 1997; Stein et al., 2015). A
HYSPLIT inverse system based on 4D-Var data assimila-
tion and a transfer coefficient matrix (TCM) was developed
and applied to estimate the cesium-137 source from the
Fukushima nuclear accident using global air concentration
measurements (Chai et al., 2015). The system was further
developed to estimate the effective volcanic ash release rates
as a function of time and height by assimilating satellite mass
loadings and ash cloud top heights (Chai et al., 2017). More
recently, the HYSPLIT-based Emissions Inverse Modeling
System (HEIMS) was developed to estimate wildfire emis-
sions from the transport and dispersion of smoke plumes cap-
tured by geostationary satellite aerosol optical depth obser-
vations (Kim et al., 2020). In another HYSPLIT inverse sys-
tem study with Cross-Appalachian Tracer Experiment (CAP-
TEX) data collected from six controlled releases, Chai et al.
(2018) found that adding model uncertainty terms was able
to improve source estimate results.

The source term estimation problem proves to be challeng-
ing because of the chaotic nature of the atmospheric flow. In
addition, the observations from routine monitoring networks
are typically sparse and often do not provide enough infor-
mation to determine emission sources. Many field campaign
studies have been carried out with airborne measurements by
research aircraft in order to estimate certain air pollutant and
greenhouse gas emission sources. Both traditional mass bal-
ance methods (e.g., Mays et al., 2009; Cambaliza et al., 2014;
Liggio et al., 2016; Ren et al., 2018) and various inverse mod-
eling methods which take advantage of atmospheric trans-
port models (e.g., Karion et al., 2019; Angevine et al., 2020;
Pitt et al., 2022; Lopez-Coto et al., 2022) have been applied
to quantify different emissions. While many inverse model-
ing applications have been carried out and compared with
bottom-up emission inventories, large uncertainties are still
associated with top-down estimations. Karion et al. (2019)
showed an intercomparison study using both the inventory
scaling method and Bayesian inversion with several disper-
sion models and meteorological inputs for emission estima-
tion with flight observations. They found significant vari-
abilities (up to a factor of 3) between different models and
between different days and indicated that further work was
needed to evaluate and improve vertical mixing in tracer dis-
persion models.

To better evaluate the top-down estimates of emissions,
Angevine et al. (2020) studied a power plant with Continuous
Emissions Monitoring Systems (CEMS) data as the known
emissions. They used a model-assisted mass balance method
and examined the estimate uncertainties with an ensemble
of HYSPLIT runs with different meteorological inputs and
concluded with reasonably large (30 %–40 %) uncertainties
for the top-down estimates of emissions. However, a constant
heat release of 85 MW as the main plume rise parameter used
in the Briggs formulation was specified for all the simula-
tions. This could have caused an underestimation of the un-
certainties. Gordon et al. (2018) and Akingunola et al. (2018)
found that the Briggs plume rise algorithm (Briggs, 1984)
significantly underestimated plume rise, in contrast to the
majority of past plume rise measurement studies. A recent
study by Kim et al. (2023) to estimate power plant SO2 emis-
sion rates with aircraft measurements also highlighted the
large uncertainties caused by the plume rise calculation when
using a Gaussian footprint approach.

Fathi et al. (2021) investigated the impact of storage and
release due to meteorological variability on mass balance
emission rate retrieval accuracy using virtual aircraft sam-
pling of a regional chemical transport model output. The
storage-and-release events contributed to the mass balance
emission estimate errors ranging from−25 % to 24 % in their
tests. They recommended repeat flights around the given fa-
cility and/or time-consecutive upwind and downwind vertical
profiling during the sampling period. However, inverse mod-
eling methods using a dispersion model without assuming
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Figure 1. Flight tracks of the morning (left) and afternoon (right) flights on 26 March 2019 on top of the © Google Maps satellite image
(retrieved in February 2023). Color represents the aircraft travel time of the day (UTC). The locations of Belews Creek, Roxboro, and CPI
Roxboro power plants are also shown.

constant meteorological fields are expected to perform better
than the mass balance method.

In this study, the HYSPLIT inverse modeling system is
tested with flight observations collected in 2019 by the Uni-
versity of Maryland Cessna 402B research aircraft to esti-
mate SO2 point source emissions from three power plants
in North Carolina, USA. An ensemble of model runs with a
range of emission heat release parameters is used to quantify
the forward model simulation uncertainties due to the plume
rise calculation. The paper is organized as follows. Section 2
describes the flight observations as well as the HYSPLIT
model configuration and the source term inversion method.
Section 3 presents emission inversion results, and a summary
is given in Sect. 4.

2 Methods

2.1 Observations

A suite of airborne measurements was collected using
an instrumented small research aircraft, the University of
Maryland Cessna 402B, on 26 March 2019. A morn-
ing flight started from 13:45 to 17:38 UTC and an after-
noon flight lasted from 19:31 to 23:33 UTC. The flight
tracks and the locations of the power plants are shown
in Fig. 1. The flights were intended to sample downwind
plumes originating from three coal-fired power plants in
North Carolina: Roxboro (36.4833◦ N, 78.0731◦W), CPI
Roxboro (36.4350◦ N, 78.9619◦W), and Belews Creek
(36.2811◦ N 80.0603◦W). Note that another power plant,
Mayo (36.5278◦ N 78.8917◦W), is also in the region but did
not operate on the day. Measurement of SO2 mixing ratios
was made with a Thermo Environment model 43S pulsed
fluorescence analyzer. Calibration of the SO2 analyzer was
conducted before and after the field study with an SO2 stan-
dard that is traceable to National Institute of Standards and

Technology (NIST) reference standards. Additional mea-
surements were also made, including aircraft locations, wind
speed, wind direction, temperature, pressure, relative humid-
ity, and mixing ratios of several other gas species, as well as
some aerosol optical properties. More details related to the
aircraft instruments and measurements can be found in Ren
et al. (2018).

To better compare the HYSPLIT model results with the
observations, the original 1 s data are averaged inside each
four-dimensional (4D) HYSPLIT sampling grid box, i.e.,
0.01◦ longitude by 0.008◦ latitude, 100 m in altitude, and
1 min in time in this application. It should be noted that
the aircraft typically travels several three-dimensional (3D)
grid boxes within a minute. The original 1 s data inside each
3D grid box are averaged separately so that multiple 1 min
records would result from such a 4D averaging. For brevity,
the 4D averaged data are still referred to as 1 min data here-
after.

2.2 HYSPLIT model

In this study, SO2 plumes originating from the power plants
are modeled using the HYSPLIT model (Version 5.2.0) in its
particle mode in which three-dimensional (3D) Lagrangian
particles released from the source location passively follow
the wind field. Random velocity components based on the
meteorological data are added to the mean advection veloc-
ities to simulate the dispersion process. The details of the
model can be found in Draxler and Hess (1997, 1998) and
Stein et al. (2015). Green et al. (2019) found that the SO2
oxidation rates during the day from power plants were 0.22–
0.71 %h−1 using 13 flights from 6 February to 15 March
2015 over the eastern United States. The measurements were
made during a clear-sky day on 26 March 2019 and the travel
time of the measured air parcels from the stacks is less than
3 h. So it is reasonable to treat SO2 as a passive tracer and ig-
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Figure 2. The three nested domains D03, D02, and D01 used in
WRF simulations at 3, 9, and 27 km, respectively.

nore its oxidation. A particle release rate of 20 000 per hour
is used for all calculations. The meteorological data used to
drive HYSPLIT are from the Weather Research and Fore-
casting (WRF; version 4.0.1) model (Powers et al., 2017).
The WRF model was configured for three nested domains
with horizontal grid spacing of 27 km (D01), 9 km (D02),
and 3 km (Fig. 2). A total of 33 vertical layers were defined
with a higher resolution near the surface and 100 hPa for the
model top. There were 20 layers below 850 hPa with the first
mid-layer height of the model at around 8 m. The simula-
tions for D01 were initialized by using the North American
Regional Reanalysis (Mesinger et al., 2006) with 32 km grid
spacing and availability every 3 h. Then, the WRF results
from the coarser domains provided the initial and boundary
conditions for the inner domains. The daily WRF runs had a
30 h duration including 6 h a spin-up period (i.e., starting at
18:00 UTC on the previous day). The physics options for the
WRF simulations were the rapid radiative transfer model for
radiation parameterization (Iacono et al., 2008), WSM6 for
microphysics (Lim and Hong, 2010), the Grell 3D ensem-
ble for the sub-grid cloud scheme (Grell and Devenyi, 2002),
the Noah land surface model (Chen and Dudhia, 2001), and
the Mellor–Yamada–Nakanishi–Niino 2.5 level turbulent ki-
netic energy (TKE) scheme for the planetary boundary layer
(PBL) parameterization and its corresponding surface layer
scheme (Nakanishi and Niino, 2006). In the WRF simula-
tions, 3D grid nudging of winds is applied in the free tro-
posphere and within the PBL. Figure 3 shows that the WRF
wind speed data mostly agree well with the aircraft observa-
tions. However, at the beginning of the afternoon flight the
1 min observations show large variations in wind direction
that the 5 min WRF data cannot represent. The WRF TKE
data are used to calculate the turbulent velocity variances.
The ratios of the vertical to the horizontal turbulence are set

as 0.18 for both daytime and nighttime. The boundary layer
stability is computed from the heat and momentum fluxes
from the meteorological data. The WRF mixed layer depth is
directly used in the HYSPLIT model.

