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Abstract. Ensemble predictions of atmospheric dispersion that account for the meteorological uncertainties in
a weather forecast are constructed by propagating the individual members of an ensemble numerical weather
prediction forecast through an atmospheric dispersion model. Two event scenarios involving hypothetical atmo-
spheric releases are considered: a near-surface radiological release from a nuclear power plant accident and a
large eruption of an Icelandic volcano releasing volcanic ash into the upper air. Simulations were run twice-
daily in real time over a 4-month period to create a large dataset of cases for this study. The performance of the
ensemble predictions is measured against retrospective simulations using a sequence of meteorological fields
analysed against observations. The focus of this paper is on comparing the spread of the ensemble members
against forecast errors and on the calibration of probabilistic forecasts derived from the ensemble distribution.
Results show good overall performance by the dispersion ensembles in both studies but with simulations
for the upper-air ash release generally performing better than those for the near-surface release of radiological
material. The near-surface results demonstrate a sensitivity to the release location, with good performance in
areas dominated by the synoptic-scale meteorology and generally poorer performance at some other sites where,
we speculate, the global-scale meteorological ensemble used in this study has difficulty in adequately capturing
the uncertainty from local- and regional-scale influences on the boundary layer. The ensemble tends to be under-
spread, or over-confident, for the radiological case in general, especially at earlier forecast steps. The limited
ensemble size of 18 members may also affect its ability to fully resolve peak values or adequately sample outlier
regions. Probability forecasts of threshold exceedances show a reasonable degree of calibration, though the over-
confident nature of the ensemble means that it tends to be too keen on using the extreme forecast probabilities.
Ensemble forecasts for the volcanic ash study demonstrate an appropriate degree of spread and are generally
well-calibrated, particularly for ash concentration forecasts in the troposphere. The ensemble is slightly over-
spread, or under-confident, within the troposphere at the first output time step 7' 4 6, thought to be attributable
to a known deficiency in the ensemble perturbation scheme in use at the time of this study, but improves with
probability forecasts becoming well-calibrated here by the end of the period. Conversely, an increasing tendency
towards over-confident forecasts is seen in the stratosphere, which again mirrors an expectation for ensemble
spread to fall away at higher altitudes in the meteorological ensemble. Results in the volcanic ash case are also
broadly similar between the three different eruption scenarios considered in the study, suggesting that good
ensemble performance might apply to a wide range of eruptions with different heights and mass eruption rates.
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1 Introduction

Uncertainty is an inherent feature of atmospheric dispersion
problems, both in terms of how an initial release of material
into the atmosphere is specified and in modelling the sub-
sequent evolution of that material. It is important for us to
acknowledge these uncertainties and their influences and to
work towards improving their representation when develop-
ing and applying our models of atmospheric dispersion pro-
cesses. The uncertainty is introduced partly by our incom-
plete knowledge or understanding of a problem (a lack of in-
formation), but there is also an irreducible uncertainty arising
from the stochastic nature of many physical processes. This
stochastic uncertainty occurs at the small turbulent scales
not explicitly resolved by our modelling system, but it also
emerges at larger scales due to the chaotic nature of the evo-
lution of our atmosphere.

The origin of uncertainties when modelling atmospheric
dispersion for emergency preparedness and response applica-
tions (Rao, 2005; Leadbetter et al., 2020; Korsakissok et al.,
2020; Sgrensen et al., 2020; Le et al., 2021) can be grouped
into three main categories. Firstly, there is uncertainty in the
description of the source terms (Sgrensen et al., 2019; Dio-
guardi et al., 2020), which may include aspects such as the
release location, height, timing, species and quantities re-
leased, particle sizes, etc. This type of uncertainty can be
particularly acute during the early stages of an incident when
little may be known about the event, but, as the event un-
folds and more detailed information becomes available, im-
proving knowledge can help to reduce this uncertainty. The
second category is uncertainty in the meteorology, especially
when forecasts are being produced for several days into the
future. This is the focus of the current paper. The use of en-
semble forecasting techniques has become the standard ap-
proach for representing uncertainty in weather forecasting
(Buizza and Palmer, 1995) and is increasingly being applied
in other fields where there is a dependence on the meteorol-
ogy, such as for flood forecasting (Cloke and Pappenberger,
2009; Golding et al., 2016; Arnal et al., 2020) or forecast-
ing of coastal storm surges (Flowerdew et al., 2009). Thirdly,
consideration needs to be given to the limitations and approx-
imations used within the dispersion model itself, including
the choice of parametrisation schemes and values for inter-
nal model parameters. Model sensitivity studies can help ex-
plore this parameter space and better understand behavioural
characteristics of the model (Harvey et al., 2018; Leadbetter
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et al., 2015; Dacre et al., 2020). Going beyond the dispersion
modelling, there will, of course, also be uncertainties when
assessing downstream “impacts”, e.g. when performing dose
assessments or evaluating potential counter-measures for a
radiological incident.

The relative importance of the three types of uncertainty
will vary depending on the particular circumstances of an in-
cident. On occasions, large uncertainties may exist in initial
source estimates and will dominate the dispersion model pre-
dictions, while at other times, better constrained estimates of
the source term may be available. The degree of uncertainty
in the meteorological forecast will vary from day to day and
from place to place, depending on the synoptic weather situa-
tion. Sometimes there is high confidence in the forecast evo-
lution for several days ahead, while on other occasions fore-
cast errors can grow rapidly in the first day or two, leading to
a wide range of potential future weather patterns. As with the
source-term uncertainty, the meteorological uncertainty is re-
duced as more information becomes available in the form of
updated weather forecasts and eventually a collection of me-
teorological fields that have been analysed against observa-
tions for the full time period of interest. Potential errors aris-
ing from the dispersion model itself can be difficult to quan-
tify objectively during an incident. Model limitations can be
explicit (where relevant processes are not represented in the
model) or implicit (where processes are represented but only
in an approximate or limited way). It is important to consider
whether modelling options are appropriate for a given inci-
dent and any consequences such choices may incur.

Interactions between different types of uncertainty can
also be important on occasions. For instance, uncertainty in
release time for a source could interact strongly with, say,
meteorological uncertainty in the timing of a frontal passage.
In a similar vein, uncertainty in the height of a release can
combine with uncertainty in wind shear behaviour related to
the vertical wind profile or might determine whether a release
occurs within the boundary layer or above it. These examples
highlight why a “holistic”” approach combining uncertainties
is beneficial, though such an aim is recognised to be quite
a difficult challenge in practice, as some components of the
dispersion problem might be poorly understood and their un-
certainties poorly constrained.

Various approaches are available to represent, and help us
to understand, uncertainties in atmospheric dispersion mod-
elling, with ensemble-based techniques being widely used.
Multi-model ensembles (Galmarini et al., 2004; Draxler et
al., 2015) take advantage of the independence of their con-
tributory models, although the models might be based on
similar principles or use common sources for input data.
Running a single dispersion model with perturbed inputs
(for meteorology, sources, etc.) is an alternative strategy
(e.g. Straume et al., 1998, and Straume, 2001). Galmarini et
al. (2010) demonstrated that a single dispersion model using
an ensemble meteorological forecast could give comparable
performance to a multi-model approach. The use of disper-
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sion ensembles has become increasingly common in recent
years (Sigg et al., 2018; Zidikheri et al., 2018; Maurer et al.,
2021) with enhancements to computing power making such
approaches now viable for operational implementations.

In weather forecasting, ensemble prediction systems first
became operational in the early 1990s, with pioneering
global ensemble forecasts issued by the European Centre
for Medium-Range Weather Forecasts (ECMWF; Buizza and
Palmer, 1995; Buizza et al., 2007) and the National Cen-
ters for Environmental Prediction (NCEP; Toth and Kalnay,
1993). Over subsequent decades, many other operational
centres have developed and now routinely run global and
high-resolution regional ensemble systems (Met Office; Ten-
nant and Beare (2014), Canadian Meteorological Centre;
Buehner, 2020). The development of ensemble forecasting
represented a paradigm shift in numerical weather prediction
(NWP), in which a range of possible future weather scenar-
ios is presented, not just a single realisation, giving users an
assessment of confidence in forecasts and allowing them to
make informed decisions based on a range of possible out-
comes including extremes. While uptake has been slower
for ensemble-based dispersion modelling, the approach has
started to become more widely adopted over recent years,
recognising the fact that considering uncertainties in the
modelling process helps to guard against making inappropri-
ate decisions based on a single erroneous deterministic pre-
diction. A number of studies have been carried out using en-
semble dispersion model simulations of specific events for
post-event analysis (e.g.,Sgrensen et al., 2016; Zidikheri et
al., 2018; Crawford et al., 2022; Folch et al., 2022), but only
a few centres currently have a capability to produce real-time
ensemble-based dispersion forecasts in an operational envi-
ronment (Dare et al., 2016).

A difficulty with validating dispersion simulations is that
we often have little or no ground truth to verify against. Real-
world data involving atmospheric releases, either accidental
or in planned dispersion experiments, are limited, and ob-
servations will vary in their types and quality. For this rea-
son, atmospheric dispersion predictions are often evaluated
against a model simulation using “analysis” meteorology, as
is a standard practice in the verification of numerical weather
prediction forecasts (WMO, 2019, Appendix 2.2.34; Hotta
et al., 2023). While there may be concerns with the approach
not representing true reality, it does allow sampling over a
broad range and variability in weather situations and in a
manner that the dispersion model responds to, and is sen-
sitive to, these different conditions (e.g. due to the changing
influence of meteorological (met) variables in the dispersion
model parameterisations). Building up verification measures
over a large sample of events is also especially important
when verifying probabilistic forecasts due to the extra “di-
mension” of the probability threshold appearing in the anal-
ysis.

The aim in this paper is to explore meteorological forecast
uncertainty propagated from an ensemble prediction system
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through an atmospheric dispersion model, with a particular
focus on investigating the spread and calibration of the re-
sulting ensemble of atmospheric dispersion predictions. We
use the dispersion model NAME (Numerical Atmospheric-
dispersion Modelling Environment; Jones et al., 2007) with
ensemble meteorological forecasts taken from the global
configuration of the MOGREPS (Met Office Global and
Regional Ensemble Prediction System; Tennant and Beare,
2014) operational weather forecasting system. The paper
builds on results presented in Leadbetter et al. (2022), which
included an assessment of the skill of these ensemble dis-
persion predictions relative to deterministic forecasts using
the Brier skill score. It was shown that the ensemble disper-
sion forecasts are, on average, more skilful than a single dis-
persion prediction based on a deterministic meteorological
forecast, although there are still occasions when the single
deterministic forecast can give a better prediction. The rel-
ative benefit of the ensemble predictions over deterministic
forecasts, as indicated through the Brier skill score, was also
shown to be larger at later forecast time steps. In the present
paper, these ensemble dispersion predictions are analysed in
a different manner to assess how well the uncertainty in me-
teorology is captured in terms of the spread created in the
atmospheric dispersion ensemble realisations and to explore
how well calibrated our probabilistic predictions are based
on these dispersion ensembles. Le et al. (2021) and Ulimoen
et al. (2022) consider similar aspects of dispersion ensemble
predictions in the context of the Fukushima Daiichi nuclear
power plant accident in 2011 but compare their model predic-
tions against measurements recorded at monitoring stations
and subsequent survey data. Meanwhile, El-Ouartassy et al.
(2022) evaluate the performance of short-range ensemble
dispersion simulations using $Kr measurements recorded
downwind of a nuclear fuel reprocessing plant during a 2-
month field campaign.

