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Abstract. The radiative effects of clouds make a large contribution to the Earth’s energy balance, and changes
in clouds constitute the dominant source of uncertainty in the global warming response to carbon dioxide forcing.
To characterize and constrain this uncertainty, cloud-controlling factor (CCF) analyses have been suggested that
estimate sensitivities of clouds to large-scale environmental changes, typically in cloud-regime-specific multiple
linear regression frameworks. Here, local sensitivities of cloud radiative effects to a large number of controlling
factors are estimated in a regime-independent framework from 20 years (2001–2020) of near-global (60◦ N–
60◦ S) satellite observations and reanalysis data using statistical learning. A regularized linear regression (ridge
regression) is shown to skillfully predict anomalies of shortwave (R2

= 0.63) and longwave cloud radiative
effects (CREs) (R2

= 0.72) in independent test data on the basis of 28 CCFs, including aerosol proxies. The sen-
sitivity of CREs to selected CCFs is quantified and analyzed. CRE sensitivities to sea surface temperature and
estimated inversion strength are particularly pronounced in low-cloud regions and generally in agreement with
previous studies. The analysis of CRE sensitivities to three-dimensional wind field anomalies reflects the fact
that CREs in tropical ascent regions are mainly driven by variability of large-scale vertical velocity in the upper
troposphere. In the subtropics, CRE is sensitive to free-tropospheric zonal and meridional wind anomalies, which
are likely to encapsulate information on synoptic variability that influences subtropical cloud systems by modify-
ing wind shear and thus turbulence and dry-air entrainment in stratocumulus clouds, as well as variability related
to midlatitude cyclones. Different proxies for aerosols are analyzed as CCFs, with satellite-derived aerosol prox-
ies showing a larger CRE sensitivity than a proxy from an aerosol reanalysis, likely pointing to satellite aerosol
retrieval biases close to clouds, leading to overestimated aerosol sensitivities. Sensitivities of shortwave CREs to
all aerosol proxies indicate a pronounced cooling effect from aerosols in stratocumulus regions that is counter-
acted to a varying degree by a longwave warming effect. The analysis may guide the selection of CCFs in future
sensitivity analyses aimed at constraining cloud feedback and climate forcings from aerosol–cloud interactions
using data from both observations and global climate models.

Published by Copernicus Publications on behalf of the European Geosciences Union.



10776 H. Andersen et al.: Controls of cloud radiative effects

1 Introduction

Clouds are main modulators of the Earth’s energy budget,
cooling the Earth by about 20 W m−2 on average. This cool-
ing is driven by clouds reflecting incoming shortwave solar
radiation, therefore reducing the energy uptake of the Earth
system by about 47 W m−2. Clouds increase the Earth atmo-
sphere’s opacity in the infrared; however, they absorb long-
wave radiation emitted by the warmer Earth surface and emit
less longwave radiation themselves due to the lower cloud-
top temperatures. The combined effect of longwave absorp-
tion and emission leads to a warming of around 28 W m−2

(numbers from Forster et al., 2021). These effects of clouds
on the Earth’s energy budget are called cloud radiative effects
(CREs) and are defined as the difference in radiation between
“all-sky” (cloudy and clear-sky) and (hypothetical) “clear-
sky” conditions (Ramanathan et al., 1989). While shortwave
CREs (CRESW) are mainly related to cloud fraction and mi-
crophysics (number concentration of water–ice particles and
the amount of liquid water–ice), longwave CREs (CRELW)
are mainly driven by cloud altitude and thus cloud-top tem-
perature, but also cloud fraction (Voigt et al., 2021). As such,
any change to cloud patterns, be it occurrence, microphysics,
or macrostructure, has important implications for the Earth’s
energy balance. In a changing climate, clouds may be altered
due to changes in the large-scale environment (cloud feed-
backs) or due to a change in aerosol concentration (aerosol–
cloud interactions, both are discussed below). In spite of their
importance for the Earth’s climate system, considerable un-
certainty exists as to how clouds may respond to changes in
their environmental controls, ultimately impeding the quan-
tification of climate sensitivity, i.e., the global temperature
increase following a doubling of the carbon dioxide (CO2)
concentration in the atmosphere compared to preindustrial
levels (Zelinka et al., 2020; Forster et al., 2021).