The dry deposition velocity of SO2 is calculated using
the resistance method following Wesely (1989), Chang et al.
(1990), and Walmsley and Wesely (1996). Note that the
canopy resistance component depends upon a number of
plant physiological and ground surface characteristics which
are provided to the HYSPLIT model by a land use in-
put file. The molecular weight, diffusivity ratio, and effec-
tive Henry’s law constant are specified as 64 gmol−1, 1.9,
and 1× 105 molL−1 atm−1, respectively. The actual Henry’s
constant of 1.24 molL−1 atm−1 is used to define the wet re-
moval process for SO2 as a soluble gas. The sampling grid
is defined to be 0.01◦ longitude by 0.008◦ latitude and 100 m
in altitude from the surface to 2000 m above ground level.
Mass mixing ratios are output every minute by setting the
HYSPLIT parameter ICHEM to 6 to divide output mass by
air density. They are later converted to volume mixing ratios
by multiplying by the molecular weight ratio of air to SO2.

2.3 Plume rise

The plume rise calculation in HYSPLIT is based on
the Briggs formula derived from dimensional analysis
for buoyancy-dominated plumes from power plant stacks
(Briggs, 1969, 1984). Equation (1) shows the formulas used
in the HYSPLIT model for the final plume rise1H in differ-
ent meteorological conditions following Arya (1999):

1H =


1.3 Fb

uu∗2 , neutral, unstable

2.6Fb
1/3u−1/3s−1/3, stable,u > 0.5ms−1

5.3Fb
1/4s−3/8, stable,u≤ 0.5ms−1,

(1)

where Fb is the buoyancy flux term, u is the mean wind
speed, u∗ is the friction velocity, and s is the static stability
parameter as defined in Eq. (2).

s =
g

Tv

∂θv

∂z
(2)

Here g is gravitational acceleration. Tv is the moist air vir-
tual temperature, and θv is the mean virtual potential tem-
perature. Note that the stability parameter is calculated us-
ing the surface conditions of the meteorological data in the
HYSPLIT model. A recent study by Akingunola et al. (2018)
suggests a layered buoyancy approach that allows stability
to change with height for the Briggs plume rise calculation.
However, the layered approach is not implemented in the
HYSPLIT model yet. The buoyancy flux term Fb is approxi-
mated by Eq. (3) (Briggs, 1969):

Fb =
gQH

πcpρT
≈ 8.8× 10−6

[
m4 s−3

watts

]
QH[watts], (3)
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Figure 3. Wind speed (a) and wind direction (b) comparisons between the 1 min aircraft measurements (OBS) and 5 min WRF data along
the flight. Aircraft altitudes above ground level are also shown.

where cp, ρ, and T are the specific heat at constant pres-
sure, average density, and temperature of ambient air, respec-
tively. QH is the heat emission from the stack. Assuming
standard atmosphere, QH is the only user input parameter
besides meteorological conditions that affects the final plume
rise height 1H . It is possible to calculate QH when the rele-
vant parameters such as the flow rate and gas temperature at
the stack exit are available. However, the exit gas tempera-
ture of the three stacks during the study period cannot be ob-
tained. Note that even if QH can be accurately estimated, the
1H calculation through Eq. (1) is still subject to significant
uncertainties due to some assumptions for simplification. In
addition, when certain parameters are not readily available,
it is preferable to assume them as unknown to allow better
applicability for the source term estimation method. Thus we
use a range of QH values for plume rise height calculation
to form an ensemble of dispersion runs, and the “optimal”
plume rise runs that best match the observations will be se-
lected afterwards. In detailed studies at six Tennessee Valley
Authority locations over many years, it was found that heat
emissions ranged from 20 to 100 MW per stack with one to
nine stacks operating (Briggs, 1969). For each stack in oper-
ation, 15 heat emission values uniformly distributed from 10
to 150 MW are tested in HYSPLIT simulations. During the
study period, only one stack was operating at each of the
three power plants.

2.4 Inverse modeling method

Similar to previous HYSPLIT inverse modeling applications
(e.g., Chai et al., 2015, 2017, 2018; Kim et al., 2020; Craw-
ford et al., 2022), a transfer coefficient matrix (TCM) ap-
proach is used for the inverse modeling application. After
a stack heat emission scenario is specified, 24 independent
HYSPLIT Lagrangian model runs with unit hourly emis-
sions starting from 00:00 to 23:00Z on 26 March 2019 are
made at each power plant to form a TCM using the 4D av-
eraged 1 min airborne SO2 observations. A transfer coeffi-
cient at row m and column n of the TCM represents the
source–receptor sensitivity of observation m with respect to
the nth unit-emission run from a certain source location and
release hour. The unknown emissions can be solved by mini-
mizing a cost function that integrates the differences between
model predictions and observations, deviations of the final
solution from the first guess (a priori), and other relevant
penalty terms if needed (Daley, 1991). Following Chai et al.
(2018), a cost function normalization scheme is introduced
and the cost function F is defined as

F =
1
2

23∑
i=0

3∑
j=1

(qij − qb
ij )2

σ 2
ij

+
1
2

M∑
m=1

(ch
m− c

o
m)2

ε2
m

×

∑M
m=1

1
εb

m
2∑M

m=1
1
ε2

m

, (4)

where qij is the discretized source term at hour i and loca-
tion j for which an independent HYSPLIT simulation has
been run and recorded in a TCM. qb

ij is the first guess or

https://doi.org/10.5194/acp-23-12907-2023 Atmos. Chem. Phys., 23, 12907–12933, 2023



12912 T. Chai et al.: Point emission estimation using HYSPLIT and flight observations

a priori estimate, and σ 2
ij is the corresponding error variance.

We assume the uncertainties of the release at each time and
location are independent of each other so that only the diag-
onal term of the typical a priori error variance σ 2

ij appears
in Eq. (4). ch and co denote HYSPLIT-predicted and mea-
sured mixing ratios, respectively. The observational errors εm
are assumed to be uncorrelated. Since the term ε2

m is essen-
tially used to weight (ch

m−c
o
m)2 terms, the uncertainties of the

model predictions and the representative errors are included
besides the observational uncertainties.

To consider ε2 in a simplified way, it is formulated as

ε2
m =

(
f o
× co

m+ a
o)2
+

(
f h
× ch

m+ a
h
)2
. (5)

As the additive term parameters ao and ah affect the ε2

in a similar way, the representative errors caused by com-
paring the measurements with the predicted concentrations
averaged in a grid can be included in either ah or ao. The
multiplying factor applied to the second term in Eq. (4) is the
normalization to avoid having a zero source as a spurious so-
lution when a logarithmic metric is used in the cost function.
εb

m represents the total uncertainties when qb
ij is initially used

in the model predictions. The details of the normalization can
be found in Chai et al. (2018).

Chai et al. (2018) show that the logarithmic metric yields
better inversion results than the original air concentration
metric. In this application, the metric variable in Eq. (4)
is changed to ln(c), i.e., replacing (ch

m− c
o
m) with ln(ch

m)−
ln(co

m). In such a case, εln(c)
m is comprised of two parts, as(

εln(c)
m

)2
=

[
ln
(

1+ f o
+
ao

co
m

)]2

+

[
ln
(

1+ f h
+
ah

ch
m

)]2

. (6)

Note that a constant small mixing ratio of 10−6 ppbv is
added to denominators co

m and ch
m to avoid division by zero.

3 Results

3.1 Transfer coefficient matrix

As mentioned in Sect. 2.4, a TCM approach is used in the
inverse modeling. The time-varying model predictions of
each independent HYSPLIT Lagrangian model run with unit
hourly emissions at all the receptor time and locations are
recorded as the transfer coefficients (TCs). The transfer coef-
ficients from a set of model runs can be combined to generate
a transfer coefficient matrix (TCM). Figure 4 shows a TCM
with 72 columns separated into three parts representing the
three power plants. Each of the 24 columns for a power plant
represents a HYSPLIT run with unit hourly SO2 emissions
specified for a single hour on 26 March 2019. Each row in-
dicates a 1 min 4D SO2 observation with at least a nonzero

Figure 4. Transfer coefficients (TCs) calculated with unit hourly
SO2 emissions starting from 00:00 to 23:00Z on 26 March 2019 at
the three power plants with QH= 50 MW. Iobs is the index of the
1 min 4D observations ordered by their measurement time. Obser-
vations with zero transfer coefficients for all 72 HYSPLIT runs are
excluded. The first 234 1 min observations belong to the morning
flight, and the next 230 observations are from the afternoon flight.
TC units: ppbv (kgh−1)−1.

transfer coefficient obtained from the 72 HYSPLIT runs. The
stack heat emissionQH= 50 MW is specified for all 72 runs.
A total of 464 out of 1503 1 min 4D SO2 observations are
affected by the three power plants during this test period,
according to this set of HYSPLIT runs. Among those 464
observations, the first 234 1 min observations belong to the
morning flight and the next 230 observations are from the
afternoon flight. Most of the observations with zero transfer
coefficients for all 72 HYSPLIT runs have low SO2 mixing
ratios, which are likely due to SO2 background caused by mi-
nor sources other than the three power plants. Note that the
background SO2 mixing ratio may vary from one location to
another and from one hour to the next.

Figure 4 shows that the emissions before 15:00Z or after
21:00Z of the day from any of the three power plants do not
contribute to the predicted SO2 plumes along the tracks of
the morning or afternoon flights. Apparently the SO2 emitted
from the power plant stacks before 15:00Z had been trans-
ported out of the region when the aircraft measurements were
made along the flight routes. Figure 1b shows that aircraft left
the domain of interest at 21:00Z so that SO2 emitted after
21:00Z was not sampled either. For 463 of the 464 indexed
observation rows in Fig. 4, the nonzero transfer coefficients
only appear in one of the three parts. That is, all observations
except one are only affected by a single power plant for the
current set of model runs. The only exception (Iobs= 369)
for the 1 min observations is influenced by both Roxboro and
CPI Roxboro. When stack heat emission QH= 60 MW or
a higher value is applied, the plumes from the three power
plants are all separate without any overlap. This implies a
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decoupled system in which the emission sources from the
three different power plants can be solved separately. How-
ever, with lower heat emissions (QH= 10, 20, 30, 40 MW)
some isolated 1 min observations may be influenced by both
Roxboro and CPI Roxboro. The largest number of such ob-
servations appears when QH= 10 MW is applied to all three
power plants where 6 of the 479 observations with nonzero
transfer coefficients are affected by both Roxboro and CPI
Roxboro. It is found that estimating the emissions from each
power plant separately by ignoring the coupling effect or by
removing such rare observations yields nearly identical solu-
tions.