Two synthetic case studies involving hypothetical releases
of material into the atmosphere are investigated: a near-
surface release and an upper-air release. We have then chosen
a nuclear power plant accident scenario and a large volcanic
eruption as specific examples that fulfil these two criteria.
As these are hypothetical events, there are no corresponding
observational data available for forecast validation, and, as
noted above, the choice can be made to validate predictions
against equivalent model simulations produced using anal-
ysis meteorological fields. While this synthetic approach is
driven by a general lack of suitable observational datasets for
release events of this type, the method does facilitate analy-
sis of a large collection of forecasts, which, as already men-
tioned, is important for a robust verification of these ensem-
ble forecasts. Our extensive dataset is used to explore vari-
ous aspects of the ensemble behaviour (e.g. it is possible to
compare results for different locations or different meteoro-
logical conditions), although it is recognised that our limited
modelling period and extent of geographical region are still
not sufficient for comprehensive analysis, such as examin-
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ing seasonal variations or the influence of different synoptic
weather regimes or the different climatology in other regions
of the world.

Section 2 discusses the methodology and experiment
design and introduces the atmospheric dispersion model,
NAME, and the ensemble NWP system, MOGREPS-G, used
in this study. This section also describes verification methods
and metrics used to assess the performance of the ensem-
ble simulations. Results for the radiological and volcanic ash
case studies are presented in Sect. 3 and discussed further in
Sect. 4. Finally, a summary and some concluding remarks are
given in Sect. 5.

2 Method

This section introduces the modelling systems used in the
study, as well as the experiment design and methodology.
The verification methods used to assess ensemble perfor-
mance will also be described. Our methodology adopts a ver-
ification by analysis approach, which as discussed above is a
technique commonly used in the verification of NWP fore-
casts. In this method, model forecasts are evaluated against
model analyses that incorporate later observational data and
may be regarded as an optimal estimate of the atmospheric
state from that model. Often the same model will be used
to provide a verifying analysis, though one downside to this
is that any model biases that might be present will be com-
mon to both the forecasts and the analyses. As an alternative,
an independent model can be applied to supply the verify-
ing analysis. For the dispersion modelling in this study, we
verify ensemble NAME predictions against NAME simula-
tions generated retrospectively using an analysis dataset de-
rived from the sequence of global deterministic forecasts as
described below.

2.1 Models
2.1.1  Atmospheric dispersion model — NAME

The Numerical Atmospheric-dispersion Modelling Environ-
ment, NAME, is the Met Office’s atmospheric dispersion
model (Jones et al., 2007) designed to predict the atmo-
spheric transport and deposition to the ground surface of both
gaseous and particulate substances. Historically NAME has
been a Lagrangian particle model, though recent versions
also incorporate an Eulerian model capability (not used in the
present study). The Lagrangian approach uses Monte Carlo
random-walk techniques to represent turbulent transport of
pollutants in the atmosphere. Processes such as dry and wet
deposition, gravitational settling, and radiological decay can
be represented in the model.

NAME was originally developed as a nuclear accident
model in response to the Chernobyl disaster, and it contin-
ues to have an important operational role within UK and
international frameworks for responding to radiological in-
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cidents (Millington et al., 2019). It is also the operational
dispersion model used by the London Volcanic Ash Advi-
sory Centre (VAAC) in response to large-scale volcanic erup-
tions to provide guidance to the aviation industry on the lo-
cation and concentration of volcanic ash clouds (Beckett et
al., 2020). NAME also has a wide range of other uses in
emergency response and research applications, including the
modelling of the airborne spread of animal diseases and plant
pathogens, haze modelling and wider air quality forecasting
applications, and inverse modelling for source identification
purposes.

2.1.2 Numerical weather prediction model — MetUM

Meteorological input fields for NAME are taken from the
Met Office’s operational numerical weather prediction sys-
tem, MetUM (Walters et al., 2019). For this study, meteoro-
logical data are provided by the global ensemble and global
deterministic model configurations, as described below.

Ensemble meteorological forecasts are taken from the
global configuration of the Met Office Global and Regional
Ensemble Prediction System (MOGREPS-G) — an ensemble
data assimilation and forecasting system developed and run
operationally at the Met Office (Tennant and Beare, 2014).
The MOGREPS-G global ensemble produces 18 forecast
members at each cycle and runs four times per day at 00:00,
06:00, 12:00, and 18:00 UTC, although only the forecasts at
00:00 and 12:00 UTC have been used to generate dispersion
ensembles for the purposes of this study. A horizontal grid
spacing of 0.28125° latitude by 0.1875° longitude is used
(approximately equivalent to a spatial resolution of 20 km at
mid-latitudes), and there are 70 model levels in the vertical
extending from the surface to a model top at 80 km (only the
lowest 59 vertical levels extending to an approximate altitude
of 30km are used for the NAME simulations). The temporal
resolution of meteorological fields produced for NAME is
3 hourly.

At the time of this study, initial conditions for the global
ensemble were obtained from the global deterministic 4D-
Var data assimilation system, with perturbations added to
represent initial condition uncertainty using an ensemble
transform Kalman filter (ETKF) approach. Structural and
sub-grid-scale sources of model uncertainty were repre-
sented using stochastic physics schemes that perturb tenden-
cies of model variables such as temperature. The ensemble is
optimised for error growth at all forecast lead times, though
it is primarily designed for short- to medium-range forecast-
ing applications. It is recognised that the ETKF perturba-
tion scheme in use at the time of this study tended to pro-
duce forecasts with too little spread (Inverarity et al., 2023),
a common shortcoming often seen with ensemble predic-
tion systems. The current paper explores the extent to which
under-dispersion is seen in dispersion modelling applications
of these ensemble forecasts.
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Meteorological fields produced by the global determinis-
tic configuration (Walters et al., 2019) of the MetUM model
are also used in this study for the purposes of verifying
the ensemble dispersion simulations. The global determin-
istic model uses the same 70-level vertical level set as the
global ensemble but has a horizontal resolution that is twice
that used for the global ensemble, with a grid spacing of
0.140625° latitude by 0.09375° longitude (equivalent to a
spatial resolution of approximately 10 km at mid-latitudes).
As with the ensemble, the deterministic model runs four
times per day, producing two full forecasts (out to 168 h) at
00:00 and 12:00 UTC and two short “update” forecasts (out
to 69h) at 06:00 and 18:00 UTC. For this study, these high-
resolution global deterministic forecasts are only being used
to provide an analysis meteorological dataset for producing a
verifying NAME simulation of each release event. This anal-
ysis dataset is constructed by stitching together a sequence
of successive short-range forecasts comprising the first 6 h of
each global forecast cycle.

The simulated releases begin 6 h after the nominal initial-
isation time of each ensemble meteorological forecast. This
choice partly reflects the typical delay of several hours that
exists in the availability of real-time forecasts from the nom-
inal model initialisation time, but it was also chosen to avoid
giving an unfair advantage to any dispersion simulations pro-
duced with the deterministic forecasts in Leadbetter et al.
(2022) as these would otherwise have been verified against
simulations using the same meteorological fields.

2.2 Experiment design

The paper examines two atmospheric release scenarios: a ra-
diological release in the boundary layer and a volcanic erup-
tion emitting ash into the upper air. Brief details of the mod-
elling set-up are summarised below; see Leadbetter et al.
(2022) for a more comprehensive description of the exper-
iment design.

2.2.1 Modelling configuration for radiological release

The first scenario considers an accidental release of ra-
diological material from a nuclear power plant. For the
purposes of this study, a simplified hypothetical release
of 1PBq (= 1013 Bq) of caesium-137 (Cs-137) is modelled.
The source term releases material into the atmosphere uni-
formly between the ground level and an elevation of 50 m at
a constant rate over a 6 h time period. The caesium-137 is
carried on small (non-sedimenting) particles which are sub-
ject to dry and wet deposition processes and to radiological
decay (though the half-life decay of 30 years is negligible
on the timescales considered here). All simulations consider
a maximum plume travel time of 48 h from the start of the
release so as to consider the effects of meteorological uncer-
tainty during an initial response to a radiological accident.
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An extensive collection of NAME simulations are pro-
duced for 12 release sites across Europe (see Fig. 1) over a
5-month period from 2 November 2018 to 1 April 2019, de-
signed to sample a range of different geographical locations
and meteorological scenarios. Note that these are not loca-
tions of known nuclear facilities but are instead chosen to
represent various topographical situations that could be sub-
ject to coastal effects, flow channelling by terrain, etc. and to
sample variations in European climatology. Some sites such
as Mace Head, Ireland, are usually well-exposed to synoptic-
scale meteorological influences, whereas other sites may be
more sheltered or might be expected to see more influence
from regional effects. The simulations were performed using
the 00:00 and 12:00 UTC ensemble forecasts for every day
in the period of the experiment. Each release starts 6 h after
the meteorological forecast data initialisation time.

Computational constraints on compute resource and data
storage have limited the study to a 5-month period of fore-
casts for a small number of mid-latitude sites in the Euro-
pean region (though our dataset is still very extensive when
compared with any other ensemble dispersion study to date).
As a technical note, even with the above constraints, the
full study (radiological and volcanic ash scenarios) involved
over 20 000 individual NAME simulations, using over 15 000
node hours of high-performance computing (HPC) and col-
lectively producing over 4 TB of model output data. Ideally
several years of simulations and at a wider range of locations
(e.g. including the tropics) would be needed to effectively
sample the variability in meteorological conditions more uni-
versally.

Model output requested for the radiological scenario in-
cludes 1 h mean air concentration and 1 h deposition for each
hour of the simulation, as well as total time-integrated air
concentration and total accumulated deposition at the end of
the 48 h forecast period. All quantities are output on a reg-
ular latitude-longitude grid with a nominal grid resolution
of 10km and with air concentration averaged over the near-
surface (0—100 m) layer.

2.2.2 Modelling configuration for volcanic ash release

The second scenario considers the case of a large volcanic
eruption of an Icelandic volcano. Three hypothetical erup-
tion scenarios are examined: an eruption of the Hekla vol-
cano (63.99°N, 19.67° W), summit elevation 1490 ma.s.1.
(above sea level), releasing ash to an altitude of 12 km and an
eruption of the Oraefajokull volcano (64.00° N, 16.65° W),
summit elevation 2010 ma.s.l., with eruption altitudes of 12
and 25km (see Fig. 1). These three different cases are de-
signed to sample possible eruption scenarios, albeit in a very
limited manner. The two 12 km scenarios will test that results
are not overly sensitive to small differences between broadly
similar eruptions (in this case, there is a ca. 150 km lateral
offset between the two volcanoes and their summit heights
differ by ca. 500 m, introducing a factor of 2.5 difference in
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Geographical extent of model output grids and locations of hypothetical release sites
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Figure 1. Geographical coverage of NAME output grids and locations for hypothetical releases: radiological case study (a) and volcanic ash

case study (b).

the mass of ash released). The third scenario then represents
a much larger eruption event. To represent a range of dif-
ferent meteorological conditions, NAME simulations were
produced for the three eruption scenarios every 12 h over the
period from 12 November 2018 to 1 April 2019 (though tech-
nical issues resulted in the loss of some simulations on two
days during the study period). As with the radiological study,
each release starts 6 h after the meteorological forecast data
initialisation time.

