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S1. SV-TAG and cTAG chemical analysis and QA/QC 

In both SV-TAG and cTAG, following collection of aerosol on the filter cells, the analytes were 20 

thermally desorbed in helium saturated with N-methyl-N-(trimethylsilyl) trifluoroacetamide 

(MSTFA) to convert the -OH groups of the SVOCs into -OSi(CH3)3 groups, which makes them 

less polar and better suited for the non-polar GC columns. After passing through the GC, 

analytes were detected by the mass spectrometer. Figure S1 shows representative total ion 

chromatograms of the bypass and denuded samples for the wildfire period and background 25 

period.  

 
Figure S1. Total Ion Chromatogram of a wildfire sample and a background sample. GC 

retention time has a negative association with volatility (Isaacman-VanWertz et al., 2016). 

 30 
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Chromatographic data were analyzed using the TERNinIgor software by fitting the single ion 

peaks (Isaacman-VanWertz et al., 2017). A constant amount of isotopically labeled internal 

standards were injected to correct for drifts in instrument response, and known amounts of a mix 

of 99 compounds (Jen et al., 2019; Liang et al., 2021) were injected as standards for 

quantification purpose. Compounds were identified by matching with standard, the NIST 2020 35 

mass spectral library, custom libraries made in previous studies (Jen et al., 2019; Zhang et al., 

2018; Yee et al., 2018), and the mass spectra of filter samples collected outside the same 

building during the 2017 Northern California wildfires (Liang et al., 2021). We only considered 

compounds detected in at least 20% of the samples (only 4 out of the 89 compounds considered 

are present in less than 50% of samples in the 2017 Northern California dataset). More 40 

information about materials and methods is in Table S1.  

 

Method blanks were performed by injecting deuterated internal standard to the cells. We 

determined the background signals of the compounds and calculated the ratio of background 

signal to mean bypass signal. Compounds with background-to-bypass signal larger than 10% 45 

(such as biphenyl and salicylic acid) were not considered in the analyses. There were another two 

compounds with background-to-bypass ratios larger than or equal to 5% (5.0% for catechol and 

9.0% for 4-hydroxybenzoic acid). They were still included in the analysis. The same criterion is 

applied for the FIREX-AQ 2018 dataset, and fluoranthene was excluded from the analysis as a 

result. In addition, bypass signal data below the 3×background signal of each compound were 50 

not included in the analysis, while denuded signal data within this limit were kept.  

 

For SV-TAG measurement, because two cells were used for sampling, the cell-to-cell bias needs 

to be accounted for. During sampling, the role of the two cells were swapped with each sample. 

For instance, if Cell 1 sampled gas + particle and Cell 2 sampled particle in Hour 1, then in Hour 55 

2, Cell 1 would sample particle while Cell 2 would sample gas + particle. In addition, we 

collected 11 bypass samples simultaneously on two cells as a direct comparison during this 

campaign. Linear regression of the internal-standard-normalized signals of each compound 

measured from the two cells were performed, and the best-fit slopes were used to correct for the 

cell difference for each compound. More details can be found in Isaacman et al. (2014) and its 60 

Supplement.  
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The carryover from cell to cell can cause a positive bias to measured Fp. The magnitude of 

carryover has been systematically studied in Kreisberg et al. (2014). The carryover of total ion 

chromatogram was found to be 2.6 ± 0.1% and the median carryover of individual ions was 

found to be 2.4%. We can estimate the effect of carryover on Fp and C* as follows: 65 

 

The real gas-phase fraction of a compound Fp-real can be expressed as: 
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Assume the carryover of the compound is 2.6%. Then the measured gas-phase fraction (Fp-meas) 

can be expressed as: 70 
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We can then plot Fp-real and (uncorrected C* / corrected C*) as functions of Fp-meas. This ratio is 

the same as the bias of γ. 

 
Figure S2. A. Overestimation of Fp because of carryover, as a function of Fp-meas; B. the ratio of 75 

inferred C* (without correction from carryover) over inferred C* (after correction of carryover), 

as a function of Fp-meas. 

 

As Figure S1 suggests, the effect of carryover on Fp is negligible. However, when Fp-meas is less 

than 0.05, C* can be underestimated by a factor of ½. When Fp-meas is less than 0.03, C* can be 80 

underestimated by an order of magnitude. Therefore, compounds with median Fp less than 0.05 

were not included in activity coefficient analysis. 
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Table S1. Materials and Methods for SV-TAG and cTAG (SV channel only) analysis 

 85 

 SV-TAG cTAG 

Denuder MAST Carbon, 500 channels, 

30 mm outer diameter × 40.6 

cm length 

MAST Carbon, 500 channels, 

30 mm outer diameter × 40.6 

cm length (same as SV-TAG) 

Collection and thermal 

desorption temperatures 

30°C, 320°C 30°C, 315°C 

GC and column Agilent 7890A; Rtx-5Sil MS, 

20 m × 0.18 mm × 0.18 μm 

(Restek) 

Miniature GC; metal MXT-5, 

20 m, 0.18mm i.d., 2µm 

phase thickness (Restek) 

GC method 23.6 °C min−1 ramp from 

50°C to 330°C, 2.2 min hold 

at 330°C in Helium. 