It is also found that the observations from the morning
flights (Iobs= 1–234) and afternoon flights (Iobs= 235–464)
are affected by a different set of hourly emissions. That is,
none of the 72 hourly emission HYSPLIT runs contribute
to both the morning flights and afternoon flights. The ob-
servations of the morning flight help to constrain the hourly
emissions at 15:00Z, 16:00Z, and 17:00Z from Roxboro,
the hourly emissions at 16:00Z and 17:00Z from Belews
Creek, and the hourly emissions at 15:00Z and 16:00Z from
CPI Roxboro, while the observations of the afternoon flight
help to constrain the hourly emissions at 19:00Z and 20:00Z
from Roxboro, the hourly emissions at 18:00Z and 19:00Z
from Belews Creek, and the hourly emissions at 19:00Z and
20:00Z from CPI Roxboro. However, some of hourly emis-
sions will not be well-constrained. For instance, the hourly
emissions at 18:00Z from Roxboro can only be constrained
by six 1 min SO2 mixing ratio observations, and the hourly
emission at 18:00Z from Belews Creek can only constrained
by five observations. Figure 4 shows that each observation
row has only one or two nonzero TC values. If there are
two nonzero TC values for any observation row, they are
in two consecutive columns which represent two HYSPLIT
runs with hourly emissions at two consecutive hours. Instead
of trying to estimate the emissions at the individual hours
from each power plant, here we will only estimate the av-
erage emissions of the two or three consecutive hours that
can be constrained by the morning or afternoon flights. With
this decoupling approach, the cost function minimization be-
comes a very simplified problem.

3.2 Stack heat emission

As described in Sect. 2.3, when other meteorological pa-
rameters are fixed, the stack heat emission QH becomes the
single user input parameter to affect plume rise calculation
with the Briggs formula being used in HYSPLIT. A total
of 15 QH values from an expected range of 10 to 150 MW
are tested. For each heat emission value, 24 independent
HYSPLIT Lagrangian model runs with unit hourly emissions
starting from 00:00 to 23:00Z on 26 March 2019 are made
at each power plant, resulting in a total of 1080 model sim-
ulations. Figure 5 shows some of the plume rise results at
the three different power plant locations. Note that the plume

rise is added to the stack height listed in Table 2 for the vir-
tual release height used in the model. The plume rise mostly
goes up during the day, following the PBL development. Fig-
ure 5 also shows that the WRF PBL heights appear to be un-
derestimated when compared with the two observation-based
PBL heights estimated using the vertical potential tempera-
ture profiles. Because Roxboro and CPI Roxboro are close to
each other, both the PBL heights and the plume rise results
with the sameQH= 50 MW are quite similar. Increasing heat
emissions fromQH= 50 to 100 MW at Belews Creek results
in almost doubled plume rise. Conversely, a decreased heat
emission from QH= 50 to 20 MW drastically reduced the
plume rise.

For each heat emission value applied to a power plant, the
24 HYSPLIT simulations with unit hourly emissions can be
combined together to generate the SO2 plume patterns for
the particular power plant. Unless there are significant hourly
emission variations the correlation coefficient (r) between
the combined plume and the observations is a good metric
to evaluate the model performance without the need to es-
timate the emission magnitudes. Figures 6 shows the corre-
lation coefficients between 1 min aircraft SO2 observations
and the unit-emission HYSPLIT simulations with different
heat emissions from the three power plants. When calculat-
ing model counterparts of the observations, both horizon-
tal nearest-neighbor and interpolation approaches are used.
Note that the horizontal interpolation will increase the num-
ber of nonzero transfer coefficients in TCMs. For instance,
the number of nonzero rows of the TCM in Fig. 4 increases
to 570 with horizontal interpolation from the previous 464
with the nearest-neighbor option. In addition, the interpola-
tion helps to smooth the gridded predictions. Figure 6 shows
that correlation coefficients typically improve by up to 0.1
using the interpolation option. All the results presented later
are with horizontal interpolation when calculating model
counterparts of the observations. For the Roxboro plume,
the HYSPLIT simulation with QH between 60 and 90 MW
yields a fairly good correlation between the crude predic-
tions and observations, with r equal to or better than 0.6.
The best QH for CPI Roxboro that generates better pattern
matches with the observed SO2 mixing ratios is probably
between 40 and 90 MW, with r close to 0.5. However, the
simulated plume from Belews Creek only reaches reasonable
correlation coefficients of r = 0.5 when QH is between 120
and 140 MW. WhenQH is below 80 MW, low and even neg-
ative correlation coefficients appear between the predictions
and observations. This will be investigated later by separat-
ing the morning and afternoon flights.

Table 1 shows the correlation coefficients between 1 min
aircraft SO2 observations from the morning and afternoon
flights and the model counterparts using the unit-emission
HYSPLIT simulations with different heat emissions from
the three power plants. For Roxboro, the HYSPLIT simu-
lation with QH= 70 MW yields the best correlation coeffi-
cient r = 0.68 for the morning flight, but the best correlation
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Figure 5. PBL heights and the final plume rise calculated with QH= 50 MW at three different power plant locations from 05:00Z to
23:00Z on 26 March 2019 (a). Two observation-based PBL heights estimated using the vertical profiles of the potential temperature from
the morning and after flight measurements are also marked. Plume rises calculated with QH= 100 MW at Belews Creek and QH= 20 MW
at CPI Roxboro are compared with those calculated with QH= 50 MW. Both PBL heights and plume rise shown are heights above ground
level.

Table 1. Correlation coefficients between 1 min SO2 observations from the morning and afternoon flights and the model counterparts using
the unit-emission HYSPLIT simulations with different heat emissions from the three power plants. The highest correlation for each flight
segment is highlighted with bold font, except for the Belews Creek afternoon segment, for which the highest absolute correlation coefficient
is shown in italic font.

Correlation coefficient/ Roxboro Belews Creek CPI Roxboro

Heat emission (MW) am flight pm flight am flight pm flight am flight pm flight

10 0.61 0.46 0.45 −0.62 0.52 0.05
20 0.60 0.46 0.49 −0.69 0.60 0.06
30 0.60 0.44 0.63 −0.64 0.66 0.09
40 0.62 0.49 0.63 −0.52 0.72 0.10
50 0.60 0.55 0.73 −0.28 0.69 0.19
60 0.67 0.58 0.83 −0.22 0.72 0.20
70 0.68 0.58 0.86 −0.28 0.69 0.22
80 0.64 0.61 0.87 −0.33 0.74 0.29
90 0.60 0.62 0.83 −0.58 0.75 0.35
100 0.55 0.64 0.82 −0.62 0.64 0.34
110 0.51 0.60 0.79 −0.68 0.37 0.40
120 0.40 0.54 0.82 −0.67 0.20 0.41
130 0.26 0.49 0.84 −0.65 0.14 0.40
140 0.21 0.50 0.74 −0.53 0.10 0.44
150 0.15 0.46 0.68 −0.56 0.10 0.44

coefficient r = 0.64 for the afternoon is obtained when QH
is given as 100 MW. In fact, the power plant emissions had
variations among the operation hours during the day. The
HYSPLIT predictions of the morning and afternoon flight
observations are contributed by the unit hourly emission runs
from 15:00 to 17:00Z and 19:00 to 21:00Z, respectively.
The CEMS SO2 hourly emissions at Roxboro are 582, 345,
and 360 kgh−1 for 15:00, 16:00, and 17:00Z, respectively,
and 465 and 486 kg h−1 for 19:00 and 20:00Z, respectively.
The lower average hourly emission (429 kgh−1) contribut-
ing to the morning flight than the average hourly emission

(476 kgh−1) contributing to the afternoon flight suggests a
higher QH for the afternoon flight than the morning flight
since the emissions of SO2 and heat emissions are expected
to be proportional to each other for a particular stack. This
agrees with the findings here; i.e., a higher optimal QH
(100 MW) is needed for a better simulation of the afternoon
flight than the optimal QH (70 MW) for the morning flight.

For the Belews Creek plume, the model results with
QH= 80 MW seem to capture the plume pattern recorded
by the morning flight, with a correlation coefficient r = 0.87
between the 1 min observations and the HYSPLIT counter-
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Figure 6. Correlation coefficients between 1 min SO2 observa-
tions and the model counterparts using unit-emission HYSPLIT
simulations with different heat emissions (QH) from the three
power plants. When calculating model counterparts of the obser-
vations, both horizontal nearest-neighbor (n) and interpolation (i)
approaches are used.

parts. However, the correlation coefficients between HYS-
PLIT predictions and the afternoon flight observations are all
negative with all 15 QH values. This implies problems other
than plume height calculation with HYSPLIT. As shown in
Fig. 3, there are large discrepancies between the WRF wind
directions and the aircraft measured ones at the beginning
of the afternoon flight near Belews Creek (see Fig. 1). An
attempted assimilation of aircraft wind measurements using
the WRF observational nudging is not quite effective to cor-
rect the wind direction biases. In addition, successful predic-
tions of the measured SO2 require wind field measurements
at the upwind locations in an earlier time period, which are
not available for the current case. No optimal plume rise will
be selected for this segment before Sect. 3.3.3.

