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Abstract. The capability of chemical transport models to represent fine particulate matter (PM2.5) over the
course of a day is of vital importance for air quality simulation and assessment. In this work, we used the nested
GEOS-Chem model at 0.25◦× 0.3125◦ resolution to simulate the diel (24 h) variation in PM2.5 mass concen-
trations over the contiguous United States (US) in 2016. We evaluate the simulations with in situ measurements
from a national monitoring network. Our base case simulation broadly reproduces the observed morning peak,
afternoon dip, and evening peak of PM2.5, matching the timings of these features within 1–3 h. However, the
simulated PM2.5 diel amplitude in our base case was 106 % biased high, relative to observations. We find that
temporal resolution of emissions, subgrid vertical gradient between surface model-level center and observations,
and biases in boundary layer mixing and aerosol nitrate are the major causes for this inconsistency. We applied
an hourly anthropogenic emission inventory, converted the PM2.5 mass concentrations from the model-level cen-
ter to the height of surface measurements by correcting for aerodynamic resistance, adjusted the boundary layer
heights in the driving meteorological fields using aircraft observations, and constrained nitrate concentrations
using in situ measurements. The bias in the PM2.5 diel amplitude was reduced to −12 % in the improved simu-
lation. Gridded hourly emissions rather than diel scaling factors applied to monthly emissions reduced biases in
simulated PM2.5 overnight. Resolving the subgrid vertical gradient in the surface model level aided the capturing
of the timings of the PM2.5 morning peak and afternoon minimum. Based on the improved model, we find that
the mean observed diel variation in PM2.5 for the contiguous US is driven by (1) building up of PM2.5 by 10 %
in early morning (04:00–08:00 local time, LT), due to increasing anthropogenic emissions into a shallow mixed
layer; (2) decreasing PM2.5 by 22 % from mid-morning (08:00 LT) through afternoon (15:00 LT), associated with
mixed-layer growth; (3) increasing PM2.5 by 30 % from mid-afternoon (15:00 LT) though evening (22:00 LT) as
emissions persist into a collapsing mixed layer; and (4) decreasing PM2.5 by 10 % overnight (22:00–04:00 LT)
as emissions diminish.
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1 Introduction

Airborne fine particulate matter (PM2.5) affects human health
(Murray et al., 2020), visibility (Malm et al., 1994; Li et al.,
2016), and the climate system (IPCC, 2022). Accurately rep-
resenting the diel PM2.5 variation and its variation over the
course of a day is essential for exposure assessment, air qual-
ity modeling, and relating PM2.5 concentrations at a specific
time of day to daily averages (van Donkelaar et al., 2010;
Manning et al., 2018). Ground-level observations have re-
vealed similar bimodal diel PM2.5 variations across the world
in which the mass concentrations typically peak in morning
and late evening, with minima near daybreak and late after-
noon (Manning et al., 2018). How well chemical transport
models (CTMs) reproduce this variation has not been fully
investigated.

Previous modeling studies over major anthropogenic
source regions found mixed levels of skill in resolving diel
PM2.5 variation. CTMs generally capture the observed mid-
morning and late evening peaks in PM2.5 well (Tessum et
al., 2015; Bessagnet et al., 2016; Du et al., 2020). The peak
in mid-morning is commonly attributed to enhanced anthro-
pogenic emission activities, and the peak in late evening as-
cribed to collapse of the planetary boundary layer (Zhao et
al., 2009; Rattigan et al., 2010; Tiwari et al., 2013). Biases in
simulated diel PM2.5 variation have also been identified and
investigated. Du et al. (2020) used the WRF-Chem (Weather
Research and Forecasting model coupled with Chemistry)
model (Grell et al., 2005) with the MOSAIC (Model for Sim-
ulating Aerosol Interactions and Chemistry) scheme and the
CBM-Z (carbon bond mechanism Z) photochemical mech-
anism to simulate diel PM2.5 variation over East Asia and
found nighttime overestimation, possibly due to insufficient
boundary layer mixing. Simulations from multiple CTMs in
the EURODELTA III intercomparison study (Bessagnet et
al., 2016) found notable underestimation of PM2.5 concen-
trations in the afternoon over Europe. Lack of unspeciated
organics and incomplete chemical mechanisms for the for-
mation of secondary organic aerosols were proposed as being
the driving forces.

Global anthropogenic emission inventories are generally
available at a monthly mean resolution (Janssens-Maenhout
et al., 2015; Huang et al., 2017; McDuffie et al., 2020). These
monthly inventories are often applied as is for a wide range
of studies. Some national emission inventories (e.g., NEI)
contain local species- and sector-specific diel variation. Such
national information for a specific country has, in some in-
stances, been applied to provide diel information for global
inventories in some models. There is a need to explore the
effects of these different approaches upon the diel variation
in PM2.5 concentrations.

The vertical extent of the lowest model level in CTMs is
typically tens of meters above ground, while ground-based
measurements are taken at around 2 m. As subgrid vertical
gradients exist between model-level center and surface ob-

servations, CTM simulation and in situ measurements repre-
sent PM2.5 at different altitudes. This so-called vertical rep-
resentativeness difference can affect model evaluation. Pre-
vious modeling studies have estimated subgrid vertical gra-
dients in HNO3 and O3 within the first model level using
dry-deposition velocity and aerodynamic resistance (Zhang
et al., 2012; Travis and Jacob, 2019). How such differences
in vertical representation affect simulated diel PM2.5 has not
been investigated.

Aerosol dry deposition, defined as the removal of aerosols
by gravitational settling, by Brownian diffusion, or by im-
paction and interception resulting from turbulent transfer
(Beckett et al., 1998), is an important sink process. Re-
cent investigations have examined developments to the dry-
deposition scheme used in CTMs. Petroff and Zhang (2010)
developed a sized-resolved particle dry-deposition scheme
with a new surface resistance parameterization by the sim-
plification of a one-dimensional aerosol transport model.
Kouznetsov and Sofiev (2012) proposed a comprehensive
particle dry-deposition scheme, which accounts for physical
properties of the airflow, surface, and depositing particles.
Zhang and Shao (2014) improved the modeling of particle
dry deposition on rough surfaces by treating gravitational set-
tling analytically and considering the roughness in the parti-
cle diffusion and surface collection. Emerson et al. (2020) re-
vised size-resolved particle dry deposition through constrain-
ing the surface resistances using particle flux observations.
The impacts of recent updates on PM2.5 mass concentrations
and its diel variation remains unclear.

Aerosol nitrate, mainly formed chemically from ammonia
and nitric acid, is an important component of PM2.5. Previ-
ous studies reported aerosol nitrate as being overestimated
in models, including GEOS-Chem (Heald et al., 2012), PM-
CAMx (Fountoukis et al., 2011), and WRF-Chem (Tuccella
et al., 2012). Uncertainties in the heterogeneous uptake co-
efficient of N2O5 and NO2, dry-deposition velocity of nitric
acid, and the nighttime boundary layer has been investigated
as potential factors causing the overestimation (Miao et al.,
2020; Zhai et al., 2021; Travis et al., 2022). The overpre-
diction of nitrate in GEOS-Chem was found most prominent
during the night (Travis et al., 2022), which can affect the
diel variation in the PM2.5.