1 min hold at 50°C, 20 °C 

min−1 ramp to 330°C, 4 min 

hold at 330°C in Helium. 

Mass spectrometer Agilent 5975C, EI, -70 eV TOFWERK HR MS, EI, -70 

eV 

 

 

S2. Liquid vapor pressure estimation  

The subcooled liquid vapor pressures were estimated by two group contribution models, i.e., the 

SIMPOL model and the EVAPORATION model (which only works for non-aromatic 90 

compounds) (Pankow and Asher, 2008; Compernolle et al., 2011). For the compounds 

considered here, we found that the predictions from the two models agree well with each other. 

The linear regression between log10(PSIMPOL) and log10(PEVAPORATION) yields and R2 of 0.97 and 

root mean square error of 0.44. Such a difference did not meaningfully change any of our results. 

Therefore, the results presented in this manuscript are based on vapor pressures estimated by the 95 

SIMPOL model. In addition, similar to our previous work, we used the MPBPWIN component 

(modified Grain method) in EPA’s EPI Suite (US EPA, 2012) to estimate the vapor pressures of 

nitro-aromatic compounds, because the SIMPOL model substantially overestimate the vapor 
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pressures of these compounds in general (Bannan et al., 2017; Wania et al., 2017). The saturation 

vapor pressure vP,i (in Pa) of each compound was converted to the saturation mass concentration 100 

over pure compound i, Ci
O at 298K by: 

                                                     , MWP i iO
i

v
C

RT
=                                      (Eq. S3)                                                        

where R is the gas constant (8.314 J mol−1 K−1), T is the temperature, 298K. MWi is the 

molecular weight of compound i in g mol-1. Ci
O was then converted into µg m-3.  

 105 

For Figure 2, the effective saturation mass concentration of compound i (Ci
*) at a given 

temperature was converted to 298K values using the Clausius-Clapeyron Equation(Epstein et al., 

2010): 

,* * 1 1(298 ) ( ) exp[ ( )]
298 298

vap i
i i

H TC K C T
R T K K

∆
= −    (Eq. S4) 

where ,vap iH∆ is the enthalpy of vaporization of compound i, T is the temperature in Kelvin. The 110 

enthalpy data were taken from the NIST Webbook (NIST, 2022), May et al. (2012), or estimated 

by the equation in May et al. (2013) and Thornton et al. (2020) (and take average) when 

measured data were not available. 

S3. Estimation of O/C and H/C ratios, H+, and aerosol liquid water content (ALWC) 

In the FIREX-AQ 2018 study, the O/C ratio and H/C ratios were estimated from the fractions of 115 

m/z 44 and m/z 43 signals in the total organic signal measured by the ACSM, following the 

parametrizations by Aiken et al. (2008) and Ng et al. (2011), respectively.  

 

The mass concentration of H+ in the particle phase of particle per unit volume of air was 

estimated by assuming charge neutrality (Zhang et al., 2007):  120 

H+ = 2 × SO4
2− / 96 + NO3

− / 62 + Cl− / 35.5 − NH4
+ / 18       (Eq. S5) 

where SO4
2−, NO3

−, Cl−, and NH4
+ are the mass concentrations of the aerosol components 

measured by the ACSM.  

 

The total ALWC is the sum of the inorganic water content caused by inorganic ions, and the 125 

organic water content caused by the uptake of water by the hygroscopic organic aerosol. The 
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inorganic water content was estimated using the ISOPORRIA-II model (Fountoukis and Nenes, 

2007) in reverse mode, assuming a metastable phase state, following the settings by Isaacman-

VanWertz et al. (2016). The organic water content was estimated following the approach by Guo 

et al. (2015). 130 

(O/C)
100 1

%

Org Org
O Org

W

W M

RH

ρ κ
ρ

=
−

                    (Eq. S6) 

where MOrg is the mass concentration of organic aerosol measured by the ACSM, ρOrg and ρW are 

the densities of organic aerosol and water, respectively. RH is the relative humidity. The 

estimation of O/C ratio is described above. The organic hygroscopicity parameter κOrg is 

assumed to be 0.2 for aged BBOA (Engelhart et al., 2012). Due to the low RH during the 135 

wildfire season, the aerosol water content caused by organic aerosol dominated the total aerosol 

liquid water content (mean ± standard deviation = 74% ± 15%). 