Cloud feedbacks describe how clouds respond to and feed
back on climate warming and are a major uncertainty in cli-
mate science. Many cloud feedbacks have been described in
the literature, which relate changes in cloud altitude, phase,
albedo, or coverage with global warming, typically in cloud-
regime-specific frameworks (i.e., very few CCFs targeting
a specific cloud type; e.g., Zelinka et al., 2016; Mülmen-
städt et al., 2021; Murray et al., 2021; Zelinka et al., 2023).
The most extensively studied shortwave cloud feedback is
the (positive) low-cloud feedback (e.g., Klein et al., 2017;
Scott et al., 2020; Myers et al., 2021; Cesana and Del Ge-
nio, 2021), which has been shown to be a main cause for
the variation in climate sensitivity estimates in global climate
models (Bony and Dufresne, 2005; Zelinka et al., 2020). The
longwave or high-cloud feedback is also positive, where high
clouds rise with warming temperatures, leading to a larger
temperature differences between cloud top and the warm-
ing surface (Zelinka and Hartmann, 2010; Gettelman and
Sherwood, 2016). Global satellite observations can help re-
duce the cloud-feedback-related uncertainty in climate sen-

sitivity by constraining cloud feedbacks with observation-
based sensitivity estimates of clouds (and their radiative ef-
fects) to changes in their large-scale environmental controls
(cloud-controlling factors, CCFs). This is traditionally done
in regime-specific cloud-controlling factor analyses, where
cloud anomalies are regressed upon a small number of local
CCF anomalies using an ordinary least-squares regression
(OLS). Recently, a statistical learning framework (ridge re-
gression), which allows for robust sensitivity estimation with
many co-linear CCFs, has been used to predict cloudiness
and constrain their feedbacks by using not only local CCF
anomalies, but also their large-scale patterns (Andersen et al.,
2020; Ceppi and Nowack, 2021). While regime-specific CCF
frameworks are relatively well understood and thought to in-
clude the most relevant large-scale environmental controls of
clouds in specific regimes (e.g., Klein et al., 2017), they do
not necessarily include all relevant CCFs that may change in
a warmer climate and thus influence the estimation of cloud
feedbacks.

Atmospheric aerosols are another important driver of vari-
ability and trends in CREs (Quaas et al., 2022) because
aerosols, by acting as cloud condensation nuclei (CCN), are
drivers of cloud droplet number concentration in liquid water
clouds. Under the assumption of a constant liquid water path,
this leads to smaller cloud droplets and an increase in cloud
reflectivity (Twomey, 1977). These instantaneous changes in
cloud droplet characteristics may lead to the suppression or
delay of precipitation, which in turn may trigger subsequent
adjustments of the cloud field, such as an increase in cloud
fraction or liquid water path (Albrecht, 1989), further alter-
ing CREs. Observational and modeling studies on the cloud
fraction adjustment mostly find positive relationships (Kauf-
man and Koren, 2006; Gryspeerdt et al., 2016; Andersen et
al., 2017; Christensen et al., 2020; Chen et al., 2022), while
the sign of the liquid water path adjustment is still debated
(Ackerman et al., 2004; Malavelle et al., 2017; Gryspeerdt
et al., 2019; Rosenfeld et al., 2019; Toll et al., 2019; Man-
shausen et al., 2022; Zipfel et al., 2022; Wall et al., 2022).
In convective cloud systems, a deepening or invigoration has
been suggested; however, this effect is still elusive (Koren et
al., 2005, 2010, 2014; Altaratz et al., 2014; Sarangi et al.,
2018; Marinescu et al., 2021). Depending on the ambient
air temperature, aerosols can also act as ice-nucleating parti-
cles, potentially increasing ice crystal number concentration
and leading to further cloud adjustments (Hoose and Möh-
ler, 2012; Gryspeerdt et al., 2018; Vergara-Temprado et al.,
2018). The processes by which aerosols influence clouds de-
pend on aerosol properties, ambient meteorology (dynamics
and thermodynamics), and cloud regime (Stevens and Fein-
gold, 2009; Andersen and Cermak, 2015; Andersen et al.,
2016; Chen et al., 2016, 2018; Fuchs et al., 2018; Murray-
Watson and Gryspeerdt, 2022; Zipfel et al., 2022). The effec-
tive radiative forcing due to aerosol–cloud interactions (i.e.,
the change in the Earth’s net top-of-the-atmosphere energy
flux) is estimated to be a cooling of about 1 W m−2 (Bel-
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louin et al., 2020; Forster et al., 2021). One of the challenges
in working with satellite data to quantify aerosol–cloud in-
teractions is that these observed aerosol–cloud relationships
tend to be confounded by meteorological covariates, e.g., rel-
ative humidity or atmospheric stability, which influence both
aerosols and clouds. This makes the interpretation of such
aerosol–cloud relationships as causal effects difficult (Bel-
louin et al., 2020). Past approaches have been developed to
account for this confounding by statistically accounting for
confounders (Gryspeerdt et al., 2016) or including informa-
tion on confounders in machine learning frameworks (An-
dersen et al., 2017). In recent studies, boundary layer sul-
fate aerosol concentrations from an aerosol reanalysis have
been shown to be a promising alternative to satellite-retrieved
columnar aerosol proxies to study aerosol–cloud interactions
(McCoy et al., 2017, 2018; Wall et al., 2022). Wall et al.
(2022) used sulfate aerosol concentrations in a low-cloud
controlling factor framework to quantify the forcing from
aerosol–cloud interactions, thereby controlling for the vari-
ability in the meteorological CCFs in their forcing estimate
of −1.11 W m−2. Through the addition of an aerosol proxy
as a CCF in their analysis, they could predict CRESW anoma-
lies much better in so-called opportunistic experiments (e.g.,
for volcanic eruptions or in regions of known strong aerosol
trends) than without the aerosol proxy. Their findings show
that including additional predictors in traditional CCF frame-
works can yield useful insights.