In this work, we use the GEOS-Chem CTM, initially de-
scribed by Bey et al. (2001), to investigate the diel varia-
tion in simulated PM2.5. We focus on the contiguous United
States (US) in 2016. In Sect. 2, we introduce the GEOS-
Chem model and the configurations of our base simula-
tion. In Sect. 3, we describe the in situ measurements of
PM2.5. The rest of the paper is organized by themes, each
of which contains its own methodology, results, and discus-
sions. In Sect. 4, we evaluate and identify biases of the sim-
ulated diel PM2.5 variation in our base GEOS-Chem simula-
tion. Multiple physical and chemical processes affecting the
diel PM2.5 simulation are explored in Sect. 5 by developing
the model and conducting sensitivity simulations, based on
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which we describe the revised diel simulation with discus-
sions in Sect. 6. Section 7 concludes this study.

2 The GEOS-Chem model and the base simulation

2.1 General description

We use the GEOS-Chem chemical transport model version
12.6.0 (http://www.geos-chem.org, last access: 6 October
2023) driven by the GEOS-5 Forward Processing (GEOS FP)
assimilated meteorology from the NASA Global Modeling
and Assimilation Office (GMAO) to examine the factors con-
trolling the diel PM2.5 mass variations. Prior applications of
the model to PM2.5 studies include but are not limited to eval-
uating and improving mechanisms affecting PM2.5 (Zheng et
al., 2015; Marais et al., 2016; Song et al., 2021; Travis et al.,
2022), source attribution (Meng et al., 2019; McDuffie et al.,
2021; Pai et al., 2022), assessments of the effects of horizon-
tal transport on local air quality (Lang et al., 2013; Zhang et
al., 2019; Xu et al., 2023), and exposure assessments (Kodros
et al., 2016; van Donkelaar et al., 2021).

GEOS-Chem simulates detailed tropospheric aerosol–
oxidant chemistry, which includes the sulfate–nitrate–
ammonium system (Park et al., 2004; Fountoukis and Nenes,
2007), black carbon (Wang et al., 2014), organic carbon, sec-
ondary organic aerosol (Pai et al., 2020), mineral dust (Fairlie
et al., 2007), and sea salt (Jaeglé et al., 2011). The so-called
“simple” scheme (Kim et al., 2015) is used for simulating
secondary organic aerosol (SOA). Absorption of radiation
by brown carbon is implemented, following Hammer et al.
(2016). We use nested simulations over the contiguous US
in 2016 at 0.25◦× 0.3125◦ over 47 vertical layers extend-
ing from the surface up to 0.1 hPa. The surface level extends
from ground to about 120 m. GEOS FP is used for meteoro-
logical inputs, which includes hourly surface variables and
3-D variables at every 3 h. A global simulation at 2◦× 2.5◦

is used to provide boundary conditions for the nested do-
main. The non-local scheme implemented by Lin and McEl-
roy (2010) is used for boundary layer mixing.

In this work, we first evaluate the base simulation of
GEOS-Chem (denoted as GC_Base in Table 1). We identify
the biases of diel PM2.5 variation in the base simulation by
comparison with in situ observations. Then we develop dif-
ferent model components affecting PM2.5 concentrations and
conduct sensitivity simulations to explore the driving forces
of diel PM2.5 variation. Sections 2.2 and 2.3 introduce the
emission configuration and default parameterization of dry
deposition in GC_Base.

2.2 Emissions configurations in GC_Base

To investigate the impacts of anthropogenic emissions,
we begin with the monthly version of the National Emis-
sions Inventory (NEI) in GC_Base instead of the default
hourly version in the standard nested GEOS-Chem model

over North America, which is consistent with most re-
gions outside of the contiguous US, where anthropogenic
emissions at hourly resolution are often not readily avail-
able. We scale the NEI emissions from the base year of
2011 to 2016, using air pollutant emissions trend data
provided by the U.S. Environmental Protection Agency
(EPA; https://www.epa.gov/air-emissions-inventories/
air-pollutant-emissions-trends-data, last access: 6 October
2023a). Point sources in the NEI inventory are all vertically
resolved, which mainly include large industrial facilities,
power plants, and airports. Nonpoint sources mainly include
residential heating, transportation, commercial combustion,
and solvent use. We do not use the NEI 2016 inventory,
since that inventory is only available at monthly resolution
in GEOS-Chem. For wildfires, we use GFED4 (Giglio et
al., 2013) 3 h emissions. For dust, we use the hourly offline
inventory developed by Meng et al. (2021).

2.3 Dry-deposition parameterization in GC_Base

Dry deposition of PM2.5 in our base GEOS-Chem simulation
generally follows the Zhang et al. (2001) scheme (henceforth
Z01), which parameterizes particle dry-deposition velocities
(Vd) by accounting for gravitational settling (Vg), aerody-
namic resistance (Ra), and surface resistance (Rs), as shown
in Eq. (1):

Vd = Vg+
1

Ra+Rs
. (1)

Gravitational settling represents the particle settling due
to gravity. Aerodynamic resistance describes the turbulent
transport of scalars within the surface layer. Surface resis-
tance, as formulated in Eq. (2), quantifies particle-surface
contact in close proximity to surfaces by Brownian diffusion
(Eb), impaction (EIm), and interception (EIn).

Rs =
1

ε0u∗(Eb+EIm+EIn)R1
, (2)

where u∗ denotes friction velocity, R1 denotes a bounce cor-
rection term, and ε0 denotes an empirical coefficient. Brow-
nian diffusion contributes to dry deposition through diffu-
sion when particles are close to surface collectors. Impaction
describes the direct collision of particles to the surface due
to inertia when particles move along the streamlines around
collector surfaces. Interception represents the deposition by
which particles are captured by surface collectors when their
distances to the collectors are shorter than the radius of a sin-
gle particle.

The standard GEOS-Chem dry-deposition module used in
our base simulation calculates dry-deposition velocity (V ′d),
following Eq. (3), where gravitational settling is ignored.

V ′d =
1

Ra+Rs
(3)
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Table 1. Summary of modifications made to base GEOS-Chem simulation to investigate diel PM2.5 variation.

GEOS-Chem simulation Temporal resolution Vertical representativeness Aerosol dry Boundary layer Nitrate
of emissions deposition mixing constrained

GC_Base NEI monthly Lowest model-level center Default Default No
GC_Emis NEI hourly Lowest model-level center Default Default No
GC_Drydep NEI hourly Lowest model-level center Revised Default No
GC_2 m NEI hourly Corrected to 2 m Revised Default No
GC_2m_PBLH NEI hourly Corrected to 2 m Revised PBLH adjusted No
GC_2m_PBLH_NIT NEI hourly Corrected to 2 m Revised PBLH adjusted Yes

The dry deposition of PM2.5 includes sulfate, nitrate, ammo-
nium, organics, black carbon, fine-mode sea salt, and fine-
mode mineral dust components. Information about particle
size is important, as all terms in Eqs. (1)–(3) are size depen-
dent, except aerodynamic resistance Ra. The dry-deposition
module in the base GEOS-Chem simulation has inconsis-
tencies with other GEOS-Chem modules that we address in
Sect. 5.2. In the standard GEOS-Chem dry-deposition mod-
ule, fine-mode mineral dust is considered in two size bins,
with mass-weighted mean diameters of 1.46 and 2.80 µm.
Other components are each considered in a single size bin,
with mass-weighted mean dry diameters for sulfate, nitrate,
ammonium, organics, black carbon, and fine-mode sea salt
of 0.5 µm. Monodisperse size distributions are used for all
size bins. The effect of hygroscopic growth on deposition
is only considered for fine-mode sea salt, following Lewis
and Schwartz (2006). We use the standard GEOS-Chem dry-
deposition module for our base simulation.

