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Abstract. Ozone (O3) is a secondary pollutant in the atmosphere formed by photochemical reactions that en-
dangers human health and ecosystems. O3 has aggravated in Asia in recent decades and will vary in the future.
In this study, to quantify the impacts of future climate change on O3 pollution, near-surface O3 concentrations
over Asia in 2020–2100 are projected using a machine learning (ML) method along with multi-source data. The
ML model is trained with combined O3 data from a global atmospheric chemical transport model and real-time
observations. The ML model is then used to estimate future O3 with meteorological fields from multi-model
simulations under various climate scenarios. The near-surface O3 concentrations are projected to increase by
5 %–20 % over South China, Southeast Asia, and South India and less than 10 % over North China and the
Gangetic Plains under the high-forcing scenarios in the last decade of 21st century, compared to the first decade
of 2020–2100. The O3 increases are primarily owing to the favorable meteorological conditions for O3 photo-
chemical formation in most Asian regions. We also find that the summertime O3 pollution over eastern China will
expand from North China to South China and extend into the cold season in a warmer future. Our results demon-
strate the important role of a climate change penalty on Asian O3 in the future, which provides implications for
environmental and climate strategies of adaptation and mitigation.

1 Introduction

Tropospheric ozone (O3) is a secondary air pollutant, formed
by photochemical oxidation of non-methane volatile organic
compounds (NMVOCs) and carbon monoxide (CO) in the
presence of nitrogen oxides (NOx =NO+NO2) and sun-
light. It has adverse effects on human health (Malley et al.,
2017; Cakmak et al., 2018), vegetation growth (Yue et al.,
2017; Mills et al., 2018), and climate change (Checa-Garcia
et al., 2018; Gaudel et al., 2018). A better understanding of
the causes of changes in O3 concentrations is useful for de-
veloping effective environment and climate strategies.

Since the mid-1990s, Asian regions, including South Asia,
East Asia, and Southeast Asia, have experienced the fastest
O3 increase rate of 2–8 ppb per decade at remote surface sites
and in the lower free troposphere across the world (IPCC,
2021). A number of air quality monitoring stations have been
established in China since 2013 to measure real-time near-
surface particulate matter, O3, and other air pollutants. The
measurements showed an increasing trend of urban warm-
season daily maximum 8 h average (MDA8) O3 concentra-
tions of 2.4 ppb (5 %) yr−1 that is faster than any other re-
gions worldwide during 2013–2019 (Lu et al., 2020). How-
ever, many regions in Asia lack O3 observations with suffi-
cient spatial and temporal coverage. Also, most of the present
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regional observations are collected only near population clus-
ters, which are not representative of the entire region (Zhou
et al., 2022).

To supplement the limited near-surface O3 measurements,
many studies utilized global and regional models with com-
prehensive physical and chemical processes to simulate O3
concentrations (Zhu et al., 2017; Gao et al., 2020; Yang et
al., 2022). Moreover, statistical models have also been used
to estimate O3 concentrations (Chen et al., 2020; Zhang et al.,
2020). In recent years, machine learning (ML) approaches,
such as random forest (Xue et al., 2020; Wei et al., 2022),
neural network (Di et al., 2017), support vector machine (Su
et al., 2020), extreme gradient boosting (Liu et al., 2020),
and ensemble learning (Liu et al., 2022), have been widely
applied to estimate O3 levels based on potential influential
factors (e.g., precursor emissions, meteorological conditions,
land use, surface elevation, gross domestic product, popu-
lation density, and geographical variables). The abovemen-
tioned previous studies utilizing the ML methods showed
high computational efficiency and accuracy, with an overall
R2 between the observed and predicted O3 concentrations in
the range of 0.7–0.9.

Meteorological factors and synoptic conditions play im-
portant roles in affecting O3 pollution (Fu and Tai, 2015;
Gong and Liao, 2019; Yin et al., 2019; Liu and Wang, 2020;
Dang et al., 2021). Gong and Liao (2019) illustrated that
hot, dry, and stagnant weather conditions are favorable for
the formation and persistence of severe O3 pollution over
northern China. High air temperature along with intense in-
coming shortwave radiation accelerates both photochemical
reaction rates and natural precursor emissions for O3 produc-
tion (Jacob and Winner, 2009). Under high relative humidity
conditions, O3 concentrations decrease due to many com-
plex physical and chemical mechanisms (Jeong and Park,
2013; Kavassalis and Murphy, 2017; Lu et al., 2019; Li et
al., 2021a). Cloud and precipitation impact O3 levels through
reducing the downwelling solar radiation and washout of pol-
lutants (Toh et al., 2013). Anomalous sea level pressure pat-
terns can affect the long-range transport of O3 by influencing
atmospheric circulation (Santurtún et al., 2015). By changing
the air stagnation condition and transport of pollutants, wind
fields can also affect O3 concentrations in local and down-
wind areas of emission sources (Doherty et al., 2013).