The HYSPLIT simulations with QH= 90 MW and
QH= 140 or 150 MW are found to correlate best with the
CPI Roxboro SO2 plumes measured during the morning
and afternoon flights, with correlation coefficients of 0.75
and 0.44, respectively. The CEMS SO2 hourly emissions at
Roxboro CPI are 281 and 300 kgh−1 for 15:00 and 16:00Z,
respectively, and 316 and 295 kgh−1 for 19:00 and 20:00Z,
respectively. While the fact that the optimal QH is higher
in the afternoon corresponds well with the higher aver-
age SO2 emission from the CPI Roxboro power plant at
306 kgh−1 for 19:00–20:00Z versus 291 kgh−1 for 15:00–
16:00Z, the much lower correlation coefficient of r = 0.44
for the afternoon plume indicates large prediction errors even
with the optimal QH (140 or 150 MW).

Table 1 also shows that the model simulation generally
performs better in the morning than in the afternoon. This
is probably related to the fact that the wind directions in the

afternoon are more variable than in the morning, as shown
in Fig. 3. The meteorological variability may cause storage-
and-release events, which make successful emission estima-
tion more difficult to obtain, especially for the mass balance
method (Fathi et al., 2021).

3.3 Inversion results

It has been shown that the current problem can be decou-
pled among the three different power plants. In addition, the
SO2 measurements from the power plant plumes during the
morning and afternoon flights are affected by emissions of
distinctive periods of 2 to 3 h. Thus six segments are consid-
ered independently. Considering the very limited number of
1 min observations to constrain the emissions at certain hours
as discussed in Sect. 3.1, constant emissions are assumed for
each of the six segments.

When pre-processing the observations, multiple 1 s SO2
values are averaged to generate 1 min observations. The stan-
dard deviation of the multiple original 1 s observations is
calculated to represent the observational uncertainty. The
parameters in Eq. (5) are found using linear regression as
f o
= 0.1 and ao

= 0.05 ppbv. Chai et al. (2018) found that
the inversion results were not very sensitive to the obser-
vation uncertainty estimates. They also showed that setting
the model uncertainty parameter to fm

= 0.2 yielded good
results when compared with the known emission sources
in the case study. Here the model uncertainty parameter of
fm
= 0.2 is also assumed and the additive term am is set as

0.05 ppbv, identical to ao.

3.3.1 Zero background

Inversion estimations are first carried out without subtract-
ing any background SO2 mixing ratios from the observations.
That is, the observations are assumed to originate only from
the three power plant sources. Emission estimation results of
the three power plants obtained by minimizing the cost func-
tions using the morning and afternoon flights separately are
listed in Table 3 with 15 different assumed heat emissions.

Based on the morning flight, the estimated Roxboro
SO2 emission varies from 701.5 kgh−1 with QH= 10 MW
to 473.2 kgh−1 with QH= 150 MW. With the optimal
QH=70 MW, SO2 emission is estimated as 551.9 kgh−1,
29 % greater than the average CEMS between 15:00 and
17:00Z. Table 2 shows that the emissions at 14:00 and
15:00Z are both 582 kgh−1, while the emissions at 16:00
and 17:00Z decrease to 345 and 360 kgh−1 before going up
again to 509 kgh−1 at 18:00Z. The average emission from
19:00 to 20:00Z estimated based on the afternoon flight with
the optimal QH= 100 MW is 520.9 kgh−1, 9 % larger than
the average CEMS value. Contrary to the morning flight,
the estimated emissions are generally greater with increas-
ing emission heat. The estimated emissions are 875.7 and
449.3 kgh−1 with QH= 150 and 10 MW, respectively.
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Table 2. The power plant geolocations, stack heights, and CEMS emissions (United States Environmental Protection Agency (U.S. EPA),
2022).

Power plant Geolocation Stack CEMS SO2 emission (kgh−1)

name latitude, longitude height (m) 13:00Z 14:00Z 15:00Z 16:00Z 17:00Z 18:00Z 19:00Z 20:00Z 21:00Z 22:00Z

Roxboro 36.483◦, −79.073◦ 122 579 582 582 345 360 509 465 486 508 856
Belews Creek 36.281◦, −80.060◦ 152 1349 1267 1132 943 867 816 772 767 853 1029
CPI Roxboro 36.435◦, −78.962◦ 60 278 306 281 300 279 302 316 295 293 298

Table 3. Estimation of SO2 emissions from the three power plants on 26 March 2019 with 15 different assumed heat emissions and the
average CEMS emissions during the specified hours. The ranges of CEMS hourly emissions for the specified hours as well as 1 h before and
1 h after the period are shown after the average CEMS emission. The relevant CEMS hourly emissions are listed in Table 2. The bold numbers
are associated with the heat emissions that generate the highest correlation coefficients between observations and HYSPLIT predictions for
the specific flight segments. The italic number is associated with the heat emission that generates the highest absolute correlation coefficient
between observations and HYSPLIT predictions for the Belews Creek afternoon segment.

CEMS/assumed Roxboro Belews Creek CPI Roxboro

heat 15:00–17:00Z 19:00–20:00Z 16:00–17:00Z 18:00–19:00Z 15:00–16:00Z 19:00–20:00Z
emission (MW) (kg h−1) (kgh−1) (kgh−1) (kgh−1) (kgh−1) (kgh−1)

CEMS 429 (345–582) 476 (465–509) 905 (816–1132) 794 (767–867) 291 (279–306) 306 (293–316)
10 701.5 449.3 1758.6 680.8 343.1 588.4
20 664.6 532.4 1578.7 512.6 343.8 590.7
30 636.1 530.3 1553.7 424.8 320.5 572.2
40 806.8 740.4 3735.0 339.0 557.5 503.5
50 617.3 491.5 1547.5 339.0 398.5 478.9
60 611.1 506.5 1475.0 283.8 402.5 457.4
70 551.9 529.3 1445.9 298.9 464.8 475.1
80 538.9 488.6 1417.3 393.0 504.5 429.1
90 520.9 485.7 1451.7 368.7 712.8 412.3
100 514.7 520.9 1411.6 485.7 1095.3 416.4
110 525.0 515.7 1550.6 697.3 1372.7 413.9
120 512.6 564.2 1406.0 1027.4 2186.5 361.4
130 521.9 593.1 1716.9 707.1 2627.7 357.1
140 474.2 789.2 1815.7 818.1 5214.3 384.4
150 473.2 875.7 1986.5 926.0 4261.5 401.7

Using the morning flight observations, Belews Creek
SO2 emissions between 16:00 and 17:00Z are overestimated
with all 15 heat emissions. With the optimal QH= 80 MW,
the estimated emission is 1417.3 kgh−1. Although this is
57 % larger than the average CEMS emission, it is better
than the estimates with other QH values except QH = 100
and 120 MW, which yield slightly lower emissions (1411.6
and 1406.0 kgh−1).

It is also noted that estimated Belews Creek SO2 emis-
sions using the afternoon flight observations are mostly
within a factor of 2 when compared with the average hourly
CEMS emissions, while significant negative correlations are
found between the observations and the model predictions.
The worst underestimations when QH= 40–70 MW are as-
sociated with lower absolute correlations (|r|< 0.3). At
QH= 110 MW when the most extreme anticorrelation (r =
−0.68) occurs, the estimated SO2 emission of 697.3 kgh−1

is very close to the average hourly CEMS emission of
794 kgh−1 between 18:00 and 19:00Z. The inverse corre-

lation is caused by the plume misplacement mostly due to
wind direction error. The high absolute correlation indicates
that the model probably predicts the mixing ratio gradient
relatively well but misplaces the plume relative to the actual
plume. Since the model predicts higher mixing ratios when
observation values are low but predicts lower mixing ratios
when observation values are higher, neither lower nor higher
emissions would improve the agreement between the predic-
tions and observations. Thus, no significant biases arise from
such cases. Nonetheless, the negative correlations between
the model and observations indicate model deficiencies and
require special attention.

The CPI Roxboro emission estimates based on the morn-
ing and afternoon flights with the optimalQH values (90 and
140 MW) are 712.8 and 384.4 kgh−1, respectively. They are
overestimated over the CEMS by 145 % and 26 %. The CPI
Roxboro emission estimates based on the morning flight in-
crease significantly when QH is above 100 MW. Overesti-
mations of the SO2 emissions by factors of 18 and 15 are
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Table 4. Number of 1 min SO2 observations and some statistics of the SO2 mixing ratios. There is overlap between Roxboro and CPI
Roxboro segments since some observations are affected by both power plants.

Number of SO2 observations All Roxboro Belews Creek CPI Roxboro Missed

/SO2 mixing ratio (ppbv) observations morning afternoon morning afternoon morning afternoon observations

Number of observations 1503 192 186 55 23 118 153 810
Minimum 0.001 0.002 0.001 0.147 0.011 0.031 0.025 0.001
5th percentile 0.032 0.045 0.032 0.332 0.011 0.051 0.045 0.026
10th percentile 0.058 0.066 0.066 0.589 0.019 0.083 0.094 0.046
25th percentile 0.136 0.128 0.166 1.041 0.038 0.175 0.209 0.114
Median 0.257 0.307 0.398 2.002 0.500 0.297 0.351 0.199
75th percentile 0.465 0.586 0.611 2.826 0.665 0.493 0.538 0.317
Maximum 7.249 2.862 1.626 7.249 3.780 1.578 1.246 1.721

found withQH set as 140 and 150 MW, respectively. Table 1
shows that the two heat emissions yield correlation coeffi-
cients of 0.10, a significant drop from r = 0.75 when QH is
assumed to be 90 MW. Although the highest correlation co-
efficient between observations and unit-emission HYSPLIT
predictions for a specific flight segment may not produce the
best emission estimates, a low correlation coefficient typi-
cally indicates modeling deficiencies very effectively.