In this study, conventional regime-specific CCF frame-
works are expanded upon, with a single cloud-regime-
independent CCF framework that uses a large number of
CCFs, including various aerosol proxies from satellite ob-
servations and reanalysis. The CCF framework uses ridge
regression as the statistical learning method, which enables
robust sensitivity estimation in the case of many co-linear
predictors. The goals of this study are (1) to develop a CCF
framework to skillfully predict CREs across cloud regimes
in observations, (2) to quantify and explore the regional sen-
sitivity patterns of CRESW and CRELW to CCFs at a global
scale, and (3) to quantify CRE sensitivity to various aerosol
proxies. The resulting spatial patterns of sensitivity are in-
tended to be used for future evaluations of CRE sensitivi-
ties to CCFs in global climate models and to constrain future
cloud feedback estimates.

2 Data and methods

2.1 Data

All data sets described in the following cover the common
time period used in this study of 2001–2020 and are monthly
means regridded to a 5◦× 5◦ spatial resolution (e.g., Scott
et al., 2020; Wall et al., 2022). This is typically done in
CCF analyses, as it can be assumed that at this grid scale
clouds are in equilibrium with their large-scale environmen-
tal controls (Klein et al., 1995; Mauger and Norris, 2010).

One should note, though, that this grid scale is at the upper
bound of what is recommended for aerosol–cloud analyses
(Grandey and Stier, 2010). Data are used over the oceans
(some meteorological CCFs are only sensible choices over
ocean) between 60◦ N and 60◦ S. From all data sets, the sea-
sonality (climatological averages of each month) and lin-
ear trends are subtracted. The resulting meteorological and
aerosol anomalies are then standardized by removing the
mean and scaling to unit variance as in Scott et al. (2020)
and Andersen et al. (2022). The set of CCFs is selected to
include the most relevant drivers of cloud cover, altitude, and
microphysics (and thus CRESW and CRELW) across different
cloud regimes.

Shortwave and longwave cloud radiative effects at the top
of the atmosphere are calculated from the gridded monthly
Energy Balanced and Filled (EBAF) level 3b products, edi-
tion 4.1, from the Clouds and the Earth’s Radiant Energy
System (CERES) (Loeb et al., 2018) as the difference be-
tween top-of-the-atmosphere net fluxes of all-sky and (hy-
pothetical) clear-sky conditions. The CERES EBAF data
are available at a spatial resolution of 1◦× 1◦. Climatolog-
ical means and standard deviations of CRESW and CRELW
are shown in Fig. 1. Satellite observations from the polar-
orbiting platform Terra are used. Two commonly used prox-
ies for CCNs are obtained from the Moderate Resolution
Imaging Spectroradiometer (MODIS) also mounted on the
Terra platform: aerosol optical depth (AOD) and aerosol
index (AI, calculated as the product of the AOD and the
Ångström exponent). While AOD is sometimes still used
as a CCN proxy, AI has been found to better approximate
CCN (Stier, 2016), giving more weight to fine-mode particles
(Nakajima et al., 2001). Both satellite-retrieved aerosol prox-
ies are column-integrated, hold limited information on cloud-
base CCN concentration, and are known to lead to spurious
aerosol–cloud relationships due to humidity-induced aerosol
swelling and 3D radiative effects in the vicinity of clouds
(Grandey et al., 2013; Christensen et al., 2017; Schwarz et
al., 2017). Despite these limitations, the AI in particular re-
mains a state-of-the art satellite-based CCN proxy.

Information on meteorological CCFs is taken from ERA5
(Hersbach et al., 2020), the newest reanalysis product from
the European Center for Medium-Range Weather Forecasts
(ECMWF). The following data are used from the surface
layer of the reanalysis: sea surface temperature (SST), wind
speed at 10 m (WS10), mean surface latent and sensible
heat fluxes (MSLHF, MSSHF), and mean sea level pressure
(MSL) (Wood, 2012; Fuchs et al., 2018; Scott et al., 2020).
Data from pressure levels at 925, 700, 500, and 300 hPa are
used for information on relative humidity (RH), air temper-
ature (T ), and the U , V , and vertical pressure velocity (ω)
components of wind (Andersen et al., 2017; Fuchs et al.,
2018; Ge et al., 2021; Grise and Kelleher, 2021; Kärcher,
2018; Kelleher and Grise, 2019; Patnaude et al., 2021). Data
from pressure levels are referred to as Xzzz in this paper,
where X is the abbreviation of the variable name, and zzz is
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Figure 1. Climatological (2001–2020) mean (a, b) and standard deviation (c, d) of CRESW (a, c) and CRELW (b, d) from the CERES EBAF
data. Pointy ends of the color bars indicate that the entire value range is not shown in the figure to improve its clarity.