All simulations use a model configuration based on the
operational set-up used at the London Volcanic Ash Advi-
sory Centre (VAAC) (Beckett et al., 2020). Each simulation
covers a 24h period from the start of the eruption, repli-
cating the duration of formal forecast products produced by
the VAACs. The eruption source term is assumed to be con-
stant throughout the model run. Mass eruption rates are deter-
mined using a relationship proposed by Mastin et al. (2009)
between the height of the eruption column and the erupted
mass flux and with the additional assumption that 5% of
emitted ash is fine enough to remain in the distal plume
and be transported over long distances in the atmosphere.
Consequently, each scenario uses a different mass eruption
rate (Hekla 12km: 8.79 x 10'2 gh™!; Oraefajokull 12km:
3.56 x 10'2 gh~!; Oraefajokull 25 km: 1.13 x 10" gh=1). In
particular, the 25 km eruption releases an order of magnitude
more ash than the two lower-level eruptions.

Airborne ash concentrations, ash column loads, and accu-
mulated ash deposits were output at 3-hourly intervals on
a regular grid with a spatial resolution of 0.314° longitude
by 0.180° latitude (equivalent to approximately 20 km). Ash
concentrations are output for three height levels in the at-
mosphere (FL000-200, FL200-350, FL350-550) by follow-
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ing the same processing procedure as employed by the Lon-
don VAAC (Webster et al., 2012). Here, ash concentrations
are first averaged over thin atmospheric layers of depth 25 FL.
(FL: flight level), equivalent to 2500 ft in the standard ICAO
atmosphere, and then the maximum ash concentration is se-
lected from the thin layers that make up each of the three
thick layers. In other words, the thick-layer outputs represent
the peak ash concentrations that might occur at some altitude
within each of the three altitude ranges.

2.3 \Verification methods and metrics

Forecast verification is more subtle with probabilistic fore-
casts than with deterministic predictions, as any single fore-
cast is neither “right” nor “wrong” but has to be judged in
the context of a wider collection of cases when similar fore-
casts are made. The requirement for adequate sampling is
also more costly for probabilistic forecasts, as they have an
extra “dimension” of the probability threshold, so their de-
mands on sample size are typically greater than those for de-
terministic forecasts.

There are established methods for the verification of en-
semble forecasts (see Wilks, 2019), which, in the broadest
sense, assess compliance with the ensemble consistency con-
dition that underpins the use of the ensemble for probabilistic
predictions. These methods allow features of the ensemble
performance, such as forecast calibration, to be explored and
can be used to identify problems in the predictions such as
a lack of spread or the presence of systematic biases. There
are, however, some subtleties in applying the techniques to
dispersing plumes, in particular, due to the compact nature of
plumes from a localised source. For instance, the question is
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raised of how to define the area over which contingency table
metrics are evaluated because any verification measures that
take account of “correct rejections” will be sensitive to this
choice of evaluation area. Furthermore, “climatology” (often
used as a baseline against which skill is assessed for mete-
orological variables) is not a sensible concept for localised
plumes of the type being considered in this paper.

Table 1 lists the output quantities from the NAME simu-
lations together with threshold values used in their analysis.
Data are sampled from the two-dimensional NAME output
fields at a collection of “virtual receptors” simulating a mon-
itoring network.

2.3.1 The ensemble consistency condition

An ensemble forecast is said to satisfy the consistency con-
dition if the true state of the system is statistically indistin-
guishable from the forecast ensemble, in other words, behav-
ing like a random draw from the same distribution that pro-
duced the ensemble. In our case, the NAME simulation based
on analysis meteorology is being used as a proxy for the true
state. The extent to which the consistency condition is met by
the ensemble will determine the quality of calibration of fore-
casts. For a consistent ensemble, probability forecasts based
on the ensemble relative frequency will be well-calibrated,
i.e. will accurately reflect the underlying forecast uncertain-
ties. In practice, ensemble consistency is usually degraded
by the presence of biases and other forecast errors or by a
misrepresentation of the ensemble spread.

2.3.2 Rank histogram

The rank histogram is a visual representation of the posi-
tion of observed values within the ensemble distribution and
is a common tool for evaluating compliance with the con-
sistency condition. The histogram is constructed by identi-
fying where each observed value is located amongst the or-
dered collection of ensemble members (i.e. its “rank’) and
then plotting these over many forecast instances to show the
degree to which ranks are uniformly distributed. For an en-
semble satisfying the consistency condition, the observation
may be considered an equally probable member of the en-
semble and so occurs, on average, at any rank, resulting in
a “flat” rank histogram. Deviations from rank uniformity in-
dicate non-compliance with the consistency condition, and
the nature of these deviations can help to diagnose ensem-
ble deficiencies. For instance, ensembles that have incorrect
spread but are otherwise broadly unbiased can be identified
by the anomalous use of the most extreme ranks. Typically,
ensemble forecasts tend to be under-spread, where the ob-
served value is too frequently outside the range of the en-
semble, leading to a characteristic U-shaped rank histogram.

In practice, there can be some subtleties in how the rank of
an observation is determined, e.g. when its value matches one
(or multiple) ensemble member. This is especially pertinent
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for dispersion ensembles where the observed value might of-
ten be zero and some of the ensemble members are also zero.
In this situation, a fractional value for the rank is assigned
to each of the matching lowest positions in the rank his-
togram (for example, when the analysed value at a point is
zero and there are three ensemble members also predicting
zero at that point, a rank value of 0.25 would be assigned to
each of the four lowest-ranked categories). Consequently, for
an under-spread ensemble, the over-population in the lower
tail can effectively be spread out and affect the neighbouring
bins, whereas at the same time there is a relative deficit in
the population of the upper ranks (excluding the upper tail
itself). This can lead to asymmetric behaviour between the
lower and upper tails and also introduce an apparent down-
wards slope (from left to right) in the rank histograms. While
it might be tempting to assign these data points exclusively
against the lower tail or to just ignore them entirely, such ap-
proaches would in themselves introduce biases, and our ap-
proach of using fractional ranks is an established method of
handling situations when there are multiple ensemble mem-
bers matching the observed outcome (Wilks, 2019). A novel
approach of plotting the spatial distribution of rank contribu-
tions in a rank map helps to illustrate the above points.

2.3.3 Spread—error relationship

Rank histograms offer insight into how well the spread of the
ensemble forecast matches with observed or analysed out-
comes and, in particular, can be useful in diagnosing over-
confidence (too little spread) or under-confidence (too much
spread) in the forecast. Further insight can be gained by look-
ing at ensemble spread directly and comparing it against the
forecast errors.

Let c[.1 , cl.2, - cl’.l denote the n members of an ensemble
forecast with a verifying “observed” outcome o; (here i is an
index over N separate instances of the forecast). The ensem-
ble mean ¢; and unbiased estimate of the standard deviation
of the ensemble members, or ensemble spread, o, are given
by

Ly nili(c{—a)z. ()

= i=1

In any single forecast instance, the error in the ensemble-
mean forecast ¢; —o; is a random sample, but, when assessed
over many instances where a similar forecast is made, the
consistency condition implies that the root-mean-square er-
ror of the ensemble-mean forecast should match the mean
ensemble spread, i.e.

/%Z(Ei —0i)* ~ %lzacr &

For an unbiased ensemble, a desirable characteristic is
therefore for the predicted ensemble spread averaged over
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Table 1. Quantities and thresholds for the radiological and volcanic ash case studies.

Radiological scenario

Hourly output

Thresholds

1 h mean air concentration
1 h time-integrated air concentration
1 h deposition

1,2,5, 10, 20, 50, 100 Bqm—3
1,2,5,10, 20,50, 100kBqsm—3
0.1,0.2,0.5, 1,2, 5, 10kBqm~2

48 h output

Thresholds

Total time-integrated air concentration
Total accumulated deposition

50, 100, 200, 500, 1000, 2000, 5000 kBgsm 3
0.5, 1,2,5,10,20, 50kBqm~2

Volcanic ash scenario

3 h output

Thresholds

Ash air concentration (at three levels)
Ash column load
Accumulated ash deposition

0.2,0.5,1,2,5, 10mgm=3
0.2,0.5,1,2,5,10gm 2
2,5, 10, 20, 50, 100 gm—2

a set of similar forecast instances to be comparable to the
average error seen in the ensemble-mean forecast in these in-
stances. The degree to which this happens can be assessed
by plotting the ensemble-mean forecast error against ensem-
ble spread after grouping data points based on their fore-
cast standard deviation (in this work, the data are binned us-
ing equal-width intervals on a log scale). An ensemble fore-
cast that has the correct spread will lie along the 1:1 line,
whereas a more typical under-spread forecast will be above
the 1: 1 line. In practice, forecast biases will be present in any
ensemble, though it is not straightforward to make any sim-
ple statement about them in the same way that we can say
ensembles are typically under-spread. A forecast bias affects
the spread—error relationship because the bias would increase
the error, but it would not be desirable to inflate the ensemble
spread to match the error as that can degrade the overall skill
of forecasts.

2.3.4 Reliability (attribute) diagram

An important aspect of ensemble forecasts is that probabilis-
tic predictions based on them are well-calibrated (i.e. fore-
cast probabilities agree with the observed relative frequen-
cies of events, with any deviations being consistent with sam-
pling variability). Forecast calibration is illustrated using a
reliability diagram (or attribute diagram) (see Wilks, 2019).
This has two components: the calibration function showing
the conditional relative frequency of events for each forecast
probability category and the refinement distribution showing
the relative frequency of use of each forecast category and so
the ability of the forecasts to discern different outcomes (a
property known as “sharpness”).

The reliability diagram can highlight unconditional (sys-
tematic) and conditional biases that may exist in the cali-
bration. A calibration function that is systematically above
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or below the 1:1 line reveals unconditional biases with the
under-/over-forecasting of probabilities affecting all cate-
gories, whereas bias behaviour that varies across categories
shows the presence of conditional biases in the probability
forecasts. An under-spread ensemble forecast that is other-
wise unbiased tends to give predictions that are too conserva-
tive (i.e. individual members lie towards the centre of the ob-
served distribution) so that the frequency of forecasts involv-
ing the more extreme probability categories are misplaced,
giving slopes flatter than the 1: 1 line.

Historically, NWP ensemble forecasting systems have
generally been found to be under-dispersive and to have poor
reliability (Buizza, 1995; Houtekamer et al., 1997), though
modelling enhancements have steadily improved their per-
formance over the years. The latest model configurations
tend to be much better at representing ensemble spread and
give reduced forecast errors and biases (Piccolo et al., 2019;
Inverarity et al., 2023) but are not perfect, especially at local
scales (Tennant, 2015). The spread and error characteristics
can vary considerably depending on the parameter, and geo-
graphical and seasonal variations can also be large. The latter
point argues the case for much longer ensemble dispersion
studies to be carried out in the future, and at a broader range
of locations around the globe, to better sample temporal and
spatial variability in the performance of NWP ensembles.