3 In situ measurements of PM2.5

The in situ measurements from the United States Environ-
mental Protection Agency’s Air Quality System (AQS) are
used to evaluate the GEOS-Chem simulations. There were
451 sites operating in 2016 across the contiguous US which
provided hourly PM2.5 concentrations using a Federal Equiv-
alent Method (FEM). As depicted in Fig. 1, 66.3 % of these
FEM sites are equipped with the Met One BAM-1020 mass
monitor using beta attenuation, 10.0 % with the Thermo Sci-
entific 5014i/FH62C14-DHS monitor using beta attenuation,
7.4 % with the Thermo Scientific TEOM 1405-DF dichoto-
mous monitor using a filter dynamics measurement system
(FDMS) gravimetric, and 6.5 % with the Thermo Scientific
5030 SHARP monitor using beta attenuation. These four
types of FEM monitors are used for hourly analysis in this
work. The other five types of FEM instruments, contribut-
ing less than 10 % of all hourly measurements, are excluded
to avoid risk of aliasing instrument-dependent and regionally
dependent characteristics. Further detail about instrumenta-
tion is provided in Sect. S1 in the Supplement. A small frac-
tion (0.05 %) of the FEM measurements exceeding 10 times
their standard deviation are indicative of strong fire contam-

ination and present significant modulation on the regional
diel variation pattern and are thus excluded as outliers from
the focus of this study. Also shown in Fig. 1 are the addi-
tional 737 sites using the Federal Reference Method (FRM)
to measure 24 h average PM2.5 concentrations, which signif-
icantly improve the observational coverage of the contigu-
ous US for the evaluation of spatial distribution of GEOS-
Chem simulated PM2.5. To compare with GEOS-Chem, each
site is matched with the GEOS-Chem grid nearest the box
center. The FRM and FEM measurements used in this work
are at 35 %± 5 % relative humidity (EPA, 2007, 2021, 2023;
Thermo Fisher Scientific, 2013). To match the measurement
RH, the GEOS-Chem PM2.5 and its composition were cal-
culated considering the corresponding hygroscopic growth
following standard practice in GEOS-Chem (GEOS-Chem
Aerosols Working Group, 2021).

4 Diel PM2.5 variation in the base GEOS-Chem
simulation and the FEM measurements

We first examine the diel PM2.5 variation in the base simula-
tion. Figure 2a shows the annual mean diel PM2.5 variation
across the contiguous US from the FEM in situ observations
and the space and time co-located base GEOS-Chem simula-
tion. The observed PM2.5 exhibits a typical diel cycle consis-
tent with previous work (Manning et al., 2018). Concentra-
tions peak at 8:00 LT, diminish until late afternoon, increase
in the evening, and remain elevated throughout the night. The
base GEOS-Chem simulation broadly captures these features
with their timings accurate within 1–3 h. The simulated con-
centration decreases from morning to late afternoon and then
increases throughout the evening, consistent with the diel
cycle of growth and collapse of the boundary layer. How-
ever, the simulated PM2.5 is significantly overestimated at
night, especially from midnight to early morning when the
GEOS-Chem PM2.5 increases beyond the standard deviation
of the observations, during which time the observations ex-
hibit a slight decrease. The nighttime model overestimation
leads to a 106 % positive bias in the PM2.5 diel amplitude,
which is defined as the difference between the maximum and
the minimum of the normalized diel concentration. The root
mean square deviation (RMSD) of the annual diel variation
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Figure 1. Spatial distribution of the U.S. EPA PM2.5 measurements. Colored markers represent the Federal Equivalent Method (FEM) sites
equipped with different kinds of instruments which report hourly PM2.5 concentrations. Black squares represent Federal Reference Method
(FRM) sites which report 24 h average PM2.5.

in PM2.5 between the base simulation and the observations
is 2.18 µgm−3. The spatial distribution of PM2.5 in the base
GEOS-Chem simulation is discussed in Sect. S2.

We classify each FEM measurement and the correspond-
ing GEOS-Chem simulation into urban and rural using the
Global Rural–Urban Mapping Project (GRUMP) v1 (Balk et
al., 2006) data at 30 s resolution. Results (Fig. S3) indicate
that the observed diel variations in the PM2.5 in urban and
rural areas across the contiguous US are highly consistent
(r = 0.97). Both urban and rural sites exhibit the same bi-
modal patterns, with PM2.5 peaks near 08:00 and 21:00 LT
and minima near 04:00 and 16:00 LT. The PM2.5 dips near
04:00 and 16:00 LT are deeper over urban regions than over
rural regions, which may reflect stronger vertical mixing
from the urban heat island effect (Travis et al., 2022). The
consistency of diel PM2.5 variation across urban and rural
locations implies a dominant role from natural processes.

Figure 3a shows the annual mean diel variation in the
PM2.5 chemical composition in the base GEOS-Chem sim-
ulation for the contiguous US. Sulfate was the least variant
component throughout the day. All other components exhibit
notably higher concentration at night than during the day.
The pronounced PM2.5 accumulation overnight in the base

case simulation is driven primarily by nitrate, of which the
mass concentrations increase by 34.1 % overnight (00:00–
06:00 LT). This is consistent with the reported overestimation
of nighttime nitrate in GEOS-Chem by recent studies (Miao
et al., 2020; Zhai et al., 2021; Travis et al., 2022). Concen-
trations of ammonium and SOA, which increased by 22.2 %
and 14.2 % overnight (00:00–06:00 LT), contributed to the
overnight PM2.5 accumulation to a lesser extent. Except for
dust, concentrations of all other components increase from
midnight to early morning, indicating that there are uniform
drivers on PM2.5 diel variation across composition.

5 Development of processes affecting simulation of
diel PM2.5

We develop and evaluate the processes affecting the simula-
tion of diel PM2.5 variation in GEOS-Chem with particular
attention to the driving forces of the nighttime bias. We focus
on the temporal resolution of emissions, aerosol dry deposi-
tion, vertical representativeness, boundary layer mixing, dew
formation, and nitrate, as summarized in Table 1.
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Figure 2. (a) Annual mean diel PM2.5 variation over the contiguous
US in 2016. (b) Normalized annual mean diel PM2.5 from GEOS-
Chem (GC) sensitivity simulations over the contiguous US in 2016.
Vertical lines indicate the spatial standard deviations of annual mean
PM2.5 for the FEM measurements at each hour.

5.1 Impacts from the temporal resolution of emissions

We initially examine the temporal resolution of anthro-
pogenic emissions as a source of the nighttime PM2.5 pos-
itive bias identified in Sect. 4. Figure 4 shows the normal-
ized mean diel emission profile for different species in the
hourly version of the NEI inventory. Anthropogenic emis-
sions are notably higher during the day than at night, with
minima from midnight to early morning in the emission in-
tensities for every primary species. The diel amplitude of
SO2 emissions is weakest, driven by persistent power plant
emissions. NH3 emissions have the strongest diel amplitude,
driven by a temperature dependence for this predominantly
agriculturally emitted species over the contiguous US (Zhang
et al., 2018). Figure S4 depicts the normalized mean emis-
sion strengths for species in Fig. 4 both seasonally and re-
gionally. The early afternoon NH3 peak is most prominent
over the central USA in summertime, in accordance with the
temperature-dependent agricultural emissions of NH3. Pri-
mary emissions of particulate organic carbon (OC) have a
peak near 8:00 LT (local time), corresponding to more in-
tense residential heating. The OC emissions in evening are
strongest during winter, reflecting the seasonality of residen-
tial combustion activities (Li and Martin, 2018).