3.3.2 SO2 background

With zero background SO2 mixing ratios, the emission es-
timates based on the optimal heat emission are all greater
than the CEMS emissions. This indicates that it is necessary
to consider the SO2 background mixing ratios. The HYS-
PLIT simulated mixing ratios are actually the enhancements
over the background mixing ratios. As shown in Table 4,
there are 810 1 min observations, which is more than half
of the 1503 1 min SO2 observations not residing in any of
the HYSPLIT simulated plumes originating from the three
power plants with any of the 15 heat emissions. It has to
be noted that the flight patterns could have been better con-
structed. Sampling upwind as well as downwind or in closed-
shape flight patterns which enclose the sources (see, e.g.,
Ryoo et al., 2019, Fathi et al., 2021, and Kim et al., 2023)
would have significantly helped in the estimation of the
SO2 background mixing ratios.

At first, the median value of the missed SO2 observations
(0.199 ppbv) is assumed to be the background SO2 mixing
ratio. This value is subtracted from all the observations unless
the values are below this background value, where the obser-
vations are set as zero. Using the adjusted observations, the
emission estimation results are listed in Table 5. Compared
to the estimates with zero background mixing ratios, the es-
timated emissions are all reduced, as expected. The Roxboro
emissions are estimated to be 436 kgh−1 for 15:00–17:00Z
and 403.3 kgh−1 for 19:00–20:00Z. The morning segment
estimate agrees much better with the CEMS than the previous
estimate without considering the background SO2 mixing ra-

tios. The estimated Belews Creek emission of 1259.7 kgh−1

is significantly improved as well. The CPI Roxboro emission
during the 15:00–16:00Z period is overestimated by 89 %,
but it is not as severe as the previous 145 % overestimation.
The estimated CPI Roxboro emission for the 19:00–20:00Z
period is within 4 % of the CEMS value.

Table 4 shows the statistical distribution values of the six
different segments, i.e., the morning and afternoon plumes
from the three power plants. The highest 1 min SO2 mixing
ratio of 7.249 ppbv is inside the Belews Creek plume mea-
sured during the morning flight. The observed SO2 mixing
ratios inside the Belews Creek plumes are much higher than
those from the other plumes. It is beneficial to assume differ-
ent background values for the six different segments of the
observations. The minimum, the 5th percentile, the 10th per-
centile, and the 25th percentile mixing ratios of the morning
and afternoon observations inside the plumes from three dif-
ferent power plants are assumed to be segment-specific back-
ground mixing ratios. After subtracting the assumed back-
ground values from the observations, the emission estima-
tion results are listed in Table 5. The estimated emissions de-
crease with increasing background values. With the segment-
specific 25th percentile as the background, the Belews Creek
emission estimation of 929.7 kgh−1 is within 3 % of the
CEMS values, and the other estimates are comparable to
the results by assuming a constant background mixing ratio
of 0.199 ppbv.

3.3.3 Root mean square errors (RMSEs)

Up to now, the best heat emission parameters have been se-
lected based on the correlation coefficients between the ob-
servations and predicted counterparts for each segment of
the observations after an ensemble of HYSPLIT runs with
15 different heat emissions. This can be performed before the
emissions are estimated since the correlation coefficients are
not affected by the magnitudes of the emissions when emis-
sions for each segment are assumed to be constant. After the
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Table 5. Estimation of SO2 emissions from the three power plants on 26 March 2019 with different background mixing ratios. The “optimal”
heat emission that generates the highest correlation coefficient between observations and unit-emission HYSPLIT predictions for the specific
flight segment is assumed. Complete emission estimates with all heat emissions and different background mixing ratios are listed in Tables 3,
A1–A4, and 6. The average CEMS emissions during the specified hours are listed for reference. The relevant CEMS hourly emissions are
listed in Table 2. The segment-specific statistical distribution values are listed in Table 4.

CEMS/background Roxboro Belews Creek CPI Roxboro

15:00–17:00Z 19:00–20:00Z 16:00–17:00Z 15:00–16:00Z 19:00–20:00Z
SO2 mixing ratios (kgh−1) (kgh−1) (kgh−1) (kgh−1) (kgh−1)

CEMS 429 476 905 291 306
551.9 520.9 1417.3 712.8 384.4

0.199 ppbv 436.0 403.3 1259.7 549.7 294.7
Minimum, segment-specific min 550.8 517.8 1316.3 684.9 371.6
5th percentile, segment-specific 518.8 502.5 1210.3 659.4 359.9
10th percentile, segment-specific 503.5 481.8 1067.2 628.5 335.6
25th percentile, segment-specific 461.1 418.9 929.7 563.1 294.1

emission magnitudes are estimated, model performance can
be evaluated using other statistical metrics.

The correlation-based emission estimations using all
15 different heat emission parameters by assuming the
segment-specific 25th percentile observation to be the back-
ground mixing ratios are listed in Table 6. The root mean
square errors (RMSEs) of the HYSPLIT predicted morning
and afternoon plumes from the three power plants with all
the plume rise ensemble runs are listed in Table 7. The op-
timal heat emissions that yield the best correlation coeffi-
cients also result in the smallest RMSEs for two segments,
the morning plumes from Roxboro and Belews Creek. The
afternoon plume from Roxboro predicted withQH= 90 MW
and the estimated emission of 389.9 kgh−1 has the small-
est RMSE of 0.428 ppbv. The emission is underestimated
by 18 %. However, for both the morning and afternoon
plumes from CPI Roxboro, optimal heat emissions associ-
ated with the highest correlation coefficients are quite differ-
ent from the heat emissions that produce the smallest RM-
SEs. If the model runs associated with the smallest RMSEs
are selected, the estimated CPI Roxboro SO2 emissions are
265.1 kgh−1 for 15:00–16:00Z and 389.1 kgh−1 for 19:00–
20:00Z, which are 9 % underestimated and 27 % overesti-
mated compared to CEMS. While the 19:00–20:00Z emis-
sion is worse than the result based on the best correlation,
the 15:00–16:00Z emission estimation is much closer to the
CEMS than the correlation-based result, which is 94 % over-
estimated. For the plume from Belews Creek observed during
the afternoon flight, QH= 140 MW yields the lowest RMSE
of 1.874 ppbv, which is more than 3 times the median SO2
observation in the segment. The lowest RMSE of 0.859 ppbv
for the Belews Creek morning segment is smaller than the
25th percentile value of the observation (1.041 ppbv). For
the other four segments, the best RMSEs are slightly larger
than the median of the observations. This indicates the poor
performance of the Belews Creek afternoon model simula-

tion. However, the emission inversion with QH= 140 MW
still yields a very good estimate of 811.6 kgh−1, which is
only 2 % overestimated.

Figure 7 shows the comparison of both the RMSE-based
and correlation-based optimal predictions with the morning
and afternoon flight observations in the HYSPLIT predicted
plumes from the three power plants. Identical results are
obtained using the smallest RMSE and the highest corre-
lation coefficient for the morning segments from Roxboro
and Belews. For both cases, the predicted SO2 mixing ratios
agree well with the observations. Note that here the SO2 pre-
dictions include both the predicted SO2 enhancement with
the estimated emissions and the assumed segment-specific
background values, which are chosen as the 25th percentile
observations inside the particular plumes. For the other cases,
the RMSE-based predictions tend to produce lower mixing
ratios for the observed high SO2 values. Thus the linear re-
gression lines for the RMSE-based predictions tend to have
flatter slopes. However, the RMSE-based emission can still
be larger, such as the CPI Roxboro afternoon case. The scat-
ter plot for the Belews Creek afternoon case clearly shows
anticorrelation as indicated by the negative correlation coef-
ficients listed in Table 1. This is caused by plume misplace-
ment due to wind direction errors. Although the predicted
high and low mixing ratios are opposite to the observations,
the minimization of the cost function defined by Eq. (4) is
still capable of reaching an estimate close to the actual emis-
sion rate. The observations appear to have a good represen-
tation of the mixing ratio distribution for the plume at the
distance from the source. Even if the model misplaced the
plume location, predicted mixing ratios that have a similar
distribution of the low and high values still have the mini-
mal cost function. That is, the inverse modeling method is
not very sensitive to plume misplacement. If QH= 110 MW
that generates the highest negative correlation of −0.68 is
chosen as the optimal plume rise parameter, the estimated
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Table 6. Estimated SO2 emissions from the three power plants on 26 March 2019 with 15 different assumed heat emissions and the average
CEMS emissions during the specified hours. The segment-specific 25th percentile observations are assumed to be the background SO2 mixing
ratios and have been subtracted from the observations for emission inversion. The ranges of CEMS hourly emissions for the specified hours
as well as 1 h before and 1 h after the period are shown after the average CEMS emission. The relevant CEMS hourly emissions are listed in
Table 2. The bold numbers are associated with the heat emissions which generate the highest correlation coefficients between observations
and HYSPLIT predictions for the specific flight segments. The underlined numbers are associated with the smallest RMSEs listed in Table 7.
The italic number is associated with the heat emission that generates the highest absolute correlation coefficient between observations and
HYSPLIT predictions for the Belews Creek afternoon segment.