Future climate change corresponding to the different cli-
mate scenarios can impact O3 through altering meteorologi-
cal conditions (Wang et al., 2013; Fu and Tian et al., 2019).
Using regional climate fields downscaled from general cir-
culation models to investigate potential O3 variations in the
US due to changing climate, Fann et al. (2015) projected the
MDA8 O3 to increase by 1–5 ppb as daily maximum average
temperature increases by 1–4 ◦C in 2030 relative to 2000.
Colette et al. (2015) estimated that the climate penalty for
future summertime near-surface O3 reaches 0.99–1.5 ppb by
the end of the 21st century (2071–2100) in Europe compared
to present-day levels using an ensemble of eight global cou-

pled climate–chemistry models under the RCP8.5 (Repre-
sentative Concentration Pathway) scenario. Through fixing
sea surface temperature at present-day and future conditions
in five atmospheric-only models as part of AerChemMIP
(Aerosol Chemistry Model Intercomparison Project), Zanis
et al. (2022) projected the climate change penalties and ben-
efits on global near-surface O3 concentrations from 2015 to
2100 under scenarios of SSP3-7.0 (Shared Socioeconomic
Pathway). They found O3 reductions in most regions of the
globe, except a robust O3 climate penalty of 1–2 ppb ◦C−1

in South Asia and East Asia under global warming follow-
ing the SSP3-7.0 pathway. However, SSP3-7.0 is not a good
representative scenario for both air quality and climate in
Asia. The emissions of greenhouse gases (GHGs) and air
pollutants over East Asia in SSP3-7.0 are assumed to signifi-
cantly increase in the near future and remain at high levels in
the middle of the 21st century, compared to SSPs (Li et al.,
2022), while the emissions of air pollutants have been cut by
a lot since the 2010s in the real world (Wang et al., 2021).
The GHGs and pollutant emissions are very likely to con-
tinually decline in the future, related to the carbon neutrality
commitment (Cheng et al., 2021).

In this study, we aim to better characterize the impact from
future climate change on Asian O3 pollution using multi-
ple state-of-the-art modeling tools and data. It is important
for policymakers that mitigating global climate change po-
tentially has positive benefits to surface air quality through
meteorological factors, not only the reduction in fossil fuel
co-emissions. The near-surface O3 concentrations covering
2020–2100 in Asia are projected using an ML method inte-
grated with multi-source data, including assimilated O3 data
that combine ground observations across China and simula-
tions from a global 3-D chemical transport model (GEOS-
Chem), meteorological fields under various climate scenar-
ios from the latest Coupled Model Intercomparison Project
Phase 6 (CMIP6) multi-model simulations, and other aux-
iliary data (e.g., emissions, land use, topography, population
density, and spatiotemporal information). ML approach gives
the capacity to explore many scenarios more rapidly and
for longer time periods than the chemical transport model
process-based modeling. Details of the data and methodol-
ogy used in this study are described in Sect. 2. Section 3 an-
alyzes the results of climate-driven O3 variations over differ-
ent key regions of Asia. Section 4 summarizes the main con-
clusions and discusses potential uncertainties in this study.

2 Materials and methods

2.1 GEOS-Chem model description

Figure 1 illustrates the procedures for predicting future near-
surface O3 over Asia under four scenarios. To assimilate O3
data for the ML model training, the near-surface O3 concen-
trations over Asia from 2014 to 2019 are firstly simulated us-
ing the nested-grid version of the 3-D GEOS-Chem model
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Figure 1. The structure and specific schematics for predicting future O3 concentrations under four scenarios based on the machine learning
(ML) method. MET: meteorology; EMIS: emissions; LAT: latitude; LONG: longitude; MOY: month of the year (see other definitions in
Table 1).

(version 12.9.3), driven by the Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-
2), reanalysis meteorological data (Gelaro et al., 2017). The
nested GEOS-Chem has 47 vertical layers from the surface
up to 0.01 hPa, with a horizontal resolution of 0.5◦ lati-
tude× 0.625◦ longitude over the Asia domain (11◦ S–55◦ N,
60–150◦ E). The lateral boundaries of chemical tracer con-
centrations are provided by global simulations at 2◦ lati-
tude× 2.5◦ longitude horizontal resolution. The model in-
cludes fully coupled aerosol–O3–NOx–hydrocarbon chem-
ical mechanisms (Park et al., 2004; Pye et al., 2009; Mao
et al., 2013), with about 300 species participating in over
400 kinetic and photochemical reactions (Bey et al., 2001).
The stratospheric O3 chemistry is simulated through a lin-
earized O3 parameterization scheme (LINOZ; Mclinden et
al., 2000), and the planetary boundary layer mixing is cal-
culated by a non-local scheme (Lin and McElroy, 2010).
GEOS-Chem has shown a good performance in reproducing
spatiotemporal distributions of O3 concentrations (e.g., Ni et
al., 2018; Li et al., 2019).