Figure 3. Annual diel profiles of PM2.5 composition over the con-
tiguous US in the GEOS-Chem simulations (Table 1). POA, SOA,
and BC refer to primary organic aerosol, secondary organic aerosol,
and black carbon, respectively. All components represent dry mass.
The aerosol water associated with sulfate, nitrate, ammonium, POA,
SOA, and sea salt is grouped into the water category.

Figure 4. Normalized mean diel emission profile for different
species across the contiguous US.

To evaluate the impacts from temporal resolution of emis-
sions, we conduct a sensitivity simulation GC_Emis (Ta-
ble 1) which replaces the monthly NEI in GC_Base with
the hourly NEI. Figure 2b shows that GC_Emis simulates
a much weaker PM2.5 accumulation from midnight to early
morning relative to GC_Base, mainly due to the lower emis-
sion intensities of aerosol sources throughout the night in the
NEI hourly inventory. In the evening, PM2.5 in the GC_Emis
simulation accumulates slightly faster than in the base case,
reflecting the stronger emissions in daytime after applying
the hourly inventory. The RMSD between GC_Emis diel
PM2.5 and the FEM observations decreases from 2.18 µgm−3

in GC_Base to 1.69 µgm−3, and the positive bias in the diel
amplitude drops from 106 % to 59 %. In terms of composi-
tion (Fig. 3b), the average mass concentrations of BC and
POA overnight (00:00–06:00 LT) decrease by 25.7 % and
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12.9 %, contributing the most to the reduced overnight PM2.5
accumulation. Sulfate concentrations overnight decrease by
only 3.5 %, due to weak day–night contrast in SO2 emis-
sions. Nitrate and ammonium concentrations decrease by
only 7.1 % and 6.3 %, reflecting the relatively minor role of
primary emissions versus secondary production for these two
species. In GC_Emis, nitrate still accumulates notably (by
23.1 %) from 00:00 to 06:00 LT, acting as the major contrib-
utor of the PM2.5 nighttime bias. Overall, the temporal res-
olution of emissions explains 44 % of the bias in simulated
diel amplitude. Daytime PM2.5 is insensitive to changes in
diel emission profiles. During the night, the impacts of emis-
sions on PM2.5 levels are more prominent, especially from
midnight to early morning when the boundary layer is more
stable. From this perspective, the slight overnight reduction
in the PM2.5 in the FEM measurements is likely driven by
the sharp decline in anthropogenic emissions.

The above analysis indicates the importance of using
hourly emissions to simulate diel PM2.5 variation. How-
ever, over most regions worldwide, only monthly emissions
are available, with crude diel scaling factors from specific
regions as a possible proxy for hourly emissions. To as-
sess the performance of such diel scalars in simulating diel
PM2.5, we conducted three supplementary sensitivity simu-
lations in Table S2 in which the sector- or species-specific
diel scaling factors (Fig. S5) are applied to NEI and Com-
munity Emissions Data System (CEDS) monthly emissions.
Results (Fig. S6) show that the average PM2.5 accumulation
overnight (00:00–06:00 LT) among the supplementary cases
is 2.6 times of that in GC_Emis, leading to stronger overes-
timation of PM2.5 overnight. To optimize the model perfor-
mance in simulating diel PM2.5, hourly gridded emissions are
preferred over using monthly emissions with scaling factors.
Nevertheless, the diel emission profile does not fully explain
the diel biases identified in Sect. 4. Other contributing factors
exist.

5.2 Impacts from the dry-deposition parameterizations

We explore dry deposition as the second potential source for
the diel-varying biases in the base GEOS-Chem simulation.
First, as described in Sect. 2.3, the dry-deposition scheme
in the base GEOS-Chem model does not account for gravi-
tational settling Vg, which leads to systematic underestima-
tion in particle dry-deposition velocities. To improve on this
missing consideration, we strictly follow Eq. (1) of Zhang
et al. (2001), thus updating the gravitational settling term Vg
to be explicitly considered when deriving the deposition ve-
locity (Eq. 1). Second, the parameterization of surface resis-
tances (Eq. 2) in the base scheme was developed when few
particle deposition measurements were available. Following
recent observational evidence, Emerson et al. (2020) identi-
fied that the Brownian diffusion Eb in Z01, as used in the
standard GEOS-Chem model, is excessive, while the con-
tribution from interception EIn is too weak. We update the

surface resistances Rs in GEOS-Chem by applying observa-
tionally constrained Brownian diffusion Eb, impaction EIm,
and interception EIn terms, following observational evidence
in Emerson et al. (2020). Formulations of Eb, EIm, and EIn
are updated, following Table 2.

Figure 5a shows Vg as a function of particle diameter for
the base (Vd_Base) and revised (Vd_Revised) parameteri-
zations, as well as according to the Z01 scheme (Vd_Z01).
A comparison of the Vd_Base and Vd_Z01 curves indi-
cates that the inclusion of Vg in the calculation of Vd
for the Vd_Z01 case substantially increases dry-deposition
velocities for particles larger than 2 µm in diameter. The
Vd_Revised curve indicates that implementing observational
constraints on the surface resistances shifts the minimum in
Vd to a particle diameter of around 0.1 µm, thus reflecting a
weakened Brownian diffusion term and an enhanced inter-
ception term. Emerson et al. (2020) found that the parame-
terized size-dependent particle dry-deposition velocities are
more consistent with observations after implementing these
observational constraints. To further evaluate the impact of
the particle Vd on diel PM2.5, the representation of aerosol
size distributions in the dry-deposition scheme of GEOS-
Chem, including hygroscopic growth, must be considered.

As introduced in Sect. 2.3, the dry-deposition scheme in
the standard GEOS-Chem model assigns a single unrefer-
enced mass-weighted mean diameter to different PM2.5 com-
ponents. We update the mass-weighted mean diameter for
each aerosol species that was dry deposited to be consis-
tent with the sizes in the GEOS-Chem radiation module. We
implicitly consider aerosol size distributions based on mass
conservation principles:

∞∫
0

n(Dp) ·
4
3
π

(
Dp

2

)3

· ρ ·Vd(Dp)dDp

=N ·Vd
(
D∗p
)
·

4
3
π

(
D∗p

2

)3

· ρ, (4)

where Dp denotes particle diameter, n(Dp) represents the
particle number size distribution, ρ denotes the particle
density, Vd(Dp) denotes the size-dependent particle dry-
deposition velocity, N denotes the total particle number con-
centration integrated across the aerosol size distribution, D∗p
denotes the mass-weighted mean dry diameter for a specific
aerosol species, and Vd(D∗p ) denotes the dry-deposition ve-
locity of a particle with diameter of D∗p . The size distribu-
tion for each PM2.5 component is from Latimer and Mar-
tin (2019). The updated mass-weighted mean dry diameter is
0.17 µm for sulfate, nitrate, ammonium, and organic aerosols,
is 0.23 µm for fine-mode sea salt, and is 0.67 and 2.49 µm for
the fine-mode mineral dust in two size bins.

The standard GEOS-Chem dry-deposition module only
considers the hygroscopic growth of fine-mode sea salt.
Omitting hygroscopicity for other PM2.5 components may
lead to biases in the simulated dry-deposition velocities and
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Table 2. Formulations for particulate gravitational setting (Vg), Brownian diffusion (EB), interception (EIN), and impaction (EIM) used in
the calculation of deposition velocity (Vd).