the pressure level (e.g., T925 for air temperature at 925 hPa).
In addition to these CCFs, information on estimated inver-
sion strength (EIS; Wood and Bretherton, 2006) and hori-
zontal temperature advection at the surface (Tadv; Scott et al.,
2020) is derived from ERA5 reanalysis data. The set of CCFs
therefore expands upon those traditionally used for cloud-
regime-specific analyses (e.g., low clouds; see Scott et al.,
2020) by including information on surface fluxes, vertically
resolved proxies for dynamics (three-dimensional winds),
and temperature and humidity profiles to account for mecha-
nisms controlling different cloud types and altitudes. It is as-
sumed that the observed cloud radiative effects are a response
to the CCFs chosen, even though clouds can also feed back
to contribute to CCF variability (e.g., Myers et al., 2018). All
data are downloaded as monthly means at the native resolu-
tion of 0.25◦× 0.25◦. Tadv is the exception to this rule, as
using the monthly means of the U - and V -wind components
at 10 m (U10, V10) would lead to an underestimation of the
temperature advection (because U and V can be positive and
negative and a temporal average is thus closer to 0). Due to
this, Tadv is calculated from hourly U10, V10, and SST data
at a spatial resolution of 2.5◦× 2.5◦ (which corresponds to
the length scale of 5◦ as centered differencing is used for the
calculation of the gradients) and then averaged to monthly
means.

As satellite-retrieved aerosol proxies are not great proxies
for CCN at cloud base (Stier, 2016) and feature the retrieval
biases close to clouds discussed above, aerosol information
from the MERRA-2 reanalysis is also used. The MERRA-2
aerosol reanalysis corrects the MODIS aerosol optical depth
used for assimilation in the reanalysis for retrieval biases in

humid environments and near clouds (Randles et al., 2017).
From MERRA-2, sulfate aerosol concentrations (s) are used
as in McCoy et al. (2017), McCoy et al. (2018), and Wall et
al. (2022) by calculating monthly averages from the 3-hourly
mean s at 910 hPa. The data are available at a spatial resolu-
tion of 0.5◦× 0.626◦. As aerosol–cloud relationships tend to
be linear at log scales, the base-10 logarithms of s, AOD, and
AI are used in the statistical model (Wall et al., 2022).

2.2 Ridge regression

CRESW and CRELW anomalies are regressed on n (here:
n= 28) predictors so that each can be expressed as a linear
combination of the local standardized CCF anomalies X′i :

CRE′ =
n∑
i=1

(
δCRE
δXi

)
×X′i +Res,

with Res describing a catch-all mean-zero random error term.
A major challenge when using a high number i of predictors
Xi (in particular when considering a relatively small num-
ber of samples) to predict a target variable can be collinear-
ity among predictors. In classical statistical techniques (e.g.,
OLS), collinearity frequently leads to high variance in the
regression parameters (i.e., overfitting). Model variance can
be reduced with regularization, which in the case of lin-
ear models is done by shrinking model coefficients towards
zero by penalizing their size (Hastie et al., 2001). Ridge re-
gression is a specific regularized linear model that has been
shown to perform particularly well in the case of collinearity
among the predictors (Dormann et al., 2013). Ridge regres-
sion makes use of the L2 penalty: the squared magnitude of
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the coefficient (β, here: δCRE
δXi

) value is added to the loss func-
tion, where the shrinkage is controlled by a value λ.

Lossridge = Error
(
Y − Ŷ

)
+ λ

n∑
1
β2
i

Tuning the parameter λ involves a direct trade-off between
a more flexible regression model (small penalty, i.e., low λ

value) that may suffer from high-variance issues and a less
flexible regression model (high penalty, high λ) that may
have a larger bias. When λ is set to 0, the penalty is 0 as
well so that the ridge regression is essentially an ordinary
least-squares regression (James et al., 2021). A λ greater
than 0 helps deal with collinearity by reducing model vari-
ance and in the case of many predictors thus provides more
robust sensitivity estimates. Here, the optimal λ value is
derived through leave-one-out cross-validation by probing
1000 evenly spaced λ values on a log scale between−3 and 5
in each 5◦×5◦ grid box. Leave-one-out cross-validation is the
default cross-validation strategy for ridge regression, as it is
extremely cost-efficient for least-squares regression (James
et al., 2021) and has been found to reliably find the optimal
level of regularization in the case of ridge regression (Patil et
al., 2021). The λ values that lead to the best model perfor-
mance in the cross-validation are shown in Fig. 2. To end up
with a consistent regularization, the median λ value chosen
in all cross-validations (median λ= 12 for both CRESW and
CRELW) is fixed. This means that the final regularized mod-
els are not optimized locally but that a representative λ value
is chosen from the cross-validations to achieve comparable
model coefficients across all regions. The differences be-
tween the predictive skill in the locally optimized and λ= 12
settings have been found to be negligible, even in regions
where optimal λ has been found to be > 50. The data are
split into a training (2001–2015) and a test (2016–2020) set.
Cross-validation and training are done based on the training
data, and the model performance is evaluated based on the
test data. While the skill to predict CREs in the test is only
marginally improved when using ridge regression instead of
an ordinary least-squares regression (OLS), the OLS tends to
fit very large, spatially noisy coefficients that are physically
inconsistent (see Fig. A1).