The historical (2014–2019) anthropogenic emissions of
O3 precursor gases, including NOx , NMVOCs, and CO, uti-
lized in the nested domain are obtained from the Community
Emissions Data System (CEDS; Hoesly et al., 2018) ver-
sion 2021_04_21, which fully considered the recent emis-
sion reductions in China related to clean air measures. The
biomass burning emissions are acquired from the Global Fire
Emissions Database, Version 4 (GFED4; van der Werf et al.,
2017). Biogenic emissions of NMVOCs from the Model of
Emissions of Gases and Aerosols from Nature (MEGAN)
version 2.1 are employed, with updates from Guenther et
al. (2012). Soil NOx sources are calculated with an updated
version of the Berkeley–Dalhousie Soil NOx Parameteriza-

tion scheme (Hudman et al., 2012). NOx emissions from
lightning are as described by Murray et al. (2012), and the
vertical distribution of emissions follows Ott et al. (2010).

2.2 Ground O3 observations

To improve the performance of the ML model in predict-
ing O3 concentrations, the nationwide hourly near-surface O3
concentrations in China during 2014–2019 are obtained from
the Chinese Ministry of Ecology and Environment (MEE)
and used for O3 data assimilation, which has been widely
used to examine pollution over China in previous studies
(K. Li et al., 2020, 2021; Qian et al., 2022). The observa-
tional network had about 500 monitoring sites in 2013 and
expanded to more than 1500 sites after 2019, covering 360
cities in mainland China. In this study, the quality controlled
hourly O3 observations in 360 cities are averaged within each
0.5◦ latitude× 0.625◦ longitude grid of the GEOS-Chem
model.

2.3 Data assimilation

The assimilation system, which is used to combine the
O3 observations across China with results from GEOS-
Chem simulations, is based on a three-dimensional varia-
tional (3DVar) data assimilation (Kalnay, 2003; Evensen et
al., 2022). The goal of the 3DVar is to find the maximum
likelihood estimation of a state vector x, which represents
the O3 concentrations here in this study, given the available
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Figure 2. Spatial distributions of (a) observed near-surface O3 concentrations across China and (b) assimilated O3 concentrations over Asia
in 2014–2019. Correlation coefficient (R) between observed and assimilated O3 and the normalized mean bias (NMB =

∑
(Observed −

Assimilated) /
∑

Assimilated ×100%) are given at the bottom left of panel (a).

observations y through minimizing the cost function:
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where xb represents the priori simulation; B is the empirical
background covariance matrix formulated as a product of the
uncertainty in the simulated value and a distance-based cor-
relation matrix C; and the individual element is calculated
as

Bi,j = 0.2× xb
i × 0.2× xb

j ×Ci,j , (2)

where we have used 20 % choice to characterize uncertainty
of the O3 simulation, with the correlation matrix empirically
set as

Ci,j = e
−

(
di,j

200 km

)2
/2

, (3)

where di,j represents the spatial distance between grid cell i

and j .
H denotes the linear observation operator that converts the

simulation results into the observational space. Here all ob-
servations are assumed to be independent, and therefore O is
a diagonal covariance matrix storing the square of the obser-
vation uncertainty, which is also set as 20 % similarly.

Comparisons between observed and assimilated O3 con-
centrations over 2014–2019 are shown in Fig. 2. The overall
correlation coefficient (R) is 0.94, and the normalized mean
bias (NMB) is −0.1%, suggesting that the assimilated data
have an excellent representation of O3 observations and min-
imize the uncertainties of GEOS-Chem simulations in China.

2.4 Predicting O3 using a machine learning method

In this study, a random forest (RF) model is used to pre-
dict O3 concentrations, similar to our previous studies (H. Li
et al., 2021, 2022), with input data of assimilated O3 con-
centrations in China that combine observations and results

from GEOS-Chem model simulations, GEOS-Chem simu-
lated O3 concentrations outside of China, MERRA-2 meteo-
rological variables, O3 precursor emissions, land cover (LC),
the normalized difference vegetation index (NDVI), topogra-
phy (TOPO), population density (POP), the month of the year
(MOY), and the geographic location of each model grid as
spatiotemporal information. Details of the datasets are sum-
marized in Table 1.

For predicting future climate-driven near-surface O3 con-
centrations, the ML model is trained with samples over
2014–2018 and the remaining 2019 data are used for model
validation. To obtain an optimal ML model, hyperparame-
ters are firstly tuned using the 10-fold cross-validation (Ro-
driguez et al., 2010). The best hyperparameters (n_estimators
= 200, min_samples_split= 2, max_features= “sqrt”, boot-
strap = “True”) of the ML model are utilized. Several sta-
tistical metrics, including the coefficient of determination
(R2), mean absolute error (MAE), root mean square error
(RMSE), and mean relative error (MRE), are used to evalu-
ate the performance of ML model. Then the climate-driven
near-surface O3 concentrations during 2020–2100 under four
SSPs (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) in Asia
can be estimated using the trained ML model with varying
meteorological factors under the climate change scenarios.
Both anthropogenic and natural emissions of O3 precursors
are fixed at the present-day levels for the prediction.