Resistance model Vg EB EIN EIM

Vd_Base – Sc−γ
1
2

(
Dp
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)2 (
St

α+ St

)2

Vd_Z01 Vg =
ρD2

pgC

18η
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2

(
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)2 (
St
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Vd_Revised Vg =
ρD2

pgC

18η
0.2Sc−2/3 5

2
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Dp

A

)0.8 2
5

(
St

α+ St

)1.7

A is the characteristic radius for interception in Zhang et al. (2001). C is the Cunningham correction factor. Dp
is the particle diameter. g is the gravitational acceleration constant. Sc is the Schmidt number. St is the Stokes
number. Vg is the gravitational settling velocity. α is the LUC-specific constant used in the impaction
efficiency in Zhang et al. (2001), where LUC represents land use classification. γ is the LUC-specific exponent
used in the Brownian diffusion efficiency in Zhang et al. (2001), which ranges from 0.5 to 0.58. ρ is the
density of the particle. η is the viscosity of air.

Figure 5. (a) Size-resolved particle dry-deposition velocities over the grassland land type from GEOS-Chem. (b) Diel mean dry-deposition
velocities for sulfate aerosol over the contiguous US in 2016. Vd_Base represents the default dry-deposition scheme in the base GEOS-Chem
model (Eq. 3). Vd_Z01 includes the effect of gravitational settling on Vd_Base (Eq. 1). Vd_Revised further implements the observational
constrains on the surface resistance terms, as discussed in Sect. 5.2.

thus affect the diel variation in the PM2.5. Here we implement
hygroscopic growth in the dry-deposition parameterization
for sulfate, nitrate, ammonium (SIA), and organic aerosol
(OA) of PM2.5 by application of a κ-Kohler growth function
to the mass-weighted mean dry diameters (Petters and Krei-
denweis, 2007, 2008, 2013; Latimer and Martin, 2019). Dust
and black carbon are treated as hydrophobic. The κ-Kohler
growth factor is calculated as

GF=
(

1+ κ
RH

100−RH

)
. (5)

The hygroscopicity parameter κ is set as 0.61 for SIA and is
set as 0.1 for OA (Latimer and Martin, 2019). Efflorescence
transitions are considered for the SIA components (Latimer
and Martin, 2019). For fine-mode sea salt, we continue to use
the growth function from Lewis and Schwartz (2006).

Taking the sulfate component in PM2.5 as an example,
Fig. 5b presents the combined impacts of all the updates
above on the diel dry-deposition velocities. Implementation
of the gravitational settling and hygroscopic growth tends
to increase the sulfate dry-deposition velocity, compensat-
ing for the lower revised aerosol dry-deposition velocities,
mainly due to the revised scheme using a smaller mass-

weighted mean dry diameter. The reductions in the depo-
sition velocity in the revised case are more prominent dur-
ing daytime, when the size-dependent surface resistances
dominate the dry-deposition processes. In the revised pro-
file, from midnight to early morning (00:00–06:00 LT), the
dry-deposition velocities are 10.4 % higher than those in the
evening (18:00–00:00 LT), reflecting the stronger aerosol hy-
groscopic growth due to higher relative humidity. We evalu-
ate the impacts on simulated diel PM2.5 masses in GEOS-
Chem as GC_Drydep simulation (Table 1), which adds all
the deposition updates to GC_Emis. Figure 2b shows that the
diel PM2.5 masses simulated by GC_Drydep and GC_Emis
are almost identical. The insensitivity of diel variation in the
PM2.5 to dry-deposition updates implies that the diel PM2.5
biases identified in Sect. 4 are unlikely to be caused by the
uncertainty in the GEOS-Chem dry-deposition module.

5.3 Impacts from the vertical representativeness
differences between model and observations

The third possible contributor to the PM2.5 nighttime biases
that we consider is the vertical representativeness difference
between the model and observations. Given the vertical ex-
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tent of the lowest model level (120 m), simulated concentra-
tions represent an average over a greater vertical extent than
the typical height of FEM measurements of about 2 m. This
difference in vertical representation may be especially prob-
lematic for model–measurement comparison during periods
of diabatic stability, resulting in strong near-surface con-
centration gradients. Vertical concentration gradients within
120 m of the surface have been widely observed for aerosol
species in previous field campaigns (Sievering et al., 1994;
Prabhakar et al., 2017; Franchin et al., 2018). Sievering et
al. (1994) measured the vertical profiles of aerosols over
the Bavarian Forest National Park in Germany using filter
pack sampling and reporting 2 m concentrations lower than
at 51 m for nitrate (51 %), ammonium (81 %), and sulfate
(81 %). In the Utah Winter Fine Particulate Study, the PM2.5
concentrations measured by three ground sites at Logan,
Cache, Salt Lake Valley, and the Utah Valley were around
70 % of those at around 50 m measured by aircraft (Franchin
et al., 2018). Thus, the PM2.5 simulated by GEOS-Chem is
intrinsically different from the FEM in situ measurements be-
cause of the mismatch of vertical sampling location.

To evaluate the impact of these vertical representative-
ness differences, we developed the GC_2 m simulation (Ta-
ble 1) in which PM2.5 from the lowest model level of the
GC_Drydep simulation is adjusted to the height of the FEM
measurements (2 m above ground). The conversion process
quantifies the vertical concentration gradient of secondary
PM2.5 components by using the resistance-in-series formu-
lation for dry deposition, following previous studies (Zhang
et al., 2012; Travis and Jacob, 2019). The mathematical for-
mula is described in Eq. (6), as follows:

C(z2M)= [1−Ra(z2M,zGBC)Vd(zGBC)]C(zGBC), (6)

where C(z2M) and C(zGBC) represent the concentrations
at a measurement height of 2 m and the grid box cen-
ter of the GEOS-Chem surface layer (around 60 m) re-
spectively. Ra(z2M,zGBC) represents the aerodynamic re-
sistances between the measurement height and the grid
box center. Vd(zGBC) represents the dry-deposition velocity.
Ra(z2M,zGBC) is calculated using the Monin–Obukhov sim-
ilarity theory, as follows:

Ra(z2M,zGBC)=

z2M∫
zGBC

8(ζ )
ku∗ζ

dζ, (7)

where ζ = z/L. L denotes the Monin–Obukhov length,
which is determined by surface momentum fluxes and sen-
sible heat. 8 represents a function of stability described by
Businger et al. (1971). k represents the von Karman con-
stant, and u∗ represents the friction velocity. The method re-
quires a boundary condition of zero concentration at ground
level. Thus, it is only applied to secondary PM2.5 compo-
nents and not primary components with surface emission
fluxes. The correction method described by Eqs. (6) and (7)

does not account for the impacts of relative humidity (RH)
and temperature (T ) differences between the lowest model
level and 2 m on thermodynamic partitioning of sulfate–
nitrate–ammonium (SNA) aerosol. Nevertheless, by con-
ducting simulations of the Extended AIM aerosol thermo-
dynamics model (Wexler and Clegg, 2002), using GEOS FP
relative humidity (RH), temperature (T ), and GC_2 m SNA
composition at 2 m and the lowest model level, we found the
impacts are insignificant overall. Higher RH at 2 m leads to
SNA aerosol transition from solid to aqueous form and only
slightly increases the ratio (< 5 %) of the partitioned aerosol
phase in the SNA system, which usually occurs overnight.