Three separate CCF frameworks are trained for CRESW
and CRELW using a different aerosol parameter each time.
The meteorological sensitivities presented in this study refer
to those derived from the log10s setup. The regression co-
efficients of the ridge regression represent the sensitivity of
CREs to a 1 standard deviation change in the local monthly
anomalies in each CCF with all other local meteorological
conditions held fixed and are thus given as W m−2 σ−1 (for
sensitivity). As total CREs are used as a predictand (rather
than specific cloud properties or CREs of a specific cloud
type), the sensitivities are a top-down estimate of the total
radiative response by all clouds to changes in CCFs within
each grid box. In general, positive CRESW sensitivities mean

Table 1. Thresholds to determine the cloud regime regions shown
in Fig. 3.

Cloud regime EIS ω700
(K) (hPa d−1)

Stratocumulus (Sc) > 1 > 15
Trade cumulus (Tc) < 1 > 0
Tropical ascending (Ta) – < 0
Midlatitudes (Ml) > 1 < 15

that an increase in a CCF is connected to a reduction in the
shortwave cooling effect of clouds from reflected solar radia-
tion (e.g., by reducing cloud amount or reflectivity), whereas
positive CRELW sensitivities relate the increase in a CCF to a
stronger longwave warming effect of clouds (more clouds or
higher and/or colder clouds that effectively trap more long-
wave (LW) radiation from surfaces below than they emit).
As such, one can expect that CRESW and CRELW sensitivity
patterns are generally anticorrelated. Sensitivities of radiative
effects of undetected very thin clouds and the transition zone
between aerosols and clouds obviously cannot be captured
though (Eytan et al., 2020; Jahani et al., 2022).

2.3 Cloud regimes

While the regression models are trained to predict CREs with
the same set of CCFs independently of the region (and thus
dominant cloud regime) considered, climatological cloud
regime regions are used to analyze the resulting sensitivities
specifically for four regions: stratocumulus (Sc), trade cumu-
lus (Tc), tropical ascending (Ta), and midlatitudes (Ml). This
is done to summarize sensitivities in climate regimes with
similar cloud types, which are expected to be driven by dif-
ferent mechanisms and related to different cloud feedbacks
(e.g., low-cloud feedback mainly in Sc vs. high-cloud feed-
back in Ta). The cloud regimes are defined based on climato-
logical (2001–2020) EIS and ω700 thresholds similar to Scott
et al. (2020), based on Medeiros and Stevens (2011). The
thresholds are given in Table 1 and lead to the cloud regime
regions shown in Fig. 3.

3 Results and discussion

3.1 Skill of the regression models

Figure 4 shows the skill of the ridge regression models to
predict CRESW (left) and CRELW (right) in the independent
test data (2016–2020). The models are able to capture about
two-thirds of the temporal variability in CRE anomalies in
the independent test data, with slightly better model perfor-
mance for predicting CRELW than CRESW (global weighted
average R2 of 0.72 vs. 0.63, standard deviation of 0.13 and
0.21, respectively). The skill is thus markedly higher than
the low-cloud frameworks from Scott et al. (2020) (0.37, or
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Figure 2. Spatial patterns of the λ chosen in the cross-validation at each grid box. The spatial median of λ is chosen as the regularization
strength for each grid box in the final model training. To achieve comparable sensitivity estimates across different regions, the median λ
value of 12 is chosen for the following analysis.

Figure 3. Cloud regimes derived from the EIS and ω700 thresholds
described in Table 1.

0.51 when information on upper-level clouds is included) and
Wall et al. (2022) (0.42). This shows that the added CCFs in-
crease the predictive performance of the model, could indi-
cate that they may help capture processes relevant to deter-
mine CREs, and may therefore allow for tighter constraints
for cloud feedbacks and aerosol–cloud interactions than prior
studies. The spatial pattern in the prediction skill of CRESW
shows particularly good skill in the regions of the ascend-
ing tropical cloud regime (mean R2

= 0.81) and poorer per-
formance in the midlatitudes (mean R2

= 0.40), especially
over the Southern Ocean. The comparably poor skill in the
Southern Ocean is notable, as numerical models also have
large uncertainties and biases in modeling radiative fluxes
and clouds here (Gjermundsen et al., 2021; McFarquhar et
al., 2021). The poor model performance may be linked to
the low quality of reanalysis data sets found in this region
due to the limited number of measurements available for the
assimilation (Mallet et al., 2023). A second possible reason
for the low skill in this region may be that the CCFs may
not adequately capture the influence of the large day-to-day
variability of synoptic-scale dynamics on clouds of this re-
gion (Kelleher and Grise, 2019) at the monthly timescale.
This is supported by findings from Jia et al. (2023), who use
a machine learning framework to predict marine low cloud
cover with a similar set of predictors at a daily timescale and
achieve notably high skill over the Southern Ocean. In the Sc

regime the average prediction skill of CRESW is 0.55, which
seems to be markedly higher than in Scott et al. (2020) and
Wall et al. (2022), even though the exact regime-specific skill
is not reported in their studies. The skill in predicting CRELW
is also highest in the tropics (mean R2