3 Results

Results are first presented for the radiological case study and
then for the volcanic ash case.
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3.1 Radiological case study

We begin by considering the evolution of the hourly output
fields for the radiological ensemble — in particular, looking
at the 1h average air concentration and 1h deposition at
6 h intervals over the course of the 48 h simulations. While
results vary to some degree between all release sites consid-
ered in the study, the two maritime sites at Mace Head and
Biscay are more exposed to the background synoptic mete-
orology and tend to exhibit distinctive differences from the
other sites. We will use Mace Head as our background site
when presenting results to illustrate these differences.

3.1.1 Rank histograms for hourly fields

Firstly, the degree of compliance with the ensemble con-
sistency condition is assessed by examining their rank his-
tograms. Figure 2 shows rank histograms that have been con-
structed using the combined dataset from all 12 release loca-
tions.

These plots show, for both quantities, the characteristic U-
shaped distribution indicative of an under-spread ensemble
where the analysed outcome is too often outside the range
covered by the ensemble members. However, to put these
plots into some context, it is useful to note here that our
rank histograms (and reliability diagrams later on) generally
compare quite favourably to those typically seen for NWP
model performance, though as noted above, met model per-
formance can vary considerably depending on the weather
parameter, geographical region, and season (see, for exam-
ple, Fig. 6 in Tennant, 2015, for an example of a rank his-
togram for 2 m temperature forecasts and Fig. 10 in Piccolo
et al., 2019, for reliability diagrams for probabilistic wind
speed forecasts). This qualitative comparison with NWP en-
sembles is also consistent with the rank histograms shown in
Ulimoen et al. (2022), where the ensemble spread is repre-
sented better for predictions of activity concentrations than
for wind speed in the underlying meteorological ensemble.

While remaining under-spread throughout the period of
the simulations, there is some improvement towards later
forecast steps. This is generally seen in the lower tail only,
with asymmetric behaviour emerging between the tails. In
other words, the ensemble becomes less likely to collectively
overestimate the analysed value, but there is no similar im-
provement in the ensemble collectively underestimating the
analysed value. A plausible explanation for some of this dif-
ference between the tails is linked to the fact that our quanti-
ties are bounded below by zero, and, as time progresses, the
ensemble range may be able to extend down to include zero
but find it more difficult to extend upwards to encompass the
analysed value due to the limited sample size of the ensem-
ble. As discussed earlier, asymmetry between the tails is also,
in part, an artefact of how the rank is determined when the
analysed value is zero, which also explains the slight down-
wards slope from left to right in these rank histograms.
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Additional plots (not shown) suggest that over-population
in the lower tail is dominated by regions where the ensemble
members are in good agreement with themselves, but there
is an offset between this ensemble envelope and the analysed
plume. However, there is no similar preferential bias affect-
ing over-population in the upper tail, which appears to occur
more generally and, as remarked, may be a consequence of
insufficient sampling due to the limited size of the ensem-
ble. This also helps to interpret the asymmetric behaviour in
the tails, as the relative contribution of cases where ensem-
ble agreement is high gradually falls away at later forecast
times. When data points are filtered by the exceedance of
a specified threshold (in terms of the exceedance being en-
countered by at least one ensemble member or the analysis
simulation), the behaviour of the rank histograms is broadly
similar across different thresholds, although results suggest
a slight increase in asymmetry between the lower and up-
per tails as the threshold value increases. This is consistent
with expected behaviour as plumes at higher thresholds cover
smaller areas and the agreement between ensemble members
is likely to fall away more rapidly at later forecast times.

Further insight into the points discussed above can be
gained by plotting the spatial distribution of the rank struc-
ture for plumes from individual release events in the form
of rank maps (see Fig. 3). These plots highlight the contri-
butions to rank histograms attributable to different regions
in the comparison between the ensemble predictions and the
analysed plume. A dipole structure can sometimes be evident
in these rank maps, indicating a systematic difference be-
tween the ensemble forecast and the analysed plume, e.g. on
occasions when all the ensemble members might be faster or
slower than the analysis in advecting the plume away from
the source. The difference in horizontal resolution between
the ensemble forecast and analysis meteorology might be
playing some part here in these discrepancies in plume evolu-
tion, for instance, in areas where flow is being channelled by
the terrain or in coastal regions where the land—sea bound-
ary is being represented differently at the two resolutions.
However, there may also be occasions in which the analysis
meteorology has “flipped” from the earlier forecast cycle to
a new state.

The dipole appears as the dark blue region (which repre-
sents the upper tail of the rank histogram where the anal-
ysed value is larger than all ensemble members) and the dark
red region (which represents the lower tail of the histogram
where the analysed value is smaller than all ensemble mem-
bers but the analysed plume is still present to some extent
at this location). The green regions in these plots illustrate
where the analysed plume is absent but there are some mem-
bers of the ensemble that predict the presence of material at
that location. As the ensemble predicts areas where the plume
might, but not necessarily will, be present, then some green
regions would be expected, especially the darker green rep-
resenting ensemble “outliers”. Large areas of lighter green,
representing a significant proportion of ensemble members

Atmos. Chem. Phys., 23, 12477-12503, 2023



12486

Rank Histogram: 1 h Mean Air Concentration (Cs-137)

= - Ideal (19 bins} — T+18 — T+36
— T+6 — T+24 T+4z2
T+12 — T+30 — T+48

0.09

0.08
0.07

0.06

0.05

Fraction

0.04 | 1
0.03 | 1
0.0zt .
001} (a) |

0.00 L L I L L
0 2 4 6 8 10 12 14 16 18

Bin Number

A. R. Jones et al.: Spread and calibration of ensemble dispersion forecasts

Rank Histogram: 1h Total Deposition (Cs-137)
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Figure 2. Rank histograms for (a) 1 h averaged air concentration and (b) 1 h deposition at 6 h intervals from the start of the release. Plots are
based on combined data for all 12 release locations. The ideal “flat” histogram is shown by the dashed black line.
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Figure 3. Rank maps illustrating contributions to the rank histogram from different regions of the plume released from Kristiansand at
18:00 UTC on 23 December 2018. At locations where the plume is “observed” in the analysis, its rank within the ensemble distribution is
plotted. Values for the rank range from 1 to 19 (the red—blue section). At locations where the plume is “absent” in the analysis but predicted
by some members of the ensemble, the proportion of ensemble members indicating the presence of a plume is plotted. Here, values range

from 1-in-18 to 18-in-18 (the green section).

predicting the plume, are similar to the dark red in indicat-
ing a systematic discrepancy between the ensemble and the
analysed plume (although even here the ensemble forecast
is not necessarily “wrong” as probabilistic forecasts should
be validated over many forecast instances). For the green re-
gions, the attributed rank is distributed across the relevant
lower bins rather than being assigned entirely to the lower tail
itself — and so large areas of lighter shades of green in these
maps would be responsible for asymmetry between the tails
and appearance of the bias or slope in the rank histogram. If
our 18-member ensemble satisfies the consistency condition,
one would expect, on average, around 1 in 19 locations being
in each tail (i.e. a dark blue or dark red region).

The rank map gradually evolves through each simulation,
and there is a general signal for any red tail regions to gradu-
ally disappear at later time steps (and more quickly than the
blue regions which often persist). This is shown to some de-
gree in Fig. 3, where the blue and red regions have a similar
extent early on, but the blue region tends to dominate by the
end of the run (in many cases the difference is much more
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pronounced than in this example, with only blue regions re-
maining at later forecast steps). This reflects the asymmetry
between the tails, as already discussed above.

The rank histograms shown in Fig. 2 were constructed us-
ing the combined data from all 12 release locations across
Europe. The extent of differences in behaviour between these
locations can be assessed by examining releases from the in-
dividual sites in isolation. Some variation in rank histograms
is observed between different sites, primarily in the extent
of the tails, and these are most noticeable at the earlier fore-
cast time steps (see Fig. S1 in the Supplement). Well-exposed
maritime sites, such as Mace Head and Biscay, have flatter
(i.e. better) histograms, whereas larger deviations are evident
at other sites, such as for the releases at Kristiansand, Karl-
sruhe, and Milan. The reason for these differences is not en-
tirely clear, but part of the explanation is thought to be the
influence of terrain and small-scale complexity, with local
and regional effects presenting a greater challenge in pre-
dicting the plume evolution at some locations. Degradation
in ensemble performance in regions with more complex ter-
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rain is generally greatest during the early stage of a forecast
and gradually improves at later time steps once the areal ex-
tent of the plume has grown. It is also possible that overall
weather patterns are weaker and/or less predictable at some
sites compared with the Atlantic, and these climatological
variations might also explain some of the differences that
are seen. Systematic differences between sites become less
obvious at later forecast steps, though it is notable that the
two well-exposed maritime sites exhibit flatter histograms
throughout the forecast period.

Rank histograms for 1 h average air concentration at Mace
Head (Ireland) and Kristiansand (Norway) are shown in
Fig. 4. The ability of the ensemble to capture (in an aver-
age sense over many realisations) the analysed outcome is
generally very good at Mace Head. At T' 4 6, and to a lesser
extent at 7 + 12, the rank histogram has a downwards trend
from left to right, which as discussed earlier is actually in-
dicative in this case of an over-confident forecast (related to
the way that rank is determined when the analysed value is
zero). The rank histogram indicates a slight tendency for the
analysed value to be located in the lower part of the ensem-
ble distribution more frequently than in the upper part of the
distribution, and conceptually, one could regard the situation
where a significant number of ensemble members predict the
presence of the plume in an area where it is absent in the
analysis as being in some sense a case of the ensemble “over-
forecasting”. There continues to be a slight slope at later time
steps too, but this is counteracted by the presence of an upper
tail where the ensemble too often under-predicts the analysed
value. The overall result is then a broad U-shaped pattern, in-
dicating the ensemble is very slightly over-confident after the
T + 12 forecast step.

The rank histogram for Kristiansand is more straightfor-
ward to interpret. One can again observe, on close inspec-
tion, a slight downward slope and an asymmetry between the
left and right sides of the rank histogram. However, unlike
at Mace Head, this is heavily outweighed at Kristiansand
by the broad U-shaped pattern of an under-spread ensem-
ble. The tails of the Kristiansand rank histograms are much
larger than those for Mace Head, indicating the ensemble
is over-confident. The over-population in the tails reduces
with increasing forecast time, especially in the lower tail,
demonstrating that the ensemble spread improves with fore-
cast time. The reduction in the upper tail is more moderate,
though still quite substantial over the period of the forecast,
but the presence of this tail indicates that the analysed value
is too frequently above the range of the ensemble.