Figure 2b shows the normalized annual diel PM2.5 varia-
tion in the GC_2 m across the contiguous US. Comparison of
GC_Drydep and GC_2 m indicates that the vertical correc-
tion effectively suppresses the excessive PM2.5 levels from
midnight to early morning and sustains the daytime concen-
tration variation due to boundary layer mixing. The bias in
diel amplitude of the corrected GC_2 m PM2.5 is reduced
to 26 % against the FEM observations. In terms of absolute
concentrations, the average reduction from GC_Drydep to
GC_2 m is 1.01 µgm−3 during 18:00–06:00 LT (nighttime),
while that for 06:00–18:00 LT (daytime) is 0.11 µgm−3. This
day–night contrast is consistent with a previous DISCOVER-
AQ field study (Prabhakar et al., 2017), in which the vertical
gradient of nitrate aerosols measured by aircraft was signifi-
cantly greater in a stable surface layer than in a turbulent sur-
face layer. At night, under a stable boundary layer, surface
resistances are suppressed due to weaker particle impaction
and interception. Aerodynamic resistances then become rela-
tively stronger, with the resulting correction in Eq. (6) yield-
ing a greater reduction in the PM2.5 concentrations. During
the day, as boundary layer mixing strengthens, surface resis-
tances dominate over the aerodynamic resistances, and the
correction in Eq. (6) is weaker. Resolving the vertical rep-
resentativeness differences enables the GEOS-Chem simu-
lation to better capture the timings of the observed overall
PM2.5 morning peak and afternoon minimum across the con-
tiguous US. In the GC_Drydep simulation, the PM2.5 morn-
ing peak is 3 h earlier than the FEM observations. After the
vertical correction, in the GC_2 m simulation, the morning
peak appears only 1 h ahead of the observations.

5.4 Impacts from boundary layer height

Planetary boundary layer height (PBLH) is investigated as
the next possible source of the biases identified in Sect. 4.
PBLH is closely related to boundary layer mixing, which sig-
nificantly affects diel PM2.5 (Du et al., 2020). We adjust the
GEOS FP planetary boundary layer height (PBLH) which is
used to drive GEOS-Chem by using the PBLH derived from
the Aircraft Meteorological Data Reports (AMDAR) at 54
sites (Fig. S7) across the contiguous US (Zhang et al., 2020)
as reference. The AMDAR PBLH is defined as the lowest
level at which the bulk Richardson number exceeds a criti-
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Figure 6. Seasonal diel variation in the AMDAR (observation
based) and GEOS FP PBLH. Vertical bars indicate the spatial stan-
dard deviations of AMDAR PBLH.

cal value of 0.5 (Zhang et al., 2020). The vertically resolved
bulk Richardson number is calculated from vertical profiles
of temperature, humidity, and wind speed in the AMDAR
dataset.

Figure 6 shows the seasonal variation in PBLH. The ob-
served PBLH from AMDAR shows similar diel variation
across all seasons, which stays low from midnight to early
morning, increases to a maximum in mid-afternoon, and then
decreases throughout the rest of the day. In terms of absolute
amplitude, the AMDAR PBLH is higher during spring and
summer, mainly due to strong near-surface wind speed and
intense solar radiation (Guo et al., 2016). The GEOS FP re-
analysis generally captures the diel variation in the AMDAR
PBLH over all seasons, although with overestimates during
daytime (07:00–19:00 LT), which is consistent as previous
comparison studies (Millet et al., 2015; Zhu et al., 2016). The
daytime overestimation in GEOS FP PBLH is most likely
due to excessive surface heating in the dataset. As reported
in Millet et al. (2015), the daytime temperature at 2 m in
GEOS FP was notably higher than that observed by ceilome-
ter, and the diel pattern of the bias in GEOS FP tempera-
ture at 2 m matched that in the PBLH well. The average day-
time AMDAR PBLH reaches a maximum in spring, which is
slightly higher than that in summer, likely reflecting greater
surface wind speed in spring than in summer according to
the AMDAR observations and leading to greater turbulence
and vertical mixing and higher PBLH. GEOS FP PBLH ex-
hibits much higher values in summer than in spring. This in-
consistency might be caused by a stronger overestimation of
GEOS FP PBLH in summer which is introduced by exces-
sive surface heating in the GEOS FP dataset (Millet et al.,
2015).

To quantify the impacts of the uncertainty in PBLH on
modeled diel PM2.5, we develop the GC_2m_PBLH sim-
ulation (Table 1) in which the GEOS FP PBLH used in
the GC_2 m simulation is adjusted by the AMDAR obser-

vations. Specifically, we matched the hourly AMDAR and
GEOS FP PBLH over the contiguous US spatially and tem-
porally and then derived USA-averaged (00:00–23:00 LT)
adjustment factors for different seasons, following Eq. (8).

AFi,j =
PBLHAMDARi,j

PBLHGEOS FPi,j
, (8)

where AFi,j represents the PBLH adjustment factor for
season i and hour j , PBLHAMDARi,j represents the USA-
averaged AMDAR PBLH for season i and hour j , and
PBLHGEOS FPi,j represents the USA-averaged GEOS FP
PBLH for season i and hour j . Implementing this adjustment
scales the GEOS FP PBLH to the same seasonal diel value as
the AMDAR PBLH over the contiguous US. Applying these
adjustment factors to the GEOS FP PBLH, as shown in blue
and dashed lines in Fig. 2b, reduces the absolute biases in
the simulated PM2.5 diel amplitude against the FEM obser-
vations by 8 %.

5.5 Impacts from dew formation

We also examined the possibility of dew formation as a po-
tential process affecting the diel variation in PM2.5. It was
reported that the condensation process during the formation
of dew involves removal of airborne particles from the at-
mosphere (Polkowska et al., 2008; Muskała et al., 2015).
We considered whether the observed PM2.5 decrease from
midnight to early morning (Fig. 2) might be partly ascribed
to this mechanism and thus contribute to the overestimated
nighttime PM2.5. However, based on two lines of reasoning,
we conclude here that dew formation is unlikely to signifi-
cantly affect the diel PM2.5 mass variations over the contigu-
ous US. First, we examined co-located hourly RH and PM2.5
mass concentrations at 37 sites in 2016 across the contiguous
US. Figure 7 shows four examples. We found no evidence
of correlation of low PM2.5 masses and high nighttime RH
values (r = 0.16 for Johnson, Kansas; r = 0.18 for Jackson,
Missouri; r = 0.13 for Summit, Ohio; r = 0.15 for Jefferson,
Kentucky). Second, the decreases in the PM2.5 overnight are
found sharpest in the western USA, where the average rel-
ative humidity (RH) is lowest among all subregions, which
indicates that dew formation at high RH condition is unlikely
an important driving factor.