2.5 Meteorological fields from CMIP6 multi-model
simulations

Monthly meteorological parameters under four different fu-
ture climate scenarios, including SSP1-2.6, SSP2-4.5, SSP3-
7.0, and SSP5-8.5 (a representation of low-, intermediate-
, medium–high-, and high-forcing levels, respectively), are
fed to an ML model to predict near-surface O3 concentra-
tions. The Scenario Model Intercomparison Project (Sce-
narioMIP) as part of CMIP6 provides multi-model projec-
tions of climate variables driven by future emission and land
use changes under different SSPs (O’Neill et al., 2016).
In our study, meteorological fields, such as air tempera-
ture (at 2 m, 850 hPa, and 500 hPa), wind fields (at 850
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Table 1. Summary of detailed datasets used in this study. AVHRR: Advanced Very High Resolution Radiometer; ESA CCI: ESA Climate
Change Initiative; SRTM: Shuttle Radar Topography Mission.

Dataset type Variable Description Spatial resolution Temporal Time period Data source
resolution

O3 O3 Near-surface ozone 0.5◦× 0.625◦ Monthly 2014–2019 Assimilated
concentrations (historical) (historical) GEOS-Chem

simulations and
observations

Meteorology

T_2m Air temperature at 2 m

0.5◦× 0.625◦

T_850 Air temperature at 850 hPa

T_500 Air temperature at 500 hPa

U_850 Zonal wind at 850 hPa Monthly 2014–2019 MERRA-2

U_500 Zonal wind at 500 hPa (historical) (historical) (historical)

V_850 Meridional wind at 850 hPa Monthly 2020–2100 Adjusted

V_500 Meridional wind at 500 hPa (future) (future) CMIP6

RH Relative humidity (future)

PRECP Precipitation rate

CLT Total cloud cover

RSDS Incoming shortwave radiation
at the surface

SLP Sea level pressure

Emission

NOx

Nitric oxide from anthropogenic

0.5◦× 0.625◦

2014–2019
sources (historical)

2019

Nitric oxide from biomass burning (future)

Nitric oxide from soil sources 2016 CEDS

Nitric oxide from lightning sources 2016 (anthropogenic)

CO
Carbon monoxide from anthropogenic Monthly GFED4
sources (historical) (biomass burning)

Carbon monoxide from biomass burning Monthly 2014–2019 MEGAN V-2.1

NMVOC

Non-methane volatile organic compounds (future) (historical) (biogenic)
from anthropogenic sources 2019

Non-methane volatile organic compounds (future)
from biomass burning

Non-methane volatile organic compounds 2016
from biogenic sources

Land use
LC Land cover 300m× 300m

Monthly
2014–2019 ESA CCI

NDVI Normalized difference 0.05◦× 0.05◦ (historical) AVHRR
vegetation index 2019 (future)

Topography TOPO Digital elevation model 90m× 90m – 2010 SRTM

Population POP Population density 1km× 1km – 2010 LandScan
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and 500 hPa), surface relative humidity, incoming short-
wave radiation at the surface, total cloud cover, precipita-
tion rate, and sea level pressure, are chosen as the key me-
teorological predictors for near-surface O3 concentrations,
which are obtained from 18 global climate models, i.e.,
ACCESS-CM2, ACCESS-ESM1-5, CanESM5, CESM2-
WACCM, CMCC-CM2-SR5, EC-Earth3-Veg, EC-Earth3,
FGOALS-f3-L, FGOALS-g3, GFDL-ESM4, INM-CM5-0,
IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-
2-LR, MRI-ESM2-0, NorESM2-LM, and NorESM2-MM.
Before being applied to the ML model, future meteorolog-
ical fields from ScenarioMIP are adjusted by their potential
bias, characterized as the difference in their historical clima-
tological mean (2014–2019) and MERRA-2 following Li et
al. (2022). It minimizes the inconsistencies in the initial con-
ditions in models and reanalysis data.

3 Results

3.1 Predictive capability of the machine learning model

The predicted monthly O3 concentrations over Asia in 2019
by the ML model are in good agreement with the assim-
ilated O3 data constructed with observations and GEOS-
Chem model results (Fig. 3). The overall R2 between the
predicted and assimilated O3 concentrations is as high as
0.92, and the ML model has a low MRE of 9 % in predict-
ing O3 concentrations over the Asia domain. Overall, these
statistical indices indicate that the RF model is promising for
predicting the spatial distributions and temporal variations in
near-surface O3 concentrations over Asia, which can provide
a practical means for studying long-term variations in O3 un-
der the future climate change.