= 0.79) and trade cu-
mulus regions (mean R2

= 0.77) and lower in the stratocu-
mulus and Southern Ocean regions. This makes sense, as
there is little CRELW variability in those regions due to the
dominance of low clouds and hence only a small signal for
the regression model to learn (see Fig. 1). Over the South-
ern Ocean, the assumed lower quality of the reanalysis data
and the large influence of transient weather systems not be-
ing captured adequately at the monthly timescale may also
contribute to the lower skill.

There is a significant (p value< 0.01) negative correla-
tion between the prediction skill of the ridge models (Fig. 4)
and the regularization strength λ chosen in cross-validation
(−0.34 for CRESW and −0.31 for CRELW). The regular-
ization strength that optimizes model performance is higher
in regions where model performance is comparatively low.
This is an indication that in these regions where the pre-
dictors do not explain the CRE variability well, the regres-
sion coefficients are less certain, model variance is higher,
and the increase in the model bias when the coefficients are
nudged towards 0 (thereby predicting less CRE variability)
is relatively small. Coefficients of selected CCFs estimated
by the ridge regression are described in the following, with
the focus on (1) SST and EIS as well-known low-cloud CCFs
important for the low-cloud feedback, (2) three-dimensional
winds at different pressure levels for information on large-
scale dynamics that are often not part of CCF frameworks,
and (3) aerosol proxies as a way of analyzing aerosol–cloud
interactions in a CCF framework.

3.2 Sensitivity of CRESW and CRELW to SST and EIS

SST and EIS are the two main drivers of the marine low-
cloud feedback (Myers and Norris, 2016; Myers et al., 2021;
Klein et al., 2017; Cesana and Del Genio, 2021) and are thus
discussed first. Figure 5 shows the spatial patterns of the sen-
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Figure 4. Skill (R2 score) of the ridge regression models to predict CRESW (a) and CRELW (b) in the independent test data (2016–2020).

sitivity of CRESW (left) and CRELW (right) to SST (top) and
EIS (bottom). The overall sensitivity of CREs to SST is dom-
inated by the positive sensitivity of CRESW (global weighted
mean 1.11 Wm−2 σ−1 compared to −0.12 Wm−2 σ−1 for
CRELW). The CRESW sensitivity is particularly high in the
stratocumulus regime (1.64 Wm−2 σ−1), which is to be ex-
pected, as these clouds are more strongly coupled to surface
processes than, e.g., cumulus clouds in the trades (Wood,
2012; Cesana et al., 2019; Scott et al., 2020; Cesana and
Del Genio, 2021). SST can influence low clouds via different
mechanisms. Surface latent heat fluxes increase with SST,
which enhances the buoyancy within the marine boundary
layer and deepens it, leading to an increased entrainment of
dry free-tropospheric air and thus evaporation of cloud wa-
ter (Rieck et al., 2012; Qu et al., 2015). Also, increases in
SST can lead to a stronger vertical moisture gradient, mak-
ing dry-air entrainment more efficient in evaporating cloud
(as the entrained air is relatively drier compared to the ma-
rine boundary layer air; Qu et al., 2015; van der Dussen et
al., 2015), which has been shown to be the main cause of
the recent decrease in low clouds off the coast of California
(Andersen et al., 2022) where the SST–CRESW sensitivity
is found to be largest. These findings generally agree with
those of Scott et al. (2020), who specifically analyze low-
cloud induced changes in radiative fluxes, although their av-
erage sensitivity estimate is lower and not positive in all re-
gions, which may point to an underestimation of the positive
low-cloud feedback found by Myers et al. (2021). CRELW
sensitivities are in general negligible for the stratocumulus
cloud regime, as their warm cloud tops only induce a mi-
nor CRELW. There is a systematic negative CRELW–SST
sensitivity in the Tc regime (−0.29 Wm−2 σ−1), which is
outweighed by the positive CRESW–SST sensitivity in that
regime though (1.08 Wm−2 σ−1). Still, a negative CRELW–
SST sensitivity in the Tc regime suggests that the overall
(weak) low-cloud feedback in the Tc regime might be further
reduced by the longwave effect partly balancing the short-
wave effect. In the tropics, there is a band of moderate pos-
itive CRELW–SST sensitivity, indicative of more frequent or
higher-reaching convection in cases of higher SSTs. As the
CRESW sensitivity is only slightly negative in some of these
regions, the results suggest that most of this positive CRELW

sensitivity is driven by cloud altitude and temperature and
not high cloud cover. While such local effects of SST on
deep convection have been noted in the past (Zhang, 1993),
non-local pattern effects of SST on deep convective CREs
(Fueglistaler, 2019) cannot be captured with our approach.