5.6 Impacts from nitrate aerosols

In Fig. 3b, hourly emissions reduce nighttime concentrations
of nitrate and organics, primarily reflecting diminished night-
time emissions of NH3, NOx , and organic carbon. Account-
ing for vertical representativeness further reduces nighttime
concentrations of nitrate (Fig. 3c), leading to reduced posi-
tive biases of 24 h averaged nitrate mass against in situ obser-
vations (Fig. S8). Nevertheless, positive nitrate biases remain
in the GC_2m_PBLH simulation (Fig. S8), which has been a
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Figure 7. Co-located relative humidity (RH) and PM2.5 mass concentrations at four example sites. Each point represents the measured hourly
PM2.5 concentration at the measured hourly RH for each site. The RH measurements are provided by the NOAA Local Climatological Data
(LCD) program. The PM2.5 mass concentrations are provided by the U.S. EPA FEM sites.

long-standing issue in GEOS-Chem (Heald et al., 2012; Zhu
et al., 2013). According to recent works (Miao et al., 2020;
Zhai et al., 2021; Travis et al., 2022), uncertainties in aerosol
uptake coefficient for N2O5 and NO2, underestimated dry de-
position of HNO3, and overly shallow nighttime mixing layer
are possible contributors. But none of these fully resolve the
diel biases of nitrates in GEOS-Chem, indicating that the bi-
ases are likely caused by misrepresentation in both chem-
istry and meteorology in the model. Following analyses by
Travis et al. (2022) over Seoul, South Korea, we conducted
sensitivity simulations (Sect. S3) and found that N2O5 hy-
drolysis dominates the nighttime nitrate production (Figs. S9
and S10) in our simulations over the contiguous US, which
is consistent with a previous work (Alexander et al., 2020).
As shown in Fig. S9, turning off N2O5 hydrolysis largely re-
duces the PM2.5 biases from midnight to early morning and
yields a diel PM2.5 variation that is highly consistent with ob-
servations. The bias in simulated nitrate mass concentrations
is also reduced by turning off N2O5 hydrolysis (Fig. S8). The
results indicate that the N2O5 hydrolysis overnight might
be excessive in the model. It is also possible that the per-
formance of the simulation without N2O5 hydrolysis on
aerosols is an indicator of multiple chemical and physical
processes affecting nitrate, as explored by Miao et al. (2020),
Zhai et al. (2021), and Travis et al. (2022). While the full

origins of the GEOS-Chem nitrate bias remain unknown, we
examine the effects of constraining nitrate concentrations on
PM2.5 by developing the GC_2m_PBLH_NIT simulation, in
which the modeled nitrate concentrations are halved from
GC_2m_PBLH to better represent the contiguous US aver-
age of in situ observations (Fig. S8). The bias of the diel am-
plitude of PM2.5 in GC_2m_PBLH_NIT against FEM obser-
vations is reduced to −12 % (Fig. 2). The total aerosol water
concentration decreases by 12.7 % in GC_2m_PBLH_NIT
from GC_2m_PBLH as nitrate is reduced. These results mo-
tivate further investigation of the nitrate bias in GEOS-Chem.

6 Discussion of diel PM2.5 variation in the final
revised GEOS-Chem simulation
(GC_2m_PBLH_NIT)

Overall, updating the temporal resolution of emissions, dry-
deposition parameterizations and boundary layer height and
resolving the vertical representative differences between the
model and observations and constraining nitrate notably im-
proves the diel variation in the PM2.5 in GC_2m_PBLH_NIT
relative to GC_Base for both urban and rural regions
(Fig. S3) in a similar way. In the annual diel comparison
averaged across the contiguous US (Fig. 2), the bias in the
PM2.5 diel amplitude in GC_2m_PBLH_NIT (−12 %) is sig-
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Figure 8. Distribution of simulated and observed PM2.5 features over the FEM sites. (a) Timing of morning peak. (b) Timing of afternoon
minimum. (c) Diel amplitude.

nificantly reduced relative to GC_Base (106 %). The aver-
age observed PM2.5 morning peak and afternoon minimum
are at 08:00 and 15:00 LT, respectively. GC_Base simulates
them with biases of−3 and−1 h, while GC_2m_PBLH_NIT
agrees with observed timing within 1 h. In addition to the av-
erage comparison across the country, we further explore the
performances over all FEM sites. Figure 8 shows histograms
of the timing of the morning peak, of the afternoon minimum,
and of the diel amplitude. At most FEM sites, GC_Base
tends to overestimate the PM2.5 diel amplitude and simu-
lates the PM2.5 diel features too early. By correcting for the
vertical representativeness differences, using emissions with
hourly temporal resolution, adjusting the GEOS FP bound-
ary layer heights, and constraining nitrate concentrations,
these biases are largely addressed in GC_2m_PBLH_NIT
with the distribution in the histogram and thus match the
observations better. The RMSD of diel PM2.5 between
GC_2m_PBLH_NIT and the FEM observations decreases
from 2.18 to 0.75 µgm−3. With the reduced 24 h averaged
PM2.5 concentration, GC_2m_PBLH_NIT also improves the
agreements of annual mean PM2.5 against the FEM/FRM
measurements across the contiguous US (Sect. S2).

Figure 9 shows the diel variation in the PM2.5 in different
seasons and subregions. The observed diel PM2.5 variations
are generally similar to the annual results across the coun-
try, suggesting consistent mechanisms controlling the local
cycles. The observed PM2.5 diel amplitude is smallest dur-
ing summer, as the observed concentrations decrease more
slowly from mid-morning to late afternoon than in other sea-
sons. The GC_2m_PBLH_NIT simulation generally repro-

duces this summer minimum in the diel amplitude, thus im-
proving on GC_Base, which simulates the minimum ampli-
tude in winter, by reducing excess PM2.5 at night, by reduc-
ing PM2.5 precursor emissions, by accounting for vertical
representativeness differences at night, by adjusting bound-
ary layer height using aircraft observations, and by constrain-
ing nitrate. Stronger photochemical production of PM2.5 oc-
curs more during the daytime in summer than other seasons,
which also counteracts the ventilation by boundary layer
mixing. The RMSD between GC_2m_PBLH_NIT and ob-
served diel PM2.5 improves on GC_Base for most seasons
and subregions (Table S1 in the Supplement).

Overall, we find that the driving forces of the typical diel
PM2.5 mass variation over the contiguous US reflects a com-
plex interplay of planetary boundary layer dynamics, emis-
sions, and photochemistry. The initial concentration peak in
the mid-morning occurs as combustion activities are emit-
ted into a shallow mixed layer. Subsequent ventilation by
vertical mixing dominates as the boundary layer develops,
leading to a decrease in PM2.5 until late afternoon, despite
the enhanced photochemical production. The subsequent col-
lapse at the mixed layer during sunset confines PM2.5 emis-
sions to the surface layer, with a relative higher but dimin-
ishing concentration throughout the night as low nocturnal
emissions foster a concentration minimum or flatness be-
tween midnight and early morning (Fig. 9). To further re-
veal the underlying driving forces, we focus on several exam-
ple sites on which GC_2m_PBLH_NIT reproduces the ob-
served overnight PM2.5 variation well. Figure 10 shows four
example sites, where the PM2.5 concentrations overnight in
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Figure 9. Seasonal and regional diel profiles of GEOS-Chem PM2.5 from different simulation designs (Table 1). Vertical lines indicate the
spatial standard deviations of seasonal mean PM2.5 for the FEM measurements at each hour in a certain subregion.

the GC_Base simulation are substantially overestimated. By
accounting for the hourly variation in anthropogenic emis-
sions, in GC_Emis, the simulation starts to successfully re-
produce the PM2.5 decrease or flatness overnight. By further
correcting for the vertical representativeness differences, ad-
justing the boundary layer height, and constraining nitrate,
in GC_2 m, GC_2m_PBLH, and GC_2m_PBLH_NIT, the
simulations more closely represents the FEM measurements.
These sensitivity simulations reinforce the notion that the
internal driving forces of the PM2.5 minimum or flatness
from midnight to early morning reflect a combination of the
decrease in the anthropogenic emissions by weaker anthro-
pogenic activities, while resolving the vertical representa-
tiveness differences between model and observations.