Meanwhile, the ML model predictive capability for each
grid cell over the entire domain during 2014–2019 is fur-
ther evaluated and demonstrated in Fig. 4. Regarding the spa-
tial performance, the estimated O3 concentrations are highly
correlated to the assimilated data in most regions of Asia
with small biases, indicating a strong spatial predictive abil-
ity of the RF model. More than 80 % of land areas have an
R2 greater than 0.9. In terms of model uncertainties, about
95 % of land areas have an RMSE (MAE) of less than 3 ppb
(2 ppb) (parts per billion). Furthermore, approximately 86 %
of land areas show small modeling bias with MRE below
5 %. Note that several grid cells show MRE over 5 % but still
below 15 %, which is related to the data assimilation using
monitored and simulated O3 concentrations in China and the
coarse resolution for coastal areas and islands over Southeast
Asia.

Figure 5 shows the importance score of independent vari-
ables that contribute to the prediction of the trained ML
model, which called Gini importance and implies the influ-
ence of input features on the target variable in the ML model.
The results suggest that among all the input predictors, rela-
tive humidity, incoming solar radiation at the surface, and to-

Figure 3. Density scatterplots of predicted vs. assimilated monthly
near-surface O3 concentrations (ppb) in 2019 over Asia. The gray
and red lines are the 1 : 1 line and linear regression line, respec-
tively. Statistical metrics including the number of samples (N ),
correlation of determination (R2, unitless), root mean square error
(RMSE, ppb), mean absolute error (MAE, ppb), and mean relative
error (MRE, %) are shown at the top left.

pography are the top-three most influential variables for the
model construction of near-surface O3 in Asia, with impor-
tance scores of 15 %, 12 %, and 10 %, respectively. The pri-
mary importance of relative humidity has also been reported
in previous studies (e.g., Han et al., 2020; Qian et al., 2022).
Other meteorological parameters, such as cloud cover, sea
level pressure, air temperature, and precipitation, also have
a substantial impact on the O3 estimates, with importance
scores ranging from 4 % to 8 %. In the ML model, the emis-
sions of three primary O3 precursors, including NMVOCs,
NOx , and CO, have a relatively low importance score of 4 %–
5 % individually due to the spatiotemporal diversity of O3
production regimes. However, it is noted that the O3 varia-
tions in different regions are dominated by different meteo-
rological factors (Weng et al., 2022). The importance score
of each independent feature quantified in this study can only
reflect the overall importance across Asia, which is less rep-
resentative of any specific regions.

3.2 Predicted future climate-driven O3 variations

Figure 6 shows the predicted absolute and percentage
changes in annual mean near-surface O3 concentrations in
response to climate change between the first and last decades
of 2020–2100 based on the future meteorological fields from
the 18 CMIP6 models. Figure 7 shows the time series of the
regional averaged values over six sub-regions of Asia during
2020–2100. Under the global warming trends of all future
scenarios, the climate-driven near-surface O3 concentrations
increase constantly from 2020 to 2100 over many key re-
gions in Asia, such as North China (NC), South China (SC),
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Figure 4. Spatial distributions of the performance statistics of the ML model with regard to (a) R2 (unitless), (b) RMSE (ppb), (c) MAE
(ppb), and (d) MRE (%) during 2014–2019 over Asia.

Figure 5. Importance scores of independent variables (meteorolog-
ical parameters, emissions, land use, topography, and population
density) used in the ML model for predicting future near-surface
O3 concentrations over Asia.

Southeast Asia (SEA), South India (SI), and the Gangetic
Plains (GP), except the Tibetan Plateau (TP). The O3 con-
centrations over SC, SEA, and SI are projected to increase
considerably with the maximum increase up to 5 ppb (20 %)
in 2095 (2091–2100 mean) compared to 2025 (2020–2029
mean) under the SSP5-8.5 scenario, revealing a strong O3–
climate penalty in most Asian regions. The climate-driven
changes in O3 concentrations are smaller under the scenarios
of less warming, especially in SSP1-2.6 that has O3 changes
of less than 5 % across Asia. These suggest that future cli-
mate following low emissions and sustainable pathways is

more favorable for the mitigation of O3 pollution in Asia than
high-forcing scenarios.

The strong O3–climate penalty over eastern China can be
attributed to the particularly high O3 precursor emissions
(Fig. S1 in the Supplement), relative to western China, which
lead to a positive local net O3 production close to sources in a
warming climate (Fig. S2) (Zanis et al., 2022). The absolute
and percentage changes in regional averaged near-surface O3
concentrations between 2025 and 2095 under the four sce-
narios are shown in Fig. 8. The climate-driven changes in O3
concentrations are gradually stronger from the north (2 %–
3 %) to the south (3 %–8 %) of China, which demonstrates
that the changes in meteorology exert a greater impact on
near-surface O3 concentrations over SC than NC under fu-
ture climate change. By the end of the 21st century, the rel-
ative humidity will decrease (Fig. S3) and downward solar
radiation will increase (Fig. S4) over SC compared to those
values in 2025, which are conducive to the O3 productions,
while NC has the opposite changes. Moreover, cloud cover
will decrease more over SC than NC (Fig. S5), contributing
to the larger increase in O3 productions and concentrations
over SC than NC in a warming climate.