3.1.2 Spread—error characteristics for hourly fields

Figure 5 shows a spread-versus-error comparison for the
1 h averaged air concentration, plotted using the combined
data from all 12 release locations. Plots on the left-hand side
show the absolute error in each individual ensemble-mean
forecast plotted against the standard deviation for that ensem-
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ble forecast. If the consistency condition is satisfied, the root-
mean-square error of the ensemble mean over a large sample
of similar forecasts is expected to match the predicted ensem-
ble spread. As a visual guide, the 1o and 20 lines are also
plotted, with approximately 68 % and 95 % of data points,
respectively, expected to lie under each line if we were to
assume that errors here are Gaussian. However, it is diffi-
cult to judge the density distribution from the left-hand plots
alone, and to establish the relationship more clearly an ex-
plicit binning of the data points based on the standard devi-
ation of each ensemble forecast is shown in the right-hand
plots. For a good ensemble forecast that has an accurate rep-
resentation of ensemble spread, the root-mean-square error
of the ensemble-mean forecast is expected to approximately
match the representative ensemble spread in each bin.

The upper plot shows the spread—error relationship us-
ing data points for all forecast time steps (at 6-hourly in-
tervals). The scatter plot shows a clear trend for errors in
the ensemble-mean forecast to be typically larger on occa-
sions when the standard deviation of the ensemble forecast is
larger. However, there is also a strong indication that errors
can be substantially larger than the ensemble spread (in frac-
tional terms) on occasions when the spread is predicted to be
small, although the absolute magnitude of these errors is still
generally small. When data are binned (right-hand plot), it
is apparent that the root-mean-square error in the ensemble
mean is consistently larger than the ensemble spread across
the entire range of spread values in these simulations, though
the discrepancy is most noticeable in the lower bins and in-
creases to 1 order of magnitude for the lowest bin range
plotted. The poorer performance here might, in part, be at-
tributable to regions near the edge of the ensemble envelope,
especially when the analysed plume is an outlier. Results
are qualitatively similar for the 1h deposition (see Fig. S2
in the Supplement). For this quantity the predicted ensem-
ble spread still tends to underestimate the error, especially in
the lower bins again, but there is generally closer agreement
with the error than in the case for the 1h air concentration.
When comparing results from each release location (Figs. S3
and S4 in the Supplement), the ensemble spread is closer to
the error for air concentration at Mace Head and Biscay than
at the other sites, though interestingly there is no obvious dif-
ference between sites for deposition.

In the lower plot, results are compared by the forecast time
step. The left-hand plot shows the same data as in the upper
plot but with each data point coloured according to its fore-
cast step. Data at later time steps are overplotted onto, and
often obscure, existing data from the earlier time steps, but it
does clearly illustrate a general progression to smaller con-
centration values as the forecast step increases and plume
material is diluted. The right-hand plot shows the binned
data at each forecast step. Ensemble spread generally im-
proves (relative to the forecast error) with increasing fore-
cast time. This is especially evident for air concentration (as
shown here). The representation of spread seems to be best in
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Figure 4. Rank histograms for 1 h averaged air concentration at 6 h intervals for (a) Mace Head and (b) Kristiansand.

the higher bins that are captured at each forecast time, with
the ensemble tending to become increasingly under-spread in
lower bins. Although somewhat less clear, there is a similar
signal for deposition, but there is also a tendency for the en-
semble forecasts to have too much spread for deposition in
the highest bins at later forecast steps.

3.1.3 Attribute diagrams for hourly fields

Figure 6 presents an attribute diagram, also known as a re-
liability diagram, constructed from the combined data at all
release sites for various threshold exceedance values for the
1 h mean air concentration at forecast step 7' + 24. The cal-
ibration functions shown in these plots are flatter than the
1:1 line at all thresholds, which is a typical characteristic
consistent with an over-confident ensemble forecast. This be-
haviour is also seen at other forecast steps (Fig. S5 in the
Supplement). Despite this shortcoming, the calibration of
probability forecasts for threshold exceedances is generally
quite good, especially at early steps in the forecast period
and at small values for the exceedance threshold. There is
a tendency to under-predict the frequency of events occur-
ring in the lower-probability categories and to over-predict
their frequency in the upper categories, except at the high-
est thresholds where there is an indication of over-prediction
of frequencies throughout the range. Also, the calibration
skill falls off with increasing forecast steps, and this happens
more rapidly at higher exceedance thresholds (Fig. S5 in the
Supplement). The refinement distributions, showing the fre-
quency of use of the different forecast probability categories,
demonstrate that these forecasts have good resolution and are
able to distinguish forecasts at different probability values.
Note the huge peak in the number of forecasts where the
probability of a threshold exceedance is assessed to be zero,
which is associated with the large number of points in the
model domain at which no material is present.
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In examining the releases from individual sites (Fig. S6
in the Supplement), there is some variation in the calibra-
tion performance between the different locations but not ex-
cessively so. An interesting feature is the behaviour at Mace
Head (and to a lesser extent at Biscay), where event frequen-
cies in the lower-probability categories are being slightly
over-predicted at the 1.0 Bqm™3 threshold, which is oppo-
site to the behaviour seen at other sites. The reasons for this
are unclear but could relate to these more exposed sites hav-
ing generally higher wind speeds and narrower plumes (the
resolution difference between ensemble and analysis mete-
orology fields may also be playing a role here in making it
more challenging to “hit” outlier solutions near to the edge
of the ensemble envelope).

3.1.4 Accumulated fields over 48 h period

The discussion up to this point has focussed on the time-step
output (1 h mean air concentration and 1 h deposition). Quan-
tities accumulated over the full simulation period are exam-
ined next; specifically, the 48 h time-integrated air concentra-
tion and 48 h accumulated deposition. Results for these ac-
cumulated quantities are broadly similar to the short-period
averages, though some differences are also noted.

Rank histograms for the accumulated quantities (see
Fig. 7) show similar characteristics to those for the 1h av-
erage quantities. Most notably, they are again U-shaped in
their appearance, indicating the under-spread nature of the
ensemble predictions. It is perhaps not surprising that these
rank histograms appear similar to an “average” of the rank
histograms for the 1h quantities (though formally the two
operations of integrating fields over time and determination
of rank are not commutative). There could be occasions when
time-averaging (in effect, averaging “along” each plume) can
help to mitigate forecast errors (for instance, the longitudinal
averaging reduces the impact of any timing errors in the ad-
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Figure 5. Comparison of ensemble spread against error in the ensemble-mean forecast for 1h averaged air concentration at 6 h intervals
from the start of the release. In the upper plots (a), all time steps are combined, whereas lower plots (b) show the split by time step (with the
colour scheme matching with the time-step labels displayed on the right-hand side). In each case, the left plot shows the raw data points, and
the right plot compares values after being binned by similar values of ensemble spread (the number of data points contributing to each bin
is shown for the upper plot). The light grey shaded area shows the region where values are within a factor of 2. Note the log scaling used in
each plot and the overall decrease in magnitudes as the time step increases due to progressive dilution of plumes.

vection). However, more often than not there will be lateral
errors in plume position where time-averaging is unable to
help. The rank histograms indicate here that the length scale
of the smoothing (i.e. plume extent) is shorter than the length

consistent with the ensemble distribution.

scale associated with the ensemble error in plume position.
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While time-averaging would be expected to give smoother
fields overall, it also tends to reduce ensemble spread and so
might not make it any easier for the analysed plume to be
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Attribute Diagram: 1h Mean Air Concentration (Cs-137)
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Figure 6. Attribute diagram for 1h averaged air concentration at
24 h after the start of the release, evaluated for different concen-
tration thresholds between 1.0 and 100.0 qu_3. The lines show
observed relative frequency of events (calibration function) at the
different thresholds, whereas the bars show the number of forecasts
within each category (refinement distribution). Plots are based on
combined data for all 12 release locations.

Comparing the rank histograms between the different re-
lease locations, relative performance is similar to that seen
for the 1h average quantities. All sites exhibit some degree
of being under-spread, but the maritime sites dominated by
synoptic-scale influences at Mace Head and Biscay have rea-
sonably flat rank histograms compared with other sites where
local and regional features have more influence and are bet-
ter resolved by the higher resolution of the analysis meteorol-
ogy. Further analysis (not shown) indicates the lower tail (en-
semble over-predicts) again tends to be dominated by points
where there is a systematic difference between the core of
the ensemble envelope and the analysed plume, while the
upper tail (ensemble under-predicts) appears to be more uni-
versally associated with points anywhere throughout the en-
semble envelope. Additionally, when data are filtered by var-
ious thresholds to identify higher-impact areas, the rank his-
tograms appear broadly similar, though the upper tail shows
a weak sensitivity to this threshold value (with larger tails
evident at higher thresholds, as accurately predicting the lo-
cation of these high values becomes more challenging).

Spread—error comparisons (see Fig. 8) are also very simi-
lar to the 1h average quantities with a clear relationship be-
tween the spread predicted by the ensemble forecast and the
resulting error in the ensemble mean. When data are binned,
the root-mean-square error in the ensemble-mean forecast is
consistently larger than the ensemble spread for all bins, es-
pecially in the lower bins. However, agreement seems quite
reasonable in the upper part of the range with only a small
underestimation of forecast errors and with the representa-
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tion of spread being slightly better for accumulated deposi-
tion than for time-integrated air concentration (as also seen
in the 1h outputs). For individual sites (not shown), there
is generally closer agreement between spread and error at
Mace Head and Biscay than at other sites for time-integrated
air concentration, though differences between sites are less
apparent for total deposition.

The calibration is generally good for ensemble forecasts of
48 h time-integrated air concentration, as shown in the left-
hand plot in Fig. 9. As with the 1 h average air concentration,
the forecasts under-predict the frequency of occurrence of
low-probability events and over-predict frequencies for the
high-probability bins, and consequently the calibration func-
tions are generally flatter than the 1: 1 line across most of the
probability range. However, in contrast to the 1 h air concen-
trations, the calibration function is now more symmetric in
its appearance, with a cross-over between under- and over-
prediction of probabilities occurring around or just below the
probability value of 0.5. The extent of the under-prediction
in the lower half of the range is also now broadly similar,
though generally slightly smaller in absolute terms, to the
degree of over-prediction seen in the upper half of the range.
This over-prediction of high probabilities is most apparent
at the higher threshold values, though overall the calibration
is much less sensitive to threshold than for the 1 h quantities.
Therefore when comparing against the 1 h quantities, calibra-
tion tends to be a little worse at low probabilities but better,
and often substantially so, at higher probabilities.

When aggregated over all release locations, as shown in
the figure, calibration errors can be up to approximately 0.04
(or ~20% of the nominal probability), where errors are
largest in the under-predicted (lower) half of the range, and
up to approximately 0.12 (or ~ 12 % of the nominal value) in
the over-predicted region at the top end of the range. When
releases from individual locations are examined, some varia-
tion in the calibration functions is evident, and as seen with
the other performance measures, sites such as Mace Head
and Biscay tend to perform better on average across the range
of probabilities. For example, comparing the calibration be-
tween Mace Head and Milan (Fig. S7 in the Supplement), the
largest absolute deviations from the 1: 1 line (which tend to
occur around the forecast probability value of 0.8) are 0.10
at Mace Head but are larger at around 0.20 at Milan.