CEMS/assumed Roxboro Belews Creek CPI Roxboro

heat 15:00–17:00Z 19:00–20:00Z 16:00–17:00Z 18:00–19:00Z 15:00–16:00Z 19:00–20:00Z
emission (MW) (kgh−1) (kgh−1) (kgh−1) (kgh−1) (kgh−1) (kgh−1)

CEMS 429 (345–582) 476 (465–509) 905 (816–1132) 794 (767–867) 291 (279–306) 306 (293–316)
10 609.9 365.7 1290.2 701.5 292.4 481.8
20 576.7 425.7 1165.2 512.6 290.6 495.5
30 545.4 427.4 1121.8 418.9 265.1 483.8
40 674.0 568.7 2606.8 332.9 479.9 420.6
50 531.4 394.6 1077.9 330.3 311.7 389.1
60 517.8 403.3 975.4 272.6 320.5 373.8
70 461.1 427.4 935.3 287.8 358.5 395.4
80 445.7 399.3 929.7 378.4 394.6 352.8
90 436.9 389.9 948.5 362.1 563.1 336.3
100 434.3 418.9 913.2 480.9 895.1 353.5
110 436.9 424.0 995.1 709.9 1162.9 324.4
120 434.3 467.6 922.3 1062.9 1947.2 282.6
130 454.7 490.6 1097.4 731.5 2509.7 282.1
140 408.2 634.8 1249.6 811.6 5373.0 294.1
150 416.4 730.1 1445.9 924.2 3176.9 311.1

Table 7. RMSEs of the SO2 mixing ratios of morning and afternoon plumes from three power plants calculated using the estimated SO2 emis-
sions from the three power plants with 15 different assumed heat emissions listed in Table 6. The italic number is associated with the heat
emission that generates the highest absolute correlation coefficient between observations and HYSPLIT predictions for the Belews Creek
afternoon segment. Bold numbers are associated with the heat emissions which generate the highest correlation coefficients between obser-
vations and unit-emission HYSPLIT predictions for the specific flight segments. The underlined numbers indicate the smallest RMSEs of
each segment.

SO2 RMSE (ppbv)/ Roxboro Belews Creek CPI Roxboro

Assumed heat
emission (MW) morning afternoon morning afternoon morning afternoon

10 0.635 0.429 1.409 2.590 0.612 0.538
20 0.640 0.469 1.368 2.140 0.525 0.564
30 0.635 0.486 1.242 2.079 0.438 0.566
40 0.684 0.681 2.706 2.212 1.299 0.984
50 0.539 0.442 1.106 2.520 0.509 0.470
60 0.444 0.478 0.916 2.681 0.464 0.527
70 0.434 0.476 0.918 2.412 0.470 0.559
80 0.471 0.431 0.859 2.222 0.451 0.522
90 0.455 0.428 1.031 1.916 0.496 0.527
100 0.481 0.456 1.040 1.905 0.586 0.630
110 0.511 0.488 1.290 2.334 0.871 0.630
120 0.563 0.589 1.299 2.879 1.777 0.699
130 0.725 0.652 1.362 2.120 2.679 0.665
140 0.766 0.838 1.590 1.874 4.701 0.553
150 0.893 0.866 1.630 1.903 2.956 0.563
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Figure 7. Comparison of the correlation-based and the RMSE-based “optimal” predictions with the morning and afternoon flight observa-
tions in the HYSPLIT predicted SO2 plumes from the three power plants. The correlation-based predictions are with the QH values which
generate the highest correlation coefficients listed in Table 1. The highest absolute correlation coefficient is selected for the Belews Creek
afternoon flight case. The RMSE-based predictions are associated with the cases which generate the smallest RMSEs listed in Table 7. The
linear regression lines are shown for both the correlation-based and the RMSE-based predictions with the observations.

emission for Belews Creek during the 18:00–19:00Z period
is 709.9 kgh−1, which is only 11 % lower than the CEMS
value of 794 kgh−1. It might still be possible to have reason-
able emission inversion results even when plumes are mis-
placed by the model.

Figure 8 shows the optimal predictions based on the
highest correlation coefficients and minimal RMSEs at
800 ma.g.l. at 17:00 and 19:00Z. Continuous vertical profiles
along the flight track, or “curtain” plots, of the correlation-
based and RMSE-based optimal predictions are shown in
Fig. 9 and enlarged in Figs. 10 and A1–A9. For the morn-
ing flight, the optimal predictions of the Roxboro and Belews
Creek plumes based on the highest correlation coefficient and
minimal RMSE are identical. The prediction results agree
well with the observed plume placement and width, as well
as the mixing ratios. On the other hand, for the CPI Rox-
boro morning plume, the RMSE-based optimal prediction
with QH= 30 MW is quite different from the correlation-
based optimal prediction with QH= 90 MW. The center
of the RMSE-based plume is at a lower altitude than the
correlation-based plume (Figs. A1, A2, and A4). The lower-
placed plume is also associated with lower mixing ratios
that match the observations better. Figure 8c shows a wider
CPI Roxboro plume of the RMSE-based result than the
correlation-based result in Fig. 8a. The larger extent of the
RMSE-based CPI Roxboro plume results in an extra appear-

ance of the plume under the flight track in the curtain plot
(Fig. A3).

For the Roxboro plume captured during the after-
noon flight, the correlation-based optimal prediction with
QH= 100 MW and SO2 emissions of 418.9 kgh−1 shows
very similar spatial structures and mixing ratios as the
RMSE-based optimal prediction with QH= 90 MW and
389.9 kgh−1. Figures 8, 10, and A7–A9 show little differ-
ence between the two, and both agree well with the 1 min
aircraft observations. Figure 10 shows that both predictions
underestimated the observed peak values along the flight, but
the peak location and the width of the Roxboro plumes match
well between the predictions and observations. Note that the
SO2 emissions are underestimated by both of the optimal se-
lections for this segment.

As shown in Table 1, strong anticorrelation is found
between predicted and observed SO2 mixing ratios of
the Belews Creek afternoon plume. The prediction with
QH= 110 MW that has highest absolute correlation coef-
ficient is selected here as the correlation-based solution.
Figure A6 shows that it is not very different from the
RMSE-based result with QH= 140 MW. Both cases clearly
misplaced the first transect of the plume and predicted
wider transects than the observations. It is found that the
second transect shown in Fig. A6 is well-predicted with
QH= 110 MW.
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Figure 8. Comparison of the correlation-based (a, b) and the RMSE-based (c, d) “optimal” predictions at 800 ma.g.l. at 17:00Z (a, c) and
19:00Z (b, d). The morning (a, c) and afternoon (b, d) 1 min observations are overlaid as circles. Color indicates the SO2 values for both
predictions and observations. The three power plants are marked with solid black circles.

Figure 9. “Curtain” plots of the correlation-based (a, b) and the RMSE-based (c, d) “optimal” predictions. In the curtain plots, continuous
vertical profiles along the flight track are shown following the observation time. The morning (a, c) and afternoon (b, d) 1 min observations
are overlaid as circles. Color indicates the SO2 values for both predictions and observations.

For the CPI Roxboro plume observed during the after-
noon flight, the correlation-based optimal prediction with
QH= 140 MW and the RMSE-based optimal prediction with
QH= 50 MW appear drastically different in Figs. 8, 10,
and A7–A9, as expected. Figures 10 and A7–A9 show

that the RMSE-based optimal prediction has wider plume
transects and has them placed at lower altitudes than the
correlation-based results. The predicted mixing ratios match
the observations much better than the correlation-based
results, although the estimated emission of 389.1 kgh−1
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Figure 10. Enlarged “curtain” plots of the correlation-based (b) and
the RMSE-based (d) “optimal” predictions in Fig. 9 (Part 2). Five
portions of the afternoon curtain plot are enlarged, with the earliest
period as Part 1 and the latest one as Part 5. In the curtain plots,
continuous vertical profiles along the flight track are shown follow-
ing the observation time. The afternoon flight 1 min observations
are overlaid as circles. Color indicates the SO2 values for both pre-
dictions and observations. Predicted plumes from Roxboro, Belews
Creek, and CPI Roxboro are indicated with letters R, B, and C, re-
spectively.

is not closer to the CEMS emission of 306 kgh−1 than
the correlation-based estimation of 294.1 kgh−1. In addi-
tion, Fig. 10 shows that the RMSE-based solution captures
an observed narrow CPI Roxboro plume transect that the
correlation-based solution fails to reproduce. The results here
indicate the need to have more observations at different alti-
tudes in future flight planning.

4 Summary and discussion

An ensemble of HYSPLIT runs with various heat release pa-
rameters for the Briggs plume rise algorithm is made to esti-
mate SO2 emissions from three power plants. Using a TCM
approach for the inverse modeling, independent HYSPLIT
Lagrangian model runs with unit hourly emissions are carried
out for each heat release value. The SO2 emissions from the
three power plants during the morning and afternoon flight
periods on 26 March 2019 are estimated separately through
six different segments.

Figure 11. The CEMS and estimated SO2 emissions from the three
power plants on 26 March 2019 during the specified hours. Error
bars of CEMS emissions indicate the ranges of hourly emissions for
the specified hours as well as 1 h before and 1 h after. Correlation-
based and RMSE-based estimates are the inversion results using the
“optimal” heat emission that generates the highest correlation coef-
ficient and the smallest RMSE between observations and the HYS-
PLIT predications for the specific flight segment, respectively. The
correlation-based Belews Creek afternoon segment is based on the
highest absolute correlation coefficient. Error bars of the estimated
SO2 emissions show the ranges of the results using 10 MW above
and below the optimal heat emissions.

Initially the “optimal” plume rise runs are selected based
on the highest correlation coefficients between predictions
and observations. A segment with negative correlations is
excluded. It is found that the SO2 emissions are overesti-
mated for all the remaining segments if background mixing
ratios are not considered. Several different assumptions of
background values are then tested. Assuming the 25th per-
centile observed SO2 mixing ratio inside each segment to be
the background SO2 mixing ratios yields good emission es-
timates, with relative errors of 18 %, −12 %, 3 %, 93.5 %,
and−4 % when compared with the CEMS data (see Fig. 11).
Note that the ranges of the inverted emissions with 10 MW
above and below the optimal heat emissions are used to in-
dicate the sensitivities of the results to the heat emissions.
While the differences between the emission estimates and
the known CEMS data provide some confidence to the re-
sults, quantification of the uncertainties associated with the
method probably requires further investigation in the future.