In South Asia, climate change also enhances O3 concen-
trations by < 5% over GP and SI (Fig. 8), due to the mas-
sive precursor emissions (Fig. S1) and O3 productions. Over
SI, the decreases in relative humidity (Fig. S3) and cloud
amount (Fig. S5) and increases in downward solar radiation
at the surface (Fig. S4) favor photochemical production of
O3 and induce the large increases in O3 concentrations in
this region. Averaged over SEA, O3 concentrations driven by
higher temperature (Fig. S2), more downward solar radiation
(Fig. S4), and lower relative humidity (Fig. S3) and cloud
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Figure 6. The spatial distributions of absolute (ppb) and percentage difference (%) of surface O3 level between 2025 (2020–2029 mean) and
2095 (2091–2100 mean) driven by climate change under four scenarios (a, e) SSP1-2.6 (SSP126), (b, f) SSP2-4.5 (SSP245), (c, g) SSP3-7.0
(SSP370), and (d, h) SSP5-8.5 (SSP585). The box-outlined areas in (d) are North China (NC; 35–41◦ N, 105–120◦ E), South China (SC;
22–33.5◦ N, 105–120◦ E), Southeast Asia (SEA; 9.5◦ S–19◦ N, 93.75–140◦ E), South India (SI; 8–18◦ N, 73.125–80.625◦ E), the Gangetic
Plains (GP; 21.5–23.5◦ N, 85.625–92.5◦ E; 23.5–27◦ N, 76.25–92.5◦ E; and 27–30◦ N, 76.25—81.25◦ E), and the Tibetan Plateau (TP; 28–
31◦ N, 81.875–102.5◦ E and 31–38◦ N, 73.125–102.5◦ E). No overlaying hatch pattern indicates statistical significance with 95 % confidence
from a two-tailed t test.

cover (Fig. S5) in 2095 are projected to increase O3 concen-
trations by 5 %–7 % in SSP3-7.0 and SSP5-8.5 and 0 %–3 %
in SSP1-2.6 and SSP2-4.5 scenarios, relative to 2025 (Fig. 8).

The Tibetan Plateau (TP), known as the highest topogra-
phy in China with more solar radiation at the surface, has
strong stratosphere–troposphere exchanges of O3 compared
with other regions, leading to high O3 concentrations over
this region (Fig. S6). Climate-driven O3 concentrations are
projected to decline by less than 2 % over TP from 2025 to
2095 (Fig. 8). It is likely because less solar radiation (Fig. S4)
and more frequent occurrence of rainy weather (Fig. S7) in
the future would reduce the local chemical production of O3.

3.3 The seasonality of future climate-driven O3
variations

Climate over Asia has obvious seasonal variation related to
the Asian monsoon system. Figure 9 shows the spatial distri-
butions of percentage changes in projected climate-driven O3
concentrations in spring (March–April–May, MAM), sum-
mer (June–July–August, JJA), autumn (September–October–
November, SON), and winter (December–January–February,
DJF) between 2025 and 2095 under the four scenarios. In
general, air quality in many regions of Asia will deteriorate
in all seasons associated with intensified O3 pollution under
climate change.

In eastern China, O3 pollution occurs most frequently in
summer and is more severe in NC than SC currently (Li et
al., 2019). Under future climate warming, JJA O3 concen-

trations will increase by 5 %–20 % in SC under the high-
forcing scenarios, while the changes in NC are less than
5 %. This suggests that future climate change will expand
the summertime O3 pollution from NC to SC over eastern
China. Another feature is the strong increases in O3 concen-
trations by 10 %–20 % throughout eastern China and exceed-
ing 20 % over Sichuan Basin in SON, which relate to the
significant increases in temperature (Fig. S8) and solar radia-
tion (Fig. S9) in this season over central-eastern China under
the high-forcing scenarios. It further indicates that future cli-
mate change will extend the O3 pollution from summer into
autumn.

In South Asia, the climate-driven increases in O3 con-
centrations vary from JJA over SI to DJF over GP. Relative
to 2025, in the summer of 2095, anomalous high pressure
(Fig. S10) along with an anticyclone (Figs. S11 and S12)
dominates South Asia, which is not conducive to O3 dif-
fusion, leading to increases in JJA O3 concentrations over
SI. The intensified O3 pollution across GP in DJF under
climate change is related to the strong surface warming
(Fig. S8), decreases in relative humidity (Fig. S13), cloud
cover (Fig. S14), and rainfall (Fig. S15), as well as increases
in solar radiation at the surface (Fig. S9), favoring the photo-
chemical production of O3. In the northern part of Southeast
Asia, JJA has the largest O3 rise via the same mechanism
as SI, while O3 increases by the same magnitude in all sea-
sons in the southern part of Southeast Asia driven by future
climate change.