The sensitivity of CREs to EIS is dominated by the
negative CRESW sensitivity (global weighted mean
−1.57 Wm−2 σ−1), which is also particularly strong
in the Sc regime (−2.33 Wm−2 σ−1) and the Ml
(−1.97 Wm−2 σ−1) and smallest for the Ta regime
(−0.91 Wm−2 σ−1). The results agree remarkably well with
those found by Scott et al. (2020) in both overall magnitude
and spatial as well as regime patterns. EIS modifies low
clouds by controlling the amount of dry entrainment from
the free troposphere into the marine boundary layer, where
a strong inversion limits this entrainment and leads to
a shallower marine boundary layer effectively trapping
moisture. This has been observed particularly in the Sc
and Southern Ocean regimes (Klein and Hartmann, 1993;
Wood and Bretherton, 2006; Kelleher and Grise, 2019;
Scott et al., 2020). There is only a limited, mainly positive
sensitivity of CRELW to EIS, which is largest in the Tc
regime (0.24 Wm−2 σ−1). This is due to the moderate LW
warming exerted by an increase in Tc clouds. The overall
low magnitude of the CRELW–sensitivity to EIS is expected,
as, similar to SST, EIS mainly drives low-cloud variability.

3.3 Sensitivity of CRESW and CRELW to large-scale
circulation

Variability in large-scale circulation and dynamics is mainly
approximated by anomalies in the three-dimensional winds
at different pressure levels (300, 500, 700, and 925 hPa). The
sensitivity of CREs to variations in the vertical pressure ve-
locity ω is largest at 300 hPa, which is the strongest predic-
tor for CREs in general in the ascending tropics (Fig. 6).
The sensitivity of CRESW and CRELW is nearly balanced
for ω300, but less so for ω925, where ω within the bound-
ary layer mostly influences low clouds and thus CRESW. In
the free troposphere at 700 hPa, ω is only a minor control
of CRE variability. The sensitivity patterns of CRESW and
CRELW to ω300 (Fig. 7) closely follow the regions of tropi-
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Figure 5. Sensitivity of CRESW (a, c) and CRELW (b, d) to SST (a, b) and EIS (c, d).

cal ascent and reach maximum values in the tropical warm
pool region. In the Ta regime, ω300 anomalies are shown to
lead to a strong cooling from the CRESW (2.51 Wm−2 σ−1)
that is nearly completely balanced by a strong warming from
the CRELW (−2.01 Wm−2 σ−1) by the increase in upper-
level clouds. While the nearly exact opposite mirroring of
the CRE sensitivity patterns to ω300 (correlation coefficient
−0.86 globally and −0.81 in the Ta regime) can partly be
explained by the overall balance of CRESW and CRELW in
this region (Fig. 1), it is noteworthy, since the cancellation
of CRESW and CRELW is the result of a mixing of various
cloud types with very specific CRE signatures (Hartmann
and Berry, 2017; Wall et al., 2019). This seems to confirm
that ω300 is a strong predictor for the occurrence of most
(deep) convective and cirrus clouds that dominate the CREs
in the Ta regime (Ge et al., 2021).

CRE sensitivity to variability in zonal and meridional
winds is most pronounced at 700 hPa and in the subtropics.
The sensitivities to U700 and V700 anomalies (Fig. 8) are not
trivial to understand, as they can be related to a change in
wind speed or direction, dependent on the sign and clima-
tological average of the wind component. In the following,
these controlling factors are therefore explored in more de-
tail.

CRESW is markedly sensitive to U700 in the core stratocu-
mulus regions (mean Sc 1.05 Wm−2 σ−1), where clouds are
typically below that level (Zuidema et al., 2009). As the stra-
tocumulus clouds do not have a marked CRELW, this pat-
tern only exists for the CRESW. In these regions, a positive
U700 CRESW sensitivity suggests a decrease in cloudiness
with a westerly anomaly of the wind at 700 hPa. The oppo-
site is the case over a trade wind cumulus region of the trop-