For 48h accumulated deposition (right-hand plot in
Fig. 9), the ensemble forecasts generally overestimate event
frequencies but not massively so, and there is still a clear
monotonic relationship between the predicted and observed
frequencies, which would enable a simple recalibration of
probabilities to be easily applied. Two regimes can be iden-
tified. At low probabilities (values up to around 0.2), cali-
bration is very good, on average, but it is in this range that
the calibration appears most sensitive to the threshold value,
at least in fractional terms. Here the frequency of events is
slightly underestimated at low threshold values and over-
estimated at higher threshold values, but fractional differ-
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Figure 7. Rank histograms for (a) 48 h time-integrated air concentration and (b) 48 h accumulated deposition, plotted for the 12 separate

release locations.

ences are generally within approximately 10 % of the nom-
inal probability (for aggregated data over all release loca-
tions). For values above 0.2, probabilities are consistently
over-predicted with the largest calibration errors being ap-
proximately 16 % of the nominal probability, and while there
is some small variation between calibration functions at the
different thresholds, there is no indication of a systematic
variation or sensitivity to the threshold.

3.2 Volcanic ash case study

For the volcanic ash ensemble, output at individual forecast
steps consists of 3 h averages for the ash concentration over
three layers and the total column ash load, as well as the
aggregated ash deposition up to that time in the simulation.
These output fields are examined at 6 h intervals from 7 + 6
to T + 24 to understand their temporal evolution through the
course of the simulations. The total ash deposition aggre-
gated over the full simulation period is also considered.

3.2.1 Rank histograms

Figure 10 shows rank histograms for the 3 h mean peak ash
concentration in each of the three standard VAAC flight-level
layers, FL0O00-200, FL200-350, and FL350-550, with data
combined from all three eruption scenarios. Compliance with
the ensemble consistency condition appears to be generally
good, but characteristics vary by flight level and forecast step.
The ensemble has an overall tendency to be somewhat under-
spread, as indicated by the U-shaped distributions, which is
most evident in the uppermost level and improves with re-
ducing height. The limited spread at higher altitudes is not
entirely unexpected and is consistent with the model physics
schemes being less active in the stratosphere as a mechanism
to introduce forecast spread (for instance, there is no con-
vection and no clouds) along with a gradual diminishing in-
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fluence of observations with height in the ensemble data as-
similation process. Conversely, the ensemble is slightly over-
spread in the lower and middle layers at the first output step
T + 6, which might reflect a known limitation of the pertur-
bation mechanism used in the ensemble NWP system at that
time. Also, as seen in the radiological case, there is a ten-
dency in the lower levels for a slight downwards trend from
left to right at later forecast steps, which is thought to be at-
tributable to the handling of points where there is a mismatch
between the ensemble forecast and the analysed plume and
where the rank contribution gets distributed across a broader
region than the lower tail (in other words, the slope is an
indication of deficiency in ensemble spread rather than sys-
tematic bias in ash concentration values).

The rank histograms for 3h mean ash column load at
6h intervals and the total deposited ash over the entire
24h period are shown in Fig. S8 in the Supplement. The
ash column load histograms show similar characteristics to
those for the ash concentration in the middle flight-level layer
FL200-350, with the ensemble being initially over-spread
at T + 6, but otherwise the ensemble distribution is broadly
consistent with the analysed outcomes. Meanwhile, the gen-
eral appearance of the rank histogram for the total ash de-
posits is very good, though the ensemble forecasts do appear
to be slightly under-spread.

On examining the three volcanic eruption scenarios indi-
vidually (Fig. S9 in the Supplement), very similar results are
observed for each of the ash source terms. The good agree-
ment here is despite a considerable variation across these
scenarios in the quantity of ash that is released into the at-
mosphere and, in the case of the Oraefajékull 25 km release,
the height of the initial ash column. This would suggest that
the rank histogram characteristics are attributable to the abil-
ity of the ensemble to capture the overall magnitude of the
ash concentration at a location irrespective of its absolute

Atmos. Chem. Phys., 23, 12477-12503, 2023
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Figure 8. Comparison of ensemble spread against error in the ensemble-mean forecast for (a) 48 h time-integrated air concentration and
(b) 48 h accumulated deposition. Plots are based on combined data for all 12 release locations.

value. Consistent with this idea, rank histograms are seen to
be largely insensitive to the application of a threshold to filter
the data points, at least for a wide range of threshold values
of relevance to flight safety (ranging from 0.2 to 10.0 mgm™3
for ash concentration and comparable ranges for the ash col-
umn load and ash deposition).

Atmos. Chem. Phys., 23, 12477-12503, 2023

3.2.2 Spread—error characteristics

The characteristics of the rank histograms shown above
would indicate that ensemble spread is generally well rep-
resented in the volcanic ash scenario, and this is thought
to reflect the more constrained nature of the variability in
the upper atmosphere in general. This is confirmed by the
quantitative assessment of the spread—error relationship for
these ensemble forecasts. Figure 11 shows the spread—error
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Figure 9. Attribute diagrams for (a) 48 h time-integrated air concentration and (b) 48 h accumulated deposition, evaluated at various thresh-
olds. Plots are based on combined data for all 12 release locations.
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Figure 10. Rank histograms for 3 h mean peak ash concentration in the flight-level layers (a) FL000-200, (b) FL200-350, and (¢) FL350-550,
shown at 6 h intervals from the start of the eruption to 7 4 24. Plots are based on combined data from all three eruption scenarios.
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characteristics for the 3h mean ash column load. The up-
per plot shows data combined from all three eruption sce-
narios. For the binned data, root-mean-square error tends to
be slightly larger than predicted ensemble spread, except in
the highest bin where the ensemble spread is marginally too
large, but overall there is a reasonable match in the middle
and higher bins (and agreement is generally better than that
seen in the radiological case). The highest bin is populated
by data associated with the Oraefajokull 25 km release sce-
nario. When comparing results from each eruption scenario
(lower plot), similar performance is observed in each case.
The three eruption scenarios each release different quanti-
ties of ash into the atmosphere, and, in particular, the Orae-
fajokull 25km release is significantly larger than the two
12 km release events. These different mass eruption rates in-
troduce a scaling offset in the plot, and after accounting for
this, the behaviour is very similar between the three scenar-
ios. For each volcano, there is very good agreement in the
highest bins relevant to that case (although ensemble spread
becomes slightly too large for the Oraefajokull 25 km release
as already noted), with the ensemble becoming progressively
more under-spread relative to the forecast error in lower bins
(though it is still regarded as being reasonably good). Note
that, because of the much greater quantity of ash released,
the Oraefajokull 25 km case covers a broader range of values
extending the data by almost a further order of magnitude
over the 12 km releases. The poorer level of agreement be-
tween spread and error seen in lower bins, especially for the
Oraefajokull 25 km data, might possibly be the influence of
regions near the edge of the ensemble envelope, especially
when the analysed plume is an outlier and forecast errors be-
come large (in relative terms). Results are similar for the 3h
mean peak ash concentration and also ash deposition, though
ash deposition suffers from a lack of spread in general.

3.2.3 Attribute diagrams

Attribute diagrams for probabilistic forecasts based on the
ensemble of volcanic ash predictions are shown in Figs. 12
and 13. These attribute diagrams have been constructed using
the combined data from all three volcanic eruption scenarios,
though when examined separately (in the Supplement) the
individual scenarios show broadly similar results highlight-
ing that calibration does not appear to be particularly sensi-
tive to the details of the volcanic eruption event. Probabil-
ity forecasts for a threshold exceedance are generally well-
calibrated, especially later on in the forecast period. They
also exhibit good resolution with broad usage of the different
forecast probability categories.

In Fig. 12, calibration performance is shown for the
3h mean peak ash concentration in the lowest flight-level
layer FL0O00-200, calculated for an exceedance threshold
of 0.2 mgm™3. The ensemble is under-confident at early time
steps, but this improves towards T + 24, by which time it
shows signs of becoming very slightly over-confident. Sim-
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ilar behaviour can be seen for the two higher flight-level
layers FL.200-350 and FL350-550 (Fig. S10 in the Supple-
ment), where the degree of over-confidence at T + 24 be-
comes slightly more noticeable. In addition to the overall cal-
ibration being very good here, it is also largely insensitive to
the choice of threshold used for calculating exceedance prob-
abilities (this is also seen with the ash column load and ash
deposition fields).

Figure 13 shows forecast calibration for quantities at the
end of the simulation period. For ash column load, there
is a small but noticeable over-prediction of probabilities in
the lower and middle bin categories. The largest discrepan-
cies are seen around probability values of 0.3 where absolute
probabilities are overestimated by ~0.05 or 15% in frac-
tional terms. On examining the three eruption scenarios sep-
arately (Fig. S11 in the Supplement), the over-prediction of
probabilities in the low and middle bins is evident in all three
cases but particularly so for the Oraefajokull 25 km release.
Conversely, forecasts for the Oraefajokull 25 km release are
well-calibrated for probability values of 0.6 and above and
help to partly offset a slight tendency to over-forecast proba-
bilities for the higher bins in the other two release scenarios.
For the 24 h accumulated ash deposition, the calibration is
excellent overall, though there is a tendency to slightly over-
forecast at the highest probabilities. On closer examination,
this is dominated by the two 12km releases, especially at
the higher ash deposition thresholds shown here, while the
calibration is better for the Oraefajokull 25 km release. The
calibration functions generally appear somewhat noisier for
deposition than for ash load (more noticeable when examin-
ing the individual scenarios), but this might be partly related
to our selection of thresholds leading to fewer sample points.

It is interesting that the calibration behaviour is different
for the 3h mean total column ash load at 7 + 24 from that
seen for the 3h mean peak ash concentration on the three
flight-level layers in that there is a distinct over-forecasting
of probabilities for ash load in the lower half of its calibra-
tion function, which is not seen for the ash concentrations.
The reason for this is not entirely clear, although as the mis-
match in calibration is most evident for the 25 km eruption
scenario, it might reflect poorer performance of the ensem-
ble at higher altitudes in the stratosphere. Note that FL550 is
at an approximate altitude of 16 kma.s.1., and when there is
a significant proportion of ash emitted above this height, it
will contribute to the total column ash load but not to the ash
concentrations. This explanation is also supported by the ob-
servation that ash deposition shows good calibration, which
indicates that the representation of ash in the lower part of the
atmosphere is being captured well by the ensemble forecasts.
It is also possible that, because footprints are generally larger
for total column ash than for ash in the individual layers, the
limited ensemble sample size and effect of outliers may be
having more influence for ash column load.
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Figure 11. Spread—error comparison for 3 h averaged ash column load, using data evaluated at 6 h intervals from the start of the eruption.
In the upper plots (a), data for all eruption scenarios are combined, whereas the lower plots (b) show the split across the three different
scenarios. Note the Oraefajokull 25 km eruption releases an order of magnitude more ash than the 12 km releases.