Atmos. Chem. Phys., 23, 1131–1145, 2023 https://doi.org/10.5194/acp-23-1131-2023



H. Li et al.: Climate-driven deterioration of future ozone pollution 1139

Figure 7. Time series (2020–2100) of annual mean near-surface O3 concentrations (ppb) driven by climate change under the four scenarios
(SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) over North China (NC; 35–41◦ N, 105–120◦ E), South China (SC; 22–33.5◦ N, 105–120◦ E),
Southeast Asia (SEA; 9.5◦ S–19◦ N, 93.75–140◦ E), South India (SI; 8–18◦ N, 73.125–80.625◦ E), the Gangetic Plains (GP; 21.5–23.5◦ N,
85.625–92.5◦ E; 23.5–27◦ N, 76.25–92.5◦ E; and 27–30◦ N, 76.25–81.25◦ E), and the Tibetan Plateau (TP; 28–31◦ N, 81.875–102.5◦ E and
31–38◦ N, 73.125–102.5◦ E). The black lines are the averages of the predicted O3 based on meteorological fields from 18 CMIP6 models.

4 Conclusions and discussion

O3 pollution has been increasing over Asia in recent decades,
which harms human health and vegetation. In the future
warmer climate, O3 pollution over Asia can be modulated
by changes in meteorological fields. In this study, to examine
the variations in O3 concentrations over Asia due to the fu-
ture climate change, monthly near-surface O3 concentrations
from 2020 to 2100 under four climate scenarios (SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5) are predicted using an
ML model with input data from assimilated O3 combining
GEOS-Chem simulations and real-time observations, future
meteorological parameters from CMIP6 multi-model simu-
lations, emissions of O3 precursors, land use, topography,
population density, and spatiotemporal information. Our re-
sults suggest that future O3 pollution over Asia will be sig-

nificantly exacerbated in a warming climate, especially under
high-forcing scenarios.

Trained by the assimilated O3 concentrations and reanal-
ysis data, the ML model can well predict O3 over Asia with
the coefficient determination of 0.92 between assimilated and
predicted O3 concentrations and relative error of 9 %. Then
the future Asian O3 concentrations from 2020 to 2100 driven
by climate change are projected in the ML model with vary-
ing meteorological fields from 18 CMIP6 models under four
future climate scenarios.

The climate penalty on O3 is robust over most regions of
Asia. The annual mean O3 levels in 2095 are projected to in-
crease by 5 %–20 % relative to 2025 under the high-forcing
scenarios over South China, Southeast Asia, and South India
and less than 10 % over North China and the Gangetic Plains,
due to more favorable meteorological conditions for O3 pho-
tochemical production, while there is a decrease of < 5%
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Figure 8. Absolute (a, ppb) and percentage (b, %) changes in
projected near-surface climate-driven O3 concentrations in 2095
(2091–2100 mean) relative to 2025 (2020–2029 mean) over the
six selected key regions of Asia, including NC, SC, SEA, SI, GP,
and TP under four future climate scenarios. The error bars indicate
1 standard deviation.

over the Tibetan Plateau. The climate-driven changes in O3
concentrations are smaller under the scenarios of less warm-
ing, suggesting that future climate following low emissions
and sustainable pathways would be more effective in the mit-
igation of O3 pollution in Asia than the high-forcing scenar-
ios. Seasonal variation analysis reveals that summertime O3
pollution over eastern China will expand from North China
to South China and extend into the cold season under future
climate change. In addition, South Asian O3 pollution will
increase over South India in summer and over the Gangetic
Plains in winter.

Zanis et al. (2022) analyzed the global climate change
benefit and penalty of O3 based on sensitivity simulations
from five CMIP6 models under the SSP3-7.0 scenario. They
showed positive changes in JJA O3 concentrations by less
than 1 ppb from 2010 to 2095 over East Asia and South Asia
driven by climate change but with large uncertainties due
to the model diversity. The ML method in this study gives
similar positive changes in O3 as Zanis et al. (2022). Pom-
mier et al. (2018) applied the EMEP (European Monitoring
and Evaluation Programme) chemical transport model driven
by the downscaled meteorological data from NorESM1-M to
investigate the impacts of regional climate change on near-
surface O3 over India. They showed that near-surface O3
would increase by up to 4 % over northern India and de-
crease by 3 % over southern India from 2050 to 2100 under

the RCP8.5 scenario. We show that the climate-driven O3
in this study would increase over both the Gangetic Plains
(0.2 %) and South India (3 %) under the SSP5-8.5 scenario
in 2050 relative to 2016 (2014–2019 mean). The discrepan-
cies may rise from that the results of Pommier et al. (2018)
were based on NorESM1-M simulated climate alone, while
the climate change predicted by 18 CMIP6 models were ap-
plied in this study and the ensemble mean O3 concentrations
were shown here.