Using the same segment-specific SO2 background as-
sumption, optimal plume rise runs are later selected to have
the smallest RMSEs between the predicted and observed
mixing ratios. The previously excluded segment that has neg-
ative correlation coefficients between predictions and obser-
vations is also included in the emission inversion. While
identical plume rise runs are chosen as the optimal mem-
bers for Roxboro and Belews Creek morning segments, dif-
ferent runs are selected for the other three segments than the
previous correlation-based results. In addition, emission in-
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version for the previously excluded segment that has nega-
tive correlation coefficients between predictions and observa-
tions is also carried out. The relative errors are 18 %,−18 %,
3 %, −9 %, and 27 % for the five segments and 2 % for the
Belews Creek afternoon segment. Figure 11 shows that the
RMSE-based estimate of SO2 emissions from CPI Roxboro
at 15:00–16:00Z agrees much better with the CEMS data
than the correlation-based estimate does. The RMSE-based
SO2 emission estimates of Roxboro at 19:00–20:00Z and
CPI Roxboro at 19:00–20:00Z appear to deteriorate slightly.
However, the associated HYSPLIT predictions show better
agreement with the observations than the correlation-based
optimal runs because of their smaller RMSEs.

While the stack exit gas temperature data are not available
for this study, a single constant stack exit temperature is pro-
vided for each facility in the 2020 National Emissions Inven-
tory (NEI) (Personal communication with George Pouliot at
the U.S. EPA). Using the average measured air temperature
as the ambient temperature and the other CEMS data (United
States Environmental Protection Agency (U.S. EPA), 2022),
including hourly exit airflow rates, the morning and after-
noon heat emissions are estimated as 52–59 and 49–56 MW,
80–92 and 76–87 MW, and 13–13 and 12–13 MW for Rox-
boro, Belews Creek, and CPI Roxboro, respectively. Note
that the heat emission estimation is sensitive to the stack
exit temperature, which is expected to vary from hour to
hour, similar to the exit airflow rates and the SO2 emissions.
Nonetheless, these estimated values indicate the reasonable
ranges of the heat emissions. When correlation-based and
RMSE-based methods agree with each other in their optimal
heat emission for Roxboro and Belews Creek morning seg-
ments, the optimal heat emissions are very close to the esti-
mated stack heat emissions here. When the two methods dis-
agree, the correlation-based optimal heat emissions of 90 and
140 MW for CPI Roxboro in the morning and afternoon are
unreasonably high, but the RMSE-based optimal emissions
of 30 and 50 MW could still be reasonable. This suggests
that the RMSE-based results are probably more reliable.

While the uncertainty of the heat emission is the focus
here, there are a lot of other uncertainties associated with
the emission estimates. For instance, uncertainties in many
parameters, such as the assumed background SO2 mixing ra-
tios, the meteorological data input such as the wind direction
and speed, and some of the HYSPLIT turbulence parame-
terizations related to the turbulent mixing, will all affect the
final results. Even if the hourly exit temperatures were avail-
able, the plume rise calculated using the Briggs algorithm
may still misplace the plume. It is likely that the optimal heat
emissions chosen here have compensated for other errors in
the model.

The relatively low resolution of heat emissions with an in-
crement of 10 MW for the plume rise ensemble runs may re-
sult in significant errors for some cases. For instance, Fig. 11
shows large ranges of the emission estimates when using
10 MW above and below the correlation-based and RMSE-

based optimal heat emissions for the CPI Roxboro afternoon
segment. Since it is not easy to select the best-performing
plume rise run based on the limited observations, it is prob-
ably better to use several ensemble members to quantify the
uncertainties of the model simulation as well as the emission
estimates. This is indicated in Fig. 11 but needs to be further
explored in the future.

Negative correlation is found between predictions and ob-
servations for the Belews Creek plume captured by the after-
noon flight due to the wind direction errors of the meteoro-
logical data. However, the RMSE-based SO2 emission esti-
mate is only 2 % above the CEMS value. More surprisingly,
if the plume rise run with the highest absolute correlation co-
efficient is selected, the SO2 estimate of 715.6 kgh−1 is very
close to the CEMS average emission rate of 794 kgh−1. We
speculate that the inverse modeling is not very sensitive to the
plume misplacement because the cost function minimization
would favor an unbiased population distribution even when
misplacement by the model is present. However, special care
is needed for such situations in which large RMSEs indicate
model deficiencies.

It has to be noted that the current dispersion simulation
directly places the pollutant release points with the calcu-
lated plume rises elevated above the stacks, while the ac-
tual plumes reach their apexes gradually. Thus the dispersion
model is not able to accurately reproduce the exact plume
shapes at locations close to the source. The afternoon flight
around Belews Creek power plant is closer to the source than
the other segments. This probably makes this case more dif-
ficult to simulate accurately than the other segments.

This study shows that RMSE is a better metric than the
correlation coefficient in choosing the best ensemble mem-
ber for the SO2 emission inversion. While the RMSE-based
optimal plume rise runs appear to agree better with the ob-
servations than the correlation-based optimal runs, observa-
tions are often missing when and where the optimal runs are
significantly different. Additional measurements at multiple
altitudes would have been really helpful. In future flight plan-
ning for similar top-down emission estimation studies more
vertical profiles of the target pollutant should be measured. In
addition, more upwind measurements are also recommended
in order to better quantify the background concentrations
caused by many other emission sources. It is also wise to
choose relatively steady meteorological conditions for the
flight campaign since unsteady conditions such as frequent
wind direction changes pose great challenges not only for the
inverse modeling but also for the meteorological simulation
and the dispersion modeling. The current study shows the
value of ensemble simulations when certain model parame-
ters are difficult to determine, such as stack heat emissions as
shown here.
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Appendix A

Table A1. Estimated SO2 emissions from the three power plants on 26 March 2019 with 15 different assumed heat emissions and the average
CEMS emissions during the specified hours. A constant 0.199 ppbv background SO2 mixing ratio is assumed and has been subtracted from
the observations for emission inversion. The ranges of CEMS hourly emissions for the specified hours as well as 1 h before and 1 h after
the period are shown after the average CEMS emission. The relevant CEMS hourly emissions are listed in Table 2. The bold numbers are
associated with the heat emissions which generate the highest correlation coefficients between observations and HYSPLIT predictions for
the specific flight segments. The italic number is associated with the heat emission that generates the highest absolute correlation coefficient
between observations and HYSPLIT predictions for the Belews Creek afternoon segment.

CEMS/assumed Roxboro Belews Creek CPI Roxboro

heat 15:00–17:00Z 19:00–20:00Z 16:00–17:00Z 18:00–19:00Z 15:00–16:00Z 19:00–20:00Z
emission (MW) (kgh−1) (kgh−1) (kg h−1) (kgh−1) (kg h−1) (kgh−1)

CEMS 429 (345–582) 476 (465–509) 905 (816–1132) 794 (767–867) 291 (279–306) 306 (293–316)
10 584.9 352.1 1556.8 1249.6 293.6 478.0
20 547.5 412.3 1397.6 922.3 288.9 491.5
30 519.8 416.4 1383.7 668.6 262.0 478.9
40 637.3 542.1 3333.0 452.0 471.3 415.6
50 513.6 382.9 1361.7 446.6 311.7 386.0
60 494.5 389.9 1300.6 335.6 317.3 370.9
70 436.0 413.1 1274.9 362.1 350.7 392.2
80 423.1 386.8 1259.7 556.4 388.3 348.6
90 427.4 376.8 1282.5 460.2 549.7 334.3
100 419.8 403.3 1247.1 590.7 886.2 350.7
110 416.4 410.6 1375.4 973.5 1151.4 323.1
120 421.5 455.6 1237.2 1808.5 1958.9 283.2
130 449.3 478.0 1504.8 4561.0 2606.8 282.1
140 409.0 614.8 1620.3 888.0 5682.1 294.7
150 417.3 708.5 1772.7 916.8 3267.0 311.1

Table A2. Estimated SO2 emissions from the three power plants on 26 March 2019 with 15 different assumed heat emissions and the average
CEMS emissions during the specified hours. The segment-specific minimum observations are assumed as the background SO2 mixing ratios
and have been subtracted from the observations for emission inversion. The ranges of CEMS hourly emissions for the specified hours as
well as 1 h before and 1 h after the period are shown after the average CEMS emission. The relevant CEMS hourly emissions are listed in
Table 2. The bold numbers are associated with the heat emissions which generate the highest correlation coefficients between observations
and HYSPLIT predictions for the specific flight segments. The italic number is associated with the heat emission that generates the highest
absolute correlation coefficient between observations and HYSPLIT predictions for the Belews Creek afternoon segment.

CEMS/assumed Roxboro Belews Creek CPI Roxboro

heat 15:00–17:00Z 19:00–20:00Z 16:00–17:00Z 18:00–19:00Z 15:00–16:00Z 19:00–20:00Z
emission (MW) (kgh−1) (kgh−1) (kg h−1) (kgh−1) (kg h−1) (kgh−1)

CEMS 429 (345–582) 476 (465–509) 905 (816–1132) 794 (767–867) 291 (279–306) 306 (293–316)
10 700.1 448.4 1626.8 721.4 330.3 569.9
20 664.6 530.3 1463.3 537.8 330.3 576.7
30 634.8 527.2 1443.0 443.0 308.6 557.5
40 802.0 735.9 3503.7 350.7 541.0 488.6
50 617.3 488.6 1428.6 350.7 380.6 463.9
60 609.9 503.5 1361.7 291.2 383.7 443.9
70 550.8 527.2 1337.5 307.4 443.0 462.9
80 536.7 485.7 1316.3 407.4 481.8 416.4
90 518.8 482.8 1345.5 380.6 684.9 400.9
100 511.6 517.8 1308.4 499.5 1058.7 406.6
110 523.0 514.7 1443.0 725.7 1342.8 403.3
120 507.5 562.0 1300.6 1086.5 2147.5 352.1
130 517.8 590.7 1585.1 758.3 2575.7 347.9
140 468.5 784.5 1699.9 843.0 5214.3 371.6
150 468.5 873.9 1856.1 952.3 4127.4 387.5
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Table A3. Estimated SO2 emissions from the three power plants on 26 March 2019 with 15 different assumed heat emissions and the average
CEMS emissions during the specified hours. The segment-specific 5th percentile observations are assumed as the background SO2 mixing
ratios and have been subtracted from the observations for emission inversion. The ranges of CEMS hourly emissions for the specified hours
as well as 1 h before and 1 h after the period are shown after the average CEMS emission. The relevant CEMS hourly emissions are listed in
Table 2. The bold numbers are associated with the heat emission which generates the highest correlation coefficients between observations
and HYSPLIT predictions for the specific flight segments. The italic number is associated with the heat emission that generates the highest
absolute correlation coefficient between observations and HYSPLIT predictions for the Belews Creek afternoon segment.