Despite the pronounced improvement in simulating the
PM2.5 diel variation, positive biases remain in early morn-
ing in most regions and seasons (Fig. 9). The regional and
seasonal variation in PM2.5 chemical composition offers in-
sight (Fig. S11). Nitrate appears to be an important contribu-
tor to the bias, which is not fully understood, as discussed
in Sect. 5.6. Insufficient vertical and horizontal resolution

in our simulations to fully resolve the nocturnal stratifica-
tion and horizontal source separation (Zakoura and Pandis,
2018; Boys, 2022) are possible contributors. The remaining
evening bias in the spring, summer, and winter in central
USA could reflect the possible underestimation of residen-
tial emissions in NEI (Trojanowski et al., 2022). Figure S4
shows that the OC emissions as relevant indicators of resi-
dential combustion are the weakest in the evenings for spring,
summer, and winter in central USA.

In summary, emissions, vertical representativeness differ-
ences between model and observations, boundary layer mix-
ing, and nitrate are found to be the top four contributing fac-
tors of the diel biases in GEOS-Chem PM2.5. Dry deposi-
tion and scavenging by the formation of dew are relatively
unimportant. The vertical correction for the representative-
ness differences by using the resistance-in-series method is
critical for improving the simulation of the PM2.5 diel ampli-
tude and capturing the timings of the observed PM2.5 morn-
ing peak and afternoon minimum, thus indicating the signif-
icance of vertical resolution of GEOS-Chem for simulating
the diel PM2.5 variation. Reducing the daytime positive bi-
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Figure 10. Diel PM2.5 mass variation in the GEOS-Chem simulations (Table 1) and the in situ measurements over four example FEM sites.

ases in GEOS FP PBLH and improvements in the diel repre-
sentation of residential combustion may be useful to further
improve the diel PM2.5 in GEOS-Chem. In addition to the
above impacting factors, we emphasize the necessity of con-
ducting simulations at a fine spatial resolution to resolve pro-
cesses affecting diel variation in PM2.5 concentrations. Com-
parison of the GEOS-Chem simulations at 0.25◦× 0.3125◦

and 2◦× 2.5◦ against the FEM observations (Fig. S12) re-
veals that a higher spatial resolution better enables the model
to reproduce the observed diel PM2.5 variation through re-
ducing the excessive PM2.5 accumulation during nighttime
(18:00–06:00 LT). At the coarse spatial resolution, the sim-
ulated PM2.5 mass concentrations increase by 36.3 % from
18:00 to 06:00 LT, which is greater than the observed 5.8 %
increase. At the finer spatial resolution, that nighttime in-
crease in the PM2.5 mass concentrations reduces to 20.3 %.
The recent advances to the GEOS-Chem High-Performance
(GCHP) model with stretched grid capabilities (Bindle et al.,
2021; Martin et al., 2022) enables a higher spatial resolution
than 0.25◦× 0.3125◦, which could offer improved represen-
tation of resolution-dependent processes in future analyses.

7 Conclusions

In this work, we used the GEOS-Chem model in its nested
configuration to interpret the observed diel variation in PM2.5
concentration for the contiguous United States. We identi-
fied and addressed several biases of the base GEOS-Chem
simulation of the diel variation in the PM2.5 mass concentra-
tions. (1) The simulated PM2.5 accumulation overnight was

excessive in the base simulation, which disagreed with the
observed concentration decrease or flatness from midnight to
early morning, leading to a significantly overestimated PM2.5
diel amplitude in the model. (2) The simulated timings of
the PM2.5 morning peak and afternoon minima were notably
earlier relative to the in situ observations, especially for the
morning peak (3 h earlier).

To reveal the contributing factors to the diel PM2.5 biases
in the base simulation, we conduct sensitivity simulations in
which we (1) increased the temporal resolution of anthro-
pogenic emissions from monthly to hourly, (2) updated the
dry-deposition scheme, (3) resolved the vertical representa-
tiveness differences between the model and the observations,
(4) corrected for the diel biases in the boundary layer heights
of the model, (5) explored the impacts from dew formation,
and (6) examined the role of aerosol nitrate.

We found that several developments aided the representa-
tion of the PM2.5 diel variation in the GEOS-Chem model.
Hourly representation of emissions decreased normalized
PM2.5 concentrations at night, with increases during the day.
Accounting for vertical representativeness differences be-
tween the GEOS-Chem surface layer of 120 m and the mea-
surement height of 2 m further decreases PM2.5 at night,
leading to better representation of the timing of the morn-
ing peak (∼ 07:00 LT) and afternoon minimum. Develop-
ments to the dry-deposition scheme aided a mechanistic rep-
resentation of the gravitational settling and its hygroscopic
dependence, although with negligible effects on the PM2.5
diel variation. A reduction in the simulated PBLH to repre-
sent aircraft observations also aids agreement with observed
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PM2.5 diel variation. These improvements also partially ad-
dressed a long-standing issue of a positive bias in simulated
nitrate concentrations, but additional constraints from nitrate
observations were necessary to represent diel PM2.5 varia-
tion. The slight PM2.5 decrease/flatness overnight is more
likely caused by diminished emissions, rather than enhanced
dry deposition (Zhao et al., 2009) or dew events (Sect. 5.5).
Hourly anthropogenic emissions are important for GEOS-
Chem to accurately simulate diel PM2.5 variation. Using
monthly emissions combined with sector- or species-specific
diel scaling factors instead can lead to higher PM2.5 posi-
tive biases overnight. Resolving the vertical representative-
ness differences introduced by the subgrid vertical gradient
of PM2.5 in the surface model level contributed to captur-
ing timings of PM2.5 diel variation. Overall, the mean diel
variation in PM2.5 for the contiguous US is attributed to
(1) growth in PM2.5 concentrations by 10 % from early morn-
ing (04:00 LT) to mid-morning (08:00 LT), which is driven
by increasing emissions into a shallow mixed layer; (2) a
subsequent decline in PM2.5 concentrations by 22 % from
mid-morning (08:00 LT) to late afternoon (15:00 LT) during
growth of the mixed layer; (3) a rapid increase in PM2.5 by
30 % from late afternoon (15:00 LT) to evening (22:00 LT)
as emissions persist into a collapsing mixed layer; and (4) a
subsequent weak decline in PM2.5 concentrations by 10 %
as emissions diminish overnight (22:00–04:00 LT). Despite
the advances in representing and understanding PM2.5 diel
variation, minor biases remain. A more mechanistic repre-
sentation of nitrate is needed. The importance of the vertical
resolution in representing PM2.5 diel variation identifies an
advantage to be offered by a forthcoming GEOS-6 dataset,
with a planned doubled number of vertical levels in the plan-
etary boundary layer compared to GEOS FP (NASA, 2012).
Recent advances in the horizontal resolution of GEOS-Chem
(Bindle et al., 2021; Martin et al., 2022) should also enable
simulations with a finer spatial resolution to further improve
the diel performances.

Code and data availability. The hourly FEM and 24 h aver-
age FRM PM2.5 in situ measurements are available at https:
//aqs.epa.gov/aqsweb/airdata/download_files.html (Environmental
Protection Agency, 2023b). The hourly RH measurements at
four example sites in Fig. 6 are available at https://www.ncei.
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