There are a few uncertainties and limitations in the pro-
jected near-surface O3 concentrations over Asia in terms of
input data, GEOS-Chem simulations, CMIP6 multi-model
simulations, and the ML model. First, only observational
data over 2014–2019 across China were used for the O3 as-
similation. Longer-term measurements with broader spatial
coverage are more desirable to improve the model perfor-
mance. Land use data and population density are fixed at
present-day conditions when predicting the future O3 since
we focus on the variations in meteorological parameters un-
der climate change, which will vary in the future. In addition,
natural O3 precursor emissions such as biogenic emissions of
NMVOCs and NOx from soil and lightning sources are fixed
at levels from the year 2016 in the future estimates, which
can induce biases in the O3 projections since climate change
can strongly influence natural emissions of O3 precursors
(Liu et al., 2019). Although the methane concentrations in
the GEOS-Chem model are prescribed and its role in the O3
production is not considered in the ML model, the climate
influence of methane is included in the CMIP6 multi-model
simulations. Consequently, the impact of future changes in
methane on O3 concentrations via climate change are con-
sidered in the future projections.

Second, the GEOS-Chem model has been demonstrated to
well capture the magnitude of and spatiotemporal variations
in O3, with an average bias of about 10 % over China (Lou
et al., 2014) and Southeast Asia (Marvin et al., 2021) and
less than 20 % over India (David et al., 2019). The future de-
crease in relative humidity will cause stomatal closure and
also increase near-surface O3. The O3–vegetation interac-
tions are not represented in the default GEOS-Chem model.
A newly coupled global atmospheric chemistry–vegetation
model (Lei et al., 2020) could be applied in the future study.

Third, the meteorological parameters characterizing future
climate change from the CMIP6 multi-model simulations can
also give rise to uncertainties in this study (Xu et al., 2021).
Moreover, the spatial autocorrelation in a random split of
training data for cross-validation would lead to the overly
optimistic statistics of ML model predictive power (Ploton
et al., 2020). Additionally, the overall importance scores of
the features in this study can only reflect that from the whole
study domain. Further investigations are required to identify
and quantify the importance score of each local variable con-
tribution to the near-surface O3 predictions in different spe-
cific regions. Also, the good ability of the ML model for the
present-day condition may not imply a satisfactorily extrap-
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Figure 9. The spatial distributions of percentage differences (%) in near-surface O3 concentrations between 2025 (2020–2029 mean) and
2095 (2091–2100 mean) driven by climate change under four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, from left to right)
averaged in MAM (March–April–May), JJA (June–July–August), SON (September–October–November), and DJF (December–January–
February) (from top to bottom). No overlaying hatch pattern indicates statistical significance with 95 % confidence from a two-tailed t test.

olation under the future warming condition, which can bias
our results and deserves further investigation in future stud-
ies.

Last but not least, near-surface O3 has increased rapidly in
China since 2013 owing to both precursor emission changes
and atmospheric warming (Li et al., 2021b), which signifi-
cantly affect human health (Lu et al., 2020) and also require
further studies.

Overall, our study provides a framework of combining
real-time observations, chemical transport model simula-
tions, and multi-climate model predictions with data as-
similation and machine learning methods to estimate future
climate-driven near-surface O3 concentrations. The empha-
sis of this work is to quantify the impacts of future climate
change on O3 pollution in Asia, which is of great significance
for future O3 pollution mitigation strategies.

Code and data availability. The GEOS-Chem model is avail-
able at https://doi.org/10.5281/zenodo.3974569 (The International
GEOS-Chem User Community, 2020). MERRA-2 reanalysis data
can be downloaded at http://geoschemdata.wustl.edu/ExtData/
GEOS_0.5x0.625_AS/MERRA2/ (GMAO, 2020). Multi-model
projections of climate variables are from the Scenario Model
Intercomparison Project of the Coupled Model Intercomparison
Project Phase 6 https://esgf-node.llnl.gov/search/cmip6/ (Coupled
Model Intercomparison Project, 2020). Land cover is derived from
http://maps.elie.ucl.ac.be/CCI/viewer/download.php (European
Space Agency Climate Change Initiative, 2017). Hourly O3 concen-
trations are obtained from the public website of the China Ministry
of Ecology and Environment (http://www.beijingair.sinaapp.com,
Wang, 2020). The normalized difference vegetation in-
dex is obtained from https://www.ncei.noaa.gov/data/
avhrr-land-normalized-difference-vegetation-index/access/
(NOAA National Centers for Environmental Information, 2019).
Topography is collected from https://cgiarcsi.community/data/
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srtm-90m-digital-elevation-database-v4- (Jarvis et al., 2008). Pop-
ulation density is acquired from https://doi.org/10.48690/1524206
(Bright et al., 2011).
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