CEMS/assumed Roxboro Belews Creek CPI Roxboro

heat 15:00–17:00Z 19:00–20:00Z 16:00–17:00Z 18:00–19:00Z 15:00–16:00Z 19:00–20:00Z
emission (MW) (kgh−1) (kgh−1) (kgh−1) (kgh−1) (kgh−1) (kgh−1)

CEMS 429 (345–582) 476 (465–509) 905 (816–1132) 794 (767–867) 291 (279–306) 306 (293–316)
10 668.6 433.4 1489.9 701.5 320.5 550.8
20 638.6 511.6 1334.8 523.0 318.6 560.8
30 603.9 509.5 1329.5 430.8 298.3 542.1
40 752.3 701.5 3326.3 342.4 523.0 473.2
50 589.6 470.4 1300.6 342.4 365.0 447.5
60 581.4 485.7 1244.7 284.3 368.7 430.0
70 518.8 511.6 1217.6 300.1 424.8 449.3
80 506.5 470.4 1210.3 395.4 462.0 402.5
90 487.6 466.7 1227.4 371.6 659.4 388.3
100 485.7 502.5 1191.1 490.6 1017.2 393.8
110 494.5 498.5 1316.3 711.4 1292.8 390.6
120 481.8 545.4 1179.3 1058.7 2092.4 341.7
130 495.5 573.3 1437.2 731.5 2474.8 337.6
140 446.6 756.8 1566.2 828.0 5090.8 359.9
150 448.4 849.8 1723.8 937.2 3895.0 375.3

Table A4. Estimated SO2 emissions from the three power plants on 26 March 2019 with 15 different assumed heat emissions and the average
CEMS emissions during the specified hours. The segment-specific 10th percentile observations are assumed as the background SO2 mixing
ratios and have been subtracted from the observations for emission inversion. The ranges of CEMS hourly emissions for the specified hours
as well as 1 h before and 1 h after the period are shown after the average CEMS emission. The relevant CEMS hourly emissions are listed in
Table 2. The bold numbers are associated with the heat emission which generates the highest correlation coefficients between observations
and HYSPLIT predictions for the specific flight segments. The italic number is associated with the heat emission that generates the highest
absolute correlation coefficient between observations and HYSPLIT predictions for the Belews Creek afternoon segment.

CEMS/assumed Roxboro Belews Creek CPI Roxboro

heat 15:00–17:00Z 19:00–20:00Z 16:00–17:00Z 18:00–19:00Z 15:00–16:00Z 19:00–20:00Z
emission (MW) (kgh−1) (kgh−1) (kgh−1) (kgh−1) (kgh−1) (kgh−1)

CEMS 429 (345–582) 476 (465–509) 905 (816–1132) 794 (767–867) 291 (279–306) 306 (293–316)
10 655.4 415.6 1329.5 708.5 309.8 514.7
20 623.5 490.6 1186.4 525.0 306.8 526.1
30 589.6 487.6 1191.1 431.7 284.9 507.5
40 733.0 666.0 3107.9 342.4 488.6 442.2
50 572.2 452.0 1146.8 341.7 344.4 417.3
60 565.3 463.9 1088.7 283.2 352.1 400.9
70 503.5 489.6 1065.0 298.9 401.7 422.3
80 488.6 452.0 1067.2 393.8 436.9 376.1
90 472.3 446.6 1071.4 371.6 628.5 364.3
100 472.3 481.8 1033.6 490.6 969.6 371.6
110 478.9 479.9 1126.3 715.6 1242.2 365.0
120 468.5 525.0 1021.3 1069.3 2030.7 321.2
130 485.7 551.9 1247.1 741.8 2411.4 316.1
140 435.1 725.7 1367.2 828.0 5020.1 335.6
150 436.9 821.4 1519.9 939.1 3624.7 352.8
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Figure A1. Enlarged “curtain” plots of the correlation-based (a)
and the RMSE-based (c) “optimal” predictions in Fig. 9 (Part 1).
Five portions of the morning curtain plot are enlarged, with the ear-
liest period as Part 1 and the latest one as Part 5. In the curtain
plots, continuous vertical profiles along the flight track are shown
following the observation time. The morning flight 1 min obser-
vations are overlaid as circles. Color indicates the SO2 values for
both predictions and observations. Predicted plumes from Roxboro,
Belews Creek, and CPI Roxboro are indicated with letters R, B,
and C, respectively.

Figure A2. Enlarged “curtain” plots of the correlation-based (a)
and the RMSE-based (c) “optimal” predictions in Fig. 9 (Part 2).
Five portions of the morning curtain plot are enlarged, with the ear-
liest period as Part 1 and the latest one as Part 5. In the curtain
plots, continuous vertical profiles along the flight track are shown
following the observation time. The morning flight 1 min obser-
vations are overlaid as circles. Color indicates the SO2 values for
both predictions and observations. Predicted plumes from Roxboro,
Belews Creek, and CPI Roxboro are indicated with letters R, B,
and C, respectively.
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Figure A3. Enlarged “curtain” plots of the correlation-based (a)
and the RMSE-based (c) “optimal” predictions in Fig. 9 (Part 3).
Five portions of the morning curtain plot are enlarged, with the ear-
liest period as Part 1 and the latest one as Part 5. In the curtain
plots, continuous vertical profiles along the flight track are shown
following the observation time. The morning flight 1 min obser-
vations are overlaid as circles. Color indicates the SO2 values for
both predictions and observations. Predicted plumes from Roxboro,
Belews Creek, and CPI Roxboro are indicated with letters R, B,
and C, respectively.

Figure A4. Enlarged “curtain” plots of the correlation-based (a)
and the RMSE-based (c) “optimal” predictions in Fig. 9 (Part 4).
Five portions of the morning curtain plot are enlarged, with the ear-
liest period as Part 1 and the latest one as Part 5. In the curtain
plots, continuous vertical profiles along the flight track are shown
following the observation time. The morning flight 1 min obser-
vations are overlaid as circles. Color indicates the SO2 values for
both predictions and observations. Predicted plumes from Roxboro,
Belews Creek, and CPI Roxboro are indicated with letters R, B,
and C, respectively.
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Figure A5. Enlarged “curtain” plots of the correlation-based (a)
and the RMSE-based (c) “optimal” predictions in Fig. 9 (Part 5).
Five portions of the morning curtain plot are enlarged, with the ear-
liest period as Part 1 and the latest one as Part 5. In the curtain
plots, continuous vertical profiles along the flight track are shown
following the observation time. The morning flight 1 min obser-
vations are overlaid as circles. Color indicates the SO2 values for
both predictions and observations. Predicted plumes from Roxboro,
Belews Creek, and CPI Roxboro are indicated with letters R, B,
and C, respectively.

Figure A6. Enlarged “curtain” plots of the correlation-based (b)
and the RMSE-based (d) “optimal” predictions in Fig. 9 (Part 1).
Five portions of the afternoon curtain plot are enlarged, with the
earliest period as Part 1 and the latest one as Part 5. In the curtain
plots, continuous vertical profiles along the flight track are shown
following the observation time. The afternoon flight 1 min obser-
vations are overlaid as circles. Color indicates the SO2 values for
both predictions and observations. Predicted plumes from Roxboro,
Belews Creek, and CPI Roxboro are indicated with letters R, B,
and C, respectively.
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Figure A7. Enlarged “curtain” plots of the correlation-based (b)
and the RMSE-based (d) “optimal” predictions in Fig. 9 (Part 3).
Five portions of the afternoon curtain plot are enlarged, with the
earliest period as Part 1 and the latest one as Part 5. In the curtain
plots, continuous vertical profiles along the flight track are shown
following the observation time. The afternoon flight 1 min obser-
vations are overlaid as circles. Color indicates the SO2 values for
both predictions and observations. Predicted plumes from Roxboro,
Belews Creek, and CPI Roxboro are indicated with letters R, B,
and C, respectively.

Figure A8. Enlarged “curtain” plots of the correlation-based (b)
and the RMSE-based (d) “optimal” predictions in Fig. 9 (Part 4).
Five portions of the afternoon curtain plot are enlarged, with the
earliest period as Part 1 and the latest one as Part 5. In the curtain
plots, continuous vertical profiles along the flight track are shown
following the observation time. The afternoon flight 1 min obser-
vations are overlaid as circles. Color indicates the SO2 values for
both predictions and observations. Predicted plumes from Roxboro,
Belews Creek, and CPI Roxboro are indicated with letters R, B,
and C, respectively.
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Figure A9. Enlarged “curtain” plots of the correlation-based (b)
and the RMSE-based (d) “optimal” predictions in Fig. 9 (Part 5).
Five portions of the afternoon curtain plot are enlarged, with the
earliest period as Part 1 and the latest one as Part 5. In the curtain
plots, continuous vertical profiles along the flight track are shown
following the observation time. The afternoon flight 1 min obser-
vations are overlaid as circles. Color indicates the SO2 values for
both predictions and observations. Predicted plumes from Roxboro,
Belews Creek, and CPI Roxboro are indicated with letters R, B,
and C, respectively.
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