4 Discussion

Ensemble NWP systems are carefully designed to represent
uncertainty in meteorological forecasts. However, when used
as input to a dispersion model, it is non-trivial how this uncer-
tainty in the meteorological fields will propagate through to
uncertainty in the dispersion predictions. This is because par-
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ticle trajectories (and uncertainty in these trajectories) are in-
tegrated over time, which aggregates uncertainties and com-
plicates the picture of relating them back purely to the synop-
tic variability at any point in space and time. Typically there
are multiple timescales involved when modelling dispersing
plumes, and whereas meteorologists usually only consider
uncertainty in meteorological variables as a function of the

Atmos. Chem. Phys., 23, 12477-12503, 2023
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Attribute Diagram: 3h Ash Concentration (FLOOO-FL200)
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Figure 12. Attribute diagram for 3 h mean peak ash concentration
in the lowermost flight-level layer FL0O00-200, shown at 6 h inter-
vals from the start of the eruption to T + 24. Plots are based on the
combined data from all three eruption scenarios and are evaluated
using an ash concentration threshold value of 0.2 mg m3.

forecast step, dispersion modellers might need to consider
other relevant timescales such as the meteorological forecast
lead time at the start of a release event; the release duration;
and the averaging or integrating period appropriate when cal-
culating concentration, deposition, etc. The two scenarios ex-
amined in this paper start to explore some of this complexity
that links meteorological and dispersion uncertainties. The
studies covered a period of several months and looked at
various release locations and scenarios, though it is recog-
nised the datasets could be too limited to explore detailed
relationships, such as sensitivity to synoptic weather regimes
or seasonal variations. The performance of the dispersion en-
sembles and their suitability for each application will now be
judged.

4.1 Ensemble performance for radiological modelling

The results of the radiological case study indicate that there
is a general overall tendency for too little spread amongst
the members of the radiological dispersion ensemble. The
under-spread, or over-confident, nature of the ensemble be-
ing demonstrated by the typical characteristics of U-shaped
rank histograms, spread—error plots where forecast errors are
systematically larger than the predicted ensemble spread,
and calibration functions where the slope is generally flat-
ter than the 1: 1 line. For hourly output quantities that evolve
with time, ensemble spread generally improves through the
48 h simulation period in terms of gradually reducing tails
in rank histograms and closer estimates, on average, to the
errors seen in the ensemble-mean forecast. Overall perfor-
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mance is generally similar for the 48 h time-integrated quan-
tities often more relevant for decision making.

When looking at the plume predictions, there can be mis-
matches between the ensemble and the analysed outcome,
particularly in the early stages after a release of material,
giving regions where there is broad under-prediction and
other regions of over-prediction (the “tails” in the rank his-
togram). As plumes evolve, differences in behaviour emerge
between the lower tail (where the ensemble members over-
predict leading to false alarms) and the upper tail (where the
ensemble under-predicts or misses an event). At early fore-
cast steps, ensemble spread can be small and less likely to
capture the analysed plume, giving larger tails on both sides.
At later times, the range of ensemble solutions has broad-
ened so that, at many points, the analysis is now captured
within the range of members, giving a reduced lower tail,
but the ensemble might still underestimate the magnitude of
values at locations in the core of the analysed plume. This
raises an interesting question on the influence of ensemble
sample size, and whether the 18 members based on a single
forecast cycle of MOGREPS-G are sufficient or if a larger
ensemble would be better able to resolve the peak values
that might occur at any location. The ability of the ensem-
ble to adequately sample these possible peak values would
be important when making judgements on the areas at great-
est risk from a hazardous release. For weather forecasting
applications, the Met Office uses time-lagging of two suc-
cessive forecast cycles of MOGREPS-G to create a meteoro-
logical ensemble with 36 members. Alternatively, an ensem-
ble forecasting system with more native members could be
used, such as the ECMWF ensemble which has 50 perturbed
members plus the control forecast.

From a decision making perspective, it is also encourag-
ing that the best representation of ensemble spread (relative
to forecast errors) is seen at the higher values of concentra-
tion and deposition, as these are likely to reflect the areas
of most concern in any response. However, for deposition
there is a hint of too much spread in the higher bins at later
time steps (though otherwise the representation of ensemble
spread is slightly better overall for deposition than for air
concentration for both hourly and time-integrated quantities,
though differences are small). More generally, and as alluded
to above, the root-mean-square error in the ensemble-mean
forecast is typically larger than the ensemble spread (i.e. the
ensemble has too little spread), and this is most evident for
bins covering lower values of the spread. The poorer perfor-
mance in these lower bins is possibly associated with regions
near the edge of the ensemble envelope, especially when the
analysed plume is seen as an outlier. However, as absolute
values become quite small here, the consequences of the en-
semble’s inadequacy in capturing the spread are limited.

Another important aspect of the ensemble performance
from a preparedness and response viewpoint is that prob-
ability forecasts based on the ensemble (e.g. for areas ex-
ceeding a specified threshold for air concentration or de-
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Figure 13. Attribute diagrams for (a) 3h mean ash load at 7 424 and (b) accumulated ash deposition at T+ 24, evaluated at various
thresholds. Plots are based on the combined data from all three eruption scenarios.

position) are well-calibrated, with observed frequencies of
an event closely matching their predicted probabilities. The
radiological ensemble demonstrates reasonable calibration
overall. For the hourly air concentration output, there is a
tendency to under-predict the frequency of events occur-
ring in the lower-probability categories and to over-predict
their frequency in the upper categories, except at the highest
thresholds where there is a tendency to over-predict prob-
abilities even in the low bins. The calibration deteriorates
with increasing forecast step, and this decline happens faster
at higher exceedance thresholds as it becomes increasingly
challenging to predict higher thresholds at the fine scale of
the computational grid (this is similar to the problem of pre-
dicting high-intensity rainfall in meteorological ensembles).
The limited size of the ensemble has an influence here. While
calibration is sensitive to thresholds for hourly fields, it is
much less so for the 48 h time-integrated quantities, and over-
all calibrations are reasonably good with estimated probabil-
ities typically accurate to within around 10 % (though dif-
ferences can be up to 20 % for releases at some sites). The
good calibration for 48 h quantities, and the fact that they
are not particularly sensitive to thresholds, is important, as
these time-integrated quantities tend to be more relevant to
decision makers. For 48 h time-integrated air concentration,
forecast probabilities tend to be underestimated for the low-
probability categories (more so than for the 1h mean) and
overestimated in higher-probability categories, whereas for
48 h accumulated deposition, the forecasts more generally
overestimate the event frequencies across most of the proba-
bility range (but 48 h deposition is often better calibrated than
48 h time-integrated air concentration at low probabilities).
A notable feature in the radiological case is the variation
in results between releases from different geographical loca-
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tions. Rank histograms are flatter, indicating a better repre-
sentation of ensemble spread, for release sites such as Mace
Head and Biscay dominated by synoptic-scale influences,
while performance is generally poorer at other sites, espe-
cially where it is thought there could be significant influence
from terrain and other regional effects on the flow. Similar
variation between release sites is seen when comparing en-
semble spread against the forecast error, at least for air con-
centration where the comparison is again better for the Mace
Head and Biscay sites, whereas inter-site differences are less
obvious for deposition. When looking at the calibration of
probabilistic forecasts of threshold exceedances, the picture
also becomes less clear. However, there is variation between
sites, and forecasts for the well-exposed background sites
are generally better calibrated, particularly for the 48 h time-
integrated quantities. While it is useful to understand that en-
semble performance can vary with geographical location, it
would not be straightforward to provide an a priori objec-
tive assessment of the expected characteristics at any specific
location (and the performance at any individual site could it-
self vary with other factors through time such as the synoptic
weather pattern).

4.2 Ensemble performance for volcanic ash modelling

Results in the volcanic ash case study show ensemble fore-
casts generally performing well, with the spread of the en-
semble members capturing analysed plume values reason-
ably well and giving probability forecasts with good cali-
bration. The volcanic ash ensembles also tend to be more
straightforward to interpret than in the radiological case, with
performance that is largely insensitive to the eruption sce-
nario and impact threshold levels.
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When looking at forecasts for peak ash concentration,
the analysed outcome in the lower and middle flight lev-
els is typically not too different from the distribution pre-
dicted by the ensemble, and their rank histograms are rea-
sonably flat, though initially the ensemble is slightly under-
confident, i.e. has too much spread, for these levels. There
are signs of an increasing tendency for the ensemble to be-
come over-confident in the upper levels, which would be con-
sistent with the expectation of an increasing lack of spread
in MOGREPS-G forecasts at higher altitudes in the strato-
sphere, as the influence of observations falls away and as the
less active model physics becomes less effective as a means
for generating spread amongst the ensemble members. Good
quantitative agreement is also seen when comparing ensem-
ble spread against forecast errors. The root-mean-square er-
ror in the ensemble-mean forecast matches the ensemble
spread reasonably well, though it is often slightly larger. As
in the radiological case, it is encouraging that the agreement
seems to be best at the higher concentration values that are
of most relevance when assessing impacts from an ash cloud.
Results for ash column load and accumulated ash deposition
are broadly similar to ash concentration and again indicate a
tendency for the ensemble to be initially slightly over-spread
at T + 6, while the performance is slightly poorer overall
for ash deposition with an indication that ensemble forecasts
have insufficient spread.

Calibration of the volcanic ash probability forecasts is very
good overall (and typically better than the calibration perfor-
mance seen in the radiological case study). For forecasts of
threshold exceedance for peak ash concentration, probabili-
ties tend to be over-predicted slightly for those events associ-
ated with low probabilities but are under-predicted for events
at high probabilities. This is most noticeable at 7 + 6 and is
another indication that forecasts are under-confident at early
time steps, but it improves towards 7 + 24, by which time
probability forecasts are generally well-calibrated though
again with a hint that forecasts have become slightly over-
confident in the uppermost flight level. Forecasts for ash load
and ash deposition are also very well calibrated in general.

A notable feature of the volcanic ash ensembles is that re-
sults are similar for each of the three eruption scenarios con-
sidered and are also largely insensitive to the choice of con-
centration thresholds, indicating that calibrations and other
aspects of ensemble performance do not seem to be particu-
larly sensitive to the eruption height or the mass eruption rate.
Peak ash concentrations show the strongest agreement here,
and differences becoming slightly more noticeable (though
still small) for ash column load and ash deposition. It is
recognised that this case study only examined a very lim-
ited sample of three events from which it might be difficult
to draw firm universal conclusions, and it would be beneficial
to explore a wider range of releases as part of future work.
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4.3 Comparison between the two case studies

Our two case studies examine the performance of ensem-
ble dispersion forecasts in different parts of the atmosphere,
with the radiological case primarily concerned with disper-
sion in the atmospheric boundary layer and the volcanic ash
case focussing more on transport in the upper air. Apart from
the height difference, there are other differences between the
two modelling configurations that make it difficult to perform
a like-for-like comparison between them. For instance, the
length of the simulation is different between the two scenar-
ios, and their quantities are evaluated using different averag-
ing or integrating time periods and computed using different
thresholds. Consequently it is not straightforward to disen-
tangle differences that are attributable to the behaviour of the
ensemble itself from those that arise due to differences in the
modelling configurations, though results can be compared in
a broader context to identify where there are consistent mes-
sages, as well as differences, between the two study cases.
Our view is that most of the differences seen between the
two cases are due more to the height of the release and its
location rather than characteristics that are specific to each
event type, such as physical form of the pollutant, particle
sizes, and half-life. However, to understand the ensemble in-
fluence on the transport better in future work, a recommenda-
tion would be to model a generic release at different heights
in the atmosphere from various locations with other aspects
of the model configuration remaining fixed.