ical Pacific, even though the sensitivity is less pronounced.
In the following, a composite analysis is used to better un-
derstand what drives variability of local U700 and how that
may be related to CREs in an exemplary subtropical low-
cloud region. Figure 9 shows the composite of anomalies
in CCFs when U700 anomalies in the southeastern Atlantic
at 17.5◦ S and 2.5◦ E (black x) are > 1σ . Figure 9a shows
the observed CRESW anomalies in these situations, which
feature a region of marked positive anomalies (less clouds)
with an anomaly of 5.41 W m−2 locally at 17.5◦ S and 2.5◦ E.
The top center panel shows MSL anomalies which feature a
high-pressure anomaly over the midlatitudinal Atlantic that
strongly modifies the free-tropospheric winds (i.e., drives
the U700 anomaly). As the climatological mean boundary
layer flow in the southeastern Atlantic is from a southeasterly
direction, a northwesterly anomaly in the free-tropospheric
flow tends to increase the vertical wind shear at the top of
the boundary layer (U -wind shear between 700 and 925 hPa
shown panel c of Fig. 9). In a stratocumulus-topped bound-
ary layer an increased vertical wind shear is known to cause
additional turbulence at the cloud top and lead to stronger en-
trainment of dry air into the cloudy marine boundary layer.
Stronger dry-air entrainment would then dissolve the clouds
from the top (Kopec et al., 2016; Zamora Zapata et al., 2021),
possibly explaining the observed reduction in clouds in these
situations. The boundary layer humidity (RH925) is markedly
increased in the composite along the southwestern African
coastline (panel d), which would presumably lead to an in-
crease in cloudiness (contrary to what is observed). While
synoptically driven destabilization (reduced EIS) has also
been reported to influence low-level clouds in this region
(de Szoeke et al., 2016; Fuchs et al., 2017) and can be ob-
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Figure 6. (a) Mean CRE sensitivity to ω at different pressure levels and for different cloud regime regions (denoted by the color). CRE
sensitivities that are positive are always from CRESW, and negative ones are from CRELW. The error bars denote the standard error of
the mean value (σ/

√
n), with n= being the sample size. (b) Map showing the regions where ω300 has the largest absolute coefficient for

CRESW.

Figure 7. Sensitivity of CRESW (a) and CRELW (b) to ω300.

served here (panel e), the anomaly is not spatially collocated
with the CRE anomaly (bottom center) and is thus unlikely to
explain it. Panel (f) shows the average ridge regression con-
tributions of the most important CCFs to the predicted local
CRESW anomaly of the composite analysis (multiplying the
average standardized anomaly of the composite times the co-
efficients at the marked X location). Overall, the observed
local CRESW anomaly of these situations of 5.41 W m−2 can
be reproduced fairly well by the ridge regression model, even
though it is somewhat underestimated (3.85 W m−2). It is
clear that in these situations, U700 has the largest contribu-
tion (4.51 W m−2) to the predicted CRESW anomaly, which
cannot be explained by the other CCFs. The observed humid-
ification of the boundary layer in these situations only partly
balances the strong contribution from U700 (contribution of
RH925: −2.22 W m−2). While vertical wind shear was not
originally considered to be a CCF in the model, at this loca-
tion in the southeastern Atlantic, vertical wind shear andU700
are strongly correlated (−0.90), which is also the case in all
stratocumulus regions (average correlation for the Sc regime:
−0.74), so in these regions,U700 can be thought of as a proxy
for vertical wind shear. Based on the results presented here,
the wind-shear-induced turbulence at cloud top leading to en-
trainment and low-cloud dissipation is likely the main cause
for the observed decrease in cooling from low clouds asso-
ciated with the conditions of the composite analysis and for
the observed sensitivity of CRESW to U700 anomalies in the

Sc regime. As such, vertical wind shear is recommended to
be further explored in CCF analysis, especially for low-cloud
frameworks.

There is a coherent subtropical belt of a marked sensitivity
of CREs to V700 between≈ 15 and 35◦ with maximum sensi-
tivity values between 20 and 25◦ in each hemisphere (Fig. 8,
bottom). The sensitivity has opposite signs depending on the
hemisphere and the radiative effect considered and describes
an increase in the cooling (CRESW) or warming (CRELW) ef-
fect of clouds connected to a poleward anomaly of the winds
at 700 hPa. The zonal structure of the CRESW and CRELW
sensitivities to V700 is clearly visible in Fig. 10a. Figure 10b
and c show a clear connection of poleward V700 anomalies
with large-scale ascent at the same pressure level and an in-
crease in shortwave cooling from clouds (and vice versa).
To give this finding more context, two composite analyses
of situations with V700 > 1σ in the South Atlantic and South
Pacific regions are discussed in the following.

Figure 11 shows a connection of the conditions with V700
anomalies> 1σ to a subtropical low-pressure anomaly that
is linked to a midlatitude synoptic-scale disturbance. The lo-
cal poleward flow anomaly is clearly connected to a large-
scale ascent anomaly which is causing an increase in hu-
midity and clouds as well as a decrease in CRESW, con-
firming the observed correlations between V700, ω700, and
CRESW presented in Fig. 10. While it is generally known
that ascending air is the main mechanism by which air is
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Figure 8. Sensitivity of CRESW and CRELW to U700 (a and b, respectively) and V700 (c, d). Note the smaller sensitivity range in the color
bar when compared to Figs. 5 and 7 (−2.5 to 2.5 vs. −3.5 to 3.5).

Figure 9. Composite analysis of anomalies in CCFs and CRESW when U700 anomalies in the southeastern Atlantic at 17.5◦ S and 2.5◦ E
(black x)> 1σ . Panel (a) shows the observed CRESW anomalies in these situations. Panel (b) shows the MSL anomalies and wind anomalies
at