 

S4. AIOMFAC simulations 

To elucidate the effect of BBOA on the partitioning behavior of urban SVOCs observed in 140 

Berkeley, we calculated the activity coefficients (γ) using the Aerosol Inorganic-Organic 

Mixtures Functional groups Activity Coefficients (AIOMFAC) model (Zuend et al., 2011). Since 

we did not have bulk composition measured, aerosol compositions from relevant studies in 

literature were used. We parsimoniously assumed that the aerosol measured on campus was 

composed of urban OA, BBOA, and water. Inorganic species were ignored. The urban aerosol 145 

composition (cooking OA, hydrocarbon-like OA (HOA), and less-oxidized oxygenated organic 

aerosol (LOOOA)) was taken from a mobile measurement study in Oakland, California (a city 

adjacent to Berkeley) (Shah et al., 2018). The surrogate compound for cooking OA was based on 

Faber et al. (2017). The BBOA surrogates were taken from Pye et al. (2018). with the addition of 

dehydroabietic acid. We performed two sets of simulations, with the aerosol components and 150 

their mass fractions shown in Table S2. In the High RH set of simulations, we assumed that 10% 

of aerosol was water. We increased the mass fraction of BBOA from 6% to 86% of total aerosol, 

while the mass fraction of urban OA decreased from 84% of total aerosol to 4% of total aerosol. 

The resulting RH was 78% to 39% from urban OA dominance to BBOA dominance. In the low 

RH case, we assumed the mass fraction of water to be 5% of total aerosol, increased the BBOA 155 
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from 11% to 91% while decreased the urban OA from 84% to 4%. The resulting RH in the low 

RH case was 45% to 19% from urban OA dominance to BBOA dominance.  

 

Table S2. Aerosol components, surrogate structures, O/C ratio of the surrogate structures and the 

mass fractions of the aerosol components used in the AIOMFAC simulations. 160 
Aerosol component Surrogate in AIOMFAC O/C Amount by mass 

Cooking OA (CH3)2(CH2)13(CH2
[OH])(CH=CH)(COOH)(OH) 0.16 0.6×LOOOA 

HOA (CH3)2(CH2)18 0 0.4×LOOOA 

LOOOA (CH3)2(CH2)(CH)(CH2
[OH])2(CH[OH])(C[OH])(OH)4 0.5 42%-2% of total 

aerosol 

BBOA w/o levoglucosan (CH2)(CH)(CH[OH])2(CH2O)(CHO[ether])(OH)2 0.67 6%-83% of total 

aerosol 

Levoglucosan Levoglucosan 0.83 0.03×BBOA w/o 

levoglucosan 

Dehydroabietic acid Dehydroabietic acid 0.1 0.005×BBOA 

w/o levoglucosan 

Water Water + ∞ Remaining 10% 

(5% in the low 

RH runs) 
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S5. Random forest model for the temporal variations of Fp  

We tried to use random forest models to find out what are the most important factors controlling 

the temporal variations of the partitioning behaviors of individual SVOCs. We sought to use 

various measured variables, such as temperature and relative humidity (predictors) to predict the 165 

time series of Fp of individual compounds (response). Random forest algorithm, developed by 

Leo Breiman (Breiman, 2001), is an ensemble approach that makes prediction of the response 

using the aggregation of multiple decision trees. We used the bootstrap aggregation (bagging) 

method, in which each decision tree in the ensemble was trained on a random subset of the 

samples (with replacement), and the prediction results from the individual decision trees were 170 

then averaged to make more accurate predictions. This approach reduces the chance of 

overfitting by individual decision trees and therefore enhances prediction accuracy (Mecikalski 

et al., 2021). It can also be used to evaluate the importance of predictor variables on their 

contribution in predicting the response variable.  

 175 

The random forest model was implemented with MATLAB 2022a, using 200 learning cycles. 

We set the number of predictors to select for each split to “all” to use all available predictors. 

The “interaction-curvature” algorithm was used to select the best split predictor at each node, 

and we allowed the use of the best surrogate predictor when the observation of a predictor is 

missing. We used the permutation of out-of-bag predictor observations method in MATLAB 180 

(“oobPermutedPredictorImportance” function) to rank the importance of predictors (MathWorks, 

2022). Drawing N observations out of N observations with replacement will on average leave 

37% of observations not being used to train the model (Breiman, 1996). These observations are 

out-of-bag observations. For each predictor variable xj, we randomly permuted the out-of-bag 

observations of xj, used trained model to predict the response (response is not permuted), and 185 

estimated the model error ε. This error was then compared with the model error of prediction 

using the unpermuted data. If the model performance significantly deteriorated when predictor j 

was permuted, then this variable is important. Otherwise this predictor variable is unimportant, 

or the information in this predictor variable has been contained in other predictor variables 

(McGovern et al., 2019). The higher the importance score is, the more important the factor is. 190 

Importance scores close to 0 mean low importance, and negative importance scores mean the 

model is accidentally better in using the permuted data to predict the response, which also means 
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the factor is not important. This is more likely to happen with relatively small datasets such as 

our Fp dataset (N = 112 data points for the 2017 Northern California dataset and N = 88 data 

points for the FIREX-AQ 2018 dataset, in which all predictor variables were measured).  195 
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S6. Supplementary figures 

 

 

Figure S3. Measured and predicted Fp for n-alkanes and n-carboxylic acids, against the log10CO
 

at 298K in the 2017 Northern California wildfires study. Scatters show the measured Fp and lines 200 

show the predicted Fp from the equilibrium absorption model. C13-C15 alkanes deviate from 

others probably because of potential interference such as decomposition of larger molecules or 

the carryovers from the gas + particle measurements of the previous time step, which may have a 

stronger effect on the particle-phase measurements of the light alkanes (whose signals are low).  
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 205 

Figure S4. Violin plot of Fp of compounds in several classes in the 2017 Northern California 

wildfires study, showing interquartile range with whiskers extended to 1.5 times the interquartile 

range. Circles on each violin indicate the median. Compounds are ordered by descending median 

Fp.  
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 210 

Figure S5. Violin plot of Fp of compounds in several classes in the FIREX-AQ 2018 study, 

showing interquartile range with whiskers extended to 1.5 times the interquartile range. Circles 

on each violin indicate the median. Compounds are ordered by descending median Fp.  
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Figure S6. Campaign average Fp during the FIREX-AQ 2018 study, measured by the cTAG, 215 

classified by functional groups, plotted against their saturation concentration at 298K. Three 

curves on the figure are the theoretical particle fractions (Fp) predict from equilibrium absorptive 

partitioning model, assuming different activity coefficients (γ). The abnormally high Fp of d-

erythrono-1,4-lactone (and its structure) suggests it is likely a fragmentation product of a lower 

volatility compound.  220 
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Figure S7. The logarithmic of effective saturation concentration over the pure saturation 

concentration, which is equivalent to the activity coefficient γ. Data are from the October 2017 225 

Northern California wildfires campaign.  
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Figure S8. Correlation matrix of Fp time series for alkanes observed by SV-TAG in Berkeley, 

California during the October 2017 Northern California wildfires study. 



 S17 

 230 

Figure S9. Correlation matrix of Fp time series for compounds observed by the cTAG in McCall, 

Idaho during the FIREX-AQ 2018 study. Compounds are ordered by the number of -OH groups 

in the molecules.  
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Figure S10. Diel profile of A. methyl palmitate and B. methyl stearate in Berkeley. Solid lines 235 

show the mean and shadings show the standard deviation.  
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Figure S11. The importance scores of factors on the Fp of selected compounds, measured in the 

2017 Northern California wildfires study. Fp of fluorene is negatively affected by the 

concentration of levoglucosan. Fp of all the compounds is positively affected by the 240 

concentration of PM1.  
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Figure S12. Boxplots showing the effect of BBOA on the particle phase fraction on selected 

polar compounds observed in the 2017 Northern California wildfires study. Each box plot shows 

the interquartile range with whiskers extended to 1.5 × the interquartile range. Central horizontal 245 

lines show the medians. Circles denote outliers. 
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Figure S13. Boxplots showing the effect of BBOA on the particle phase fraction on selected 

nonpolar compounds observed in the 2017 Northern California wildfires study. Each box plot 250 

shows the interquartile range with whiskers extended to 1.5 × the interquartile range. Central 

horizontal lines show the medians. Circles denote outliers. PM categories are based on the 

concentration of PM1. Low PM: 0-40th percentile; light PM: 40th-60th percentile, medium PM: 

60th-75th percentile, high to extreme PM: above 90th percentile of PM1 concentration. 

 255 
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Figure S14. Boxplots showing the effect of BBOA on the particle phase fraction on selected 

compounds, observed in the FIREX-AQ 2018 study. Each box plot shows the interquartile range 

with whiskers extended to 1.5 × the interquartile range. Central horizontal lines show the 

medians. Circles denote outliers. BB influence categories are based on the concentration of 260 

particle phase levoglucosan. Low BB: 0-20th percentile; light BB: 20th-70th percentile, medium 

BB: 70th-90th percentile, high to extreme BB: above 90th percentile of levoglucosan 

concentration. 
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Figure S15. Boxplots showing the level of OA, f44, and the estimated O/C ratio under different 265 

levels of biomass burning influence in the FIREX-AQ 2018 campaign.  
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Figure S16. Predicted activity coefficients of aerosol components and selected compounds as 

functions of the fraction of the sum of BBOA components (BBOA without levoglucosan, 

levoglucosan and dehydroabietic acid), under low and high RH conditions described in Table S2. 270 
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