A common characteristic observed with NWP ensemble
forecasting systems is their tendency to produce forecasts
that have insufficient spread, with the observed outcome too
often being outside the range covered by the ensemble mem-
bers. It is therefore not that surprising that a similar lack of
spread is seen in both of our experimental scenarios but is
particularly noticeable in the radiological study where en-
semble dispersion forecasts are typically under-spread for all
output quantities at all forecast time steps. For the volcanic
ash study, forecasts are again often under-spread, but charac-
teristics vary by forecast step and by flight level, highlighting
the three-dimensional nature of forecast skill. The spread is
generally good in the FLO00-200 and FL200-350 flight lay-
ers, and, in fact, the ensemble shows signs of being over-
spread here at the first forecast step 7 + 6 but is under-spread
in the uppermost FLL350-550 layer. Spread is also generally
well represented for the ash load and ash deposition quanti-
ties.

Probability forecasts based on the ensemble are reasonably
well calibrated overall, though calibration of probabilities is
generally poorer (though not necessarily poor) in the radio-
logical study in comparison with the volcanic ash case, where
it is often very good, especially after 7+ 6.

Results in the radiological case show some sensitivity to
the release location, which indicates a geographical varia-
tion in the skill of ensemble dispersion predictions. Better
performance is observed at locations that are more exposed

https://doi.org/10.5194/acp-23-12477-2023



A. R. Jones et al.: Spread and calibration of ensemble dispersion forecasts

to the broader synoptic weather influence and less affected
by local and regional influences such as the terrain. There
is also likely to be some variation between locations due
to their different climatologies and the skill of the forecast-
ing system in representing such differences. Conversely, in
the volcanic ash study, similar results are seen across the
three different eruption scenarios considered despite signifi-
cant variation between scenarios in the height of the eruption
column and the mass of ash emitted into the atmosphere.
However, all three eruptions are in the same geographical
area, and so wider variation in the meteorology is not cap-
tured in the same way as for the radiological study. Results
are also largely insensitive to the choice of thresholds in the
volcanic ash case, which is somewhat different to the radio-
logical case where performance tends to fall off for higher-
threshold events. This is an interesting difference for which
the reasons are not entirely clear. It could, in part, relate to
our choice of threshold values and their relative magnitudes
compared with the amount of released material such that the
radiological case gets posed a greater challenge in matching
predictions with the analysed plumes. The finer grids used
for the radiological fields would also demand a more pre-
cise spatial match between fields, which could also help ex-
plain the degradation in calibration. Finally, the limited res-
olution of a global-scale NWP ensemble will find it intrinsi-
cally more challenging to represent near-surface dispersion
over that in the upper air, especially in regions where there
is complex terrain and surface influences. The future use of
high-resolution meteorological ensembles should provide a
better representation of terrain and local effects and might
be expected to be beneficial for radiological applications and
other near-surface releases.

4.4 Sensitivity to choice of verifying analysis

All results shown in this paper are based on verifying the
ensemble forecast simulations against NAME runs using
MetUM global analyses. However, to assess sensitivity of
results to this choice of the verifying analysis, verification
has also been performed against NAME runs produced us-
ing global analyses from the European Centre for Medium-
Range Weather Forecasts (ECMWF; Buizza et al., 2007). Us-
ing an independent NWP model for the verifying analysis
guards against the possibility that any systematic model er-
rors in the MetUM could get concealed in the results, as such
errors would affect both the forecasts and analysis in a sim-
ilar way. While overall behaviour is broadly similar in qual-
itative terms, performance is generally worse when verify-
ing against ECMWF analyses, with more indication of over-
confidence in the ensemble, particularly at early forecast
steps, and also poorer calibration (as an example, Fig. S12 in
the Supplement shows rank histograms and a reliability dia-
gram constructed using the ECMWF analyses for the 1 h air
concentration forecasts in the radiological case study, equiv-
alent to those shown in Figs. 2 and 6 when evaluated using
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the MetUM global analyses). The poorer performance is not
that surprising as ECMWF provides an assessment of the at-
mospheric state using an independent NWP model, whereas
the MetUM analysis shares some aspects of its base model
and data assimilation scheme with the MOGREPS-G fore-
casting system and so is likely to provide solutions that are
“closer” to the ensemble forecast. In a sense, this emphasises
that our assessment of ensemble performance in this paper
only shows the potential skill of these ensemble forecasts
when other sources of uncertainty and errors, including in
the underpinning NWP met model formulation, are ignored.

5 Summary and concluding remarks

The performance of an ensemble-based dispersion mod-
elling system coupling the NAME dispersion model with
MOGREPS-G global met ensemble forecasts is assessed us-
ing two case studies involving hypothetical atmospheric re-
leases across Europe and the northeastern Atlantic. The re-
sults build on previous work presented in Leadbetter et al.
(2022) showing that these ensemble dispersion forecasts are,
on average, more skilful than a single dispersion prediction
based on a deterministic meteorological forecast. The present
paper extends the analysis to investigate the spread and cali-
bration of ensemble dispersion predictions and looks at how
well the uncertainty in meteorology is captured in terms of
its effects on atmospheric dispersion. While overall perfor-
mance is generally good, there are some interesting differ-
ences between the two case studies, with generally better re-
sults seen for volcanic ash (upper air) when compared with
the radiological (near-surface) case. These differences may
reflect a greater challenge in capturing uncertainty from sur-
face and boundary layer influences and, in particular, in re-
alising sufficient spread of the ensemble for boundary layer
plumes.

For the radiological case, the ensemble tends to be under-
spread in general, especially at earlier forecast steps, though
there is some improvement at later time steps. Results also
indicate evidence of insufficient sampling by the ensemble
members, with the limited ensemble size affecting its abil-
ity to capture peak values or to adequately sample outlier
regions. Probability forecasts of threshold exceedances con-
structed using the ensemble show a reasonable level of cali-
bration, though they tend to be too keen on using the extreme
forecast probabilities (i.e. are over-confident). The calibra-
tion also gradually falls away with increasing forecast time.
The radiological results reveal a sensitivity to the release lo-
cation for near-surface releases, with better performance seen
at sites that are dominated by synoptic-scale meteorological
influences and generally poorer performance at other sites,
especially where there is thought to be significant local influ-
ence from terrain effects. The spatial resolution of the meteo-
rological forecast system might be playing a role here in lim-
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iting the ability of the ensemble forecast to represent some of
these smaller-scale influences.

In the volcanic ash study, where material is released in
the upper air, the general performance of the ensemble pre-
dictions is very good and typically better than for the near-
surface releases. For ash concentration forecasts, the ensem-
ble provides a good representation of the spread, particularly
in the lower and middle flight levels, though there is slightly
too much spread (i.e. the ensemble is under-confident) for
these levels at the initial time step T + 6. This initial under-
confidence is thought to be attributable to a known deficiency
in the ensemble perturbation scheme in use at the time of this
study. Conversely, there is a tendency towards over-confident
forecasts in the upper level, which again is consistent with
an expected decline in the spread of MOGREPS-G fore-
casts at higher altitudes in the stratosphere. The calibration
of probability forecasts for ash concentration threshold ex-
ceedances is very good overall and actually improves through
the 24 h period of these simulations, apart from in the up-
permost flight level where, as noted, forecasts become over-
confident by the end of the period. Unlike in the radiologi-
cal case, the calibration and other aspects of ensemble per-
formance are largely insensitive to the choice of exceedance
thresholds and are also broadly similar across the three erup-
tion scenarios, which gives encouragement that these perfor-
mance characteristics might apply to a broad range of erup-
tion scenarios having different heights and mass eruption
rates. Results for the ash column load and accumulated ash
deposition show generally similar features to those discussed
above for ash concentration, though differences between the
eruption scenarios are slightly more evident for these quanti-
ties.

An upgraded configuration of the MOGREPS-G ensemble
forecasting system based on an “ensemble of data assimila-
tions” (En-4dEnVar; Inverarity et al., 2023) was introduced
in late 2019. It implements a more sophisticated approach
than the ETKF scheme, which had a tendency to over-inflate
the initial perturbations but still produce forecasts with too
little spread at later forecast times. The new configuration
gives more realistic initial perturbations and improves en-
semble spread at all forecast times by adopting an “additive
inflation” scheme (in addition to stochastic physics) to better
account for errors and biases in the forecast model. Future
work will explore the extent to which these improvements
feed through to have beneficial impacts on the representa-
tion of meteorological uncertainty within our NAME disper-
sion ensembles. There is a recommendation for future stud-
ies such as this to assess forecasts over a much longer time
period and to examine a broader range of locations around
the globe in order to capture the geographical and seasonal
variations in skill of the NWP ensemble system and how
they relate to ensemble predictions of atmospheric dispersion
(e.g. the influence of different climatology in regions other
than Europe, or different processes in the tropics compared
with mid-latitudes). Additionally, to understand more clearly
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the ensemble influence on the transport, it would be benefi-
cial to adopt an experiment design that uses a single mod-
elling configuration for generic releases at various heights in
the atmosphere rather than using application-specific model
set-ups as in the current study.

The use of time-lagged ensemble forecasts for dispersion
applications will also be investigated to address the issue of
limited ensemble size. Combining a sequence of atmospheric
dispersion predictions based on successive forecast cycles
of a deterministic meteorological model is a cost-effective
method to build a basic dispersion ensemble (see, for exam-
ple, Vogel et al. (2014)). The same principle can be applied
to time-lagged ensemble forecasts and is commonly used in
weather forecasting applications. For example, the two most
recent sets of ensemble members from MOGREPS-G are
routinely combined to form a time-lagged ensemble with an
effective sample size of 36 members (Inverarity et al., 2023).
Time-lagging is not only a cost-effective way to increase en-
semble sample size, but it also helps to reduce the impact of
any correlated errors that may exist amongst ensemble mem-
bers in the separate forecasts. However, older forecasts are
less skilful, and their inclusion in the time-lagged ensemble
can degrade short-range forecasts, so a balance needs to be
sought between the benefits of a larger sample size against
their overall collective skill. There may also be scope for the
recalibration of probability forecasts where there are known
deficiencies in the raw forecast probabilities derived from the
ensemble.

Finally, it would be useful to extend the range of verifi-
cation methods, for example, to better assess the utility of
ensemble dispersion predictions using measures such as the
relative operating characteristic (ROC) and economic value
of the forecasts. However, verification of plumes from dis-
crete sources of the type being considered in this paper poses
some conceptual challenges for measures based on contin-
gency table metrics (“hits”, “misses”, etc.), as there is a ques-
tion around how a “correct rejection” is defined. Dispers-
ing plumes tend to be compact, localised structures (in the
first day or two), which means that large areas of the mod-
elling domain will always be clear of contaminant. Verifica-
tion scores that use correct rejections are therefore sensitive
to domain size, and the challenge is to distinguish between
plausible zeros (i.e. modelled zeros at points where material
could conceivably reach within the time period but does not)
from trivial zeros (points where material could never realis-
tically reach).

Code and data availability. All the code used within this paper —
the NAME dispersion model code, the statistical calculation code,
and the plotting code — is available under licence from the Met Of-
fice. Please contact the authors to request access. The meteorolog-
ical data used to drive the dispersion model in real-time were not
generated by this project and are not archived due to the huge vol-
umes of data involved. Data produced during this work, output from
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the dispersion model, and the results of the statistical calculations
are available via Zenodo at https://doi.org/10.5281/zenodo.4770066
(Leadbetter and Jones, 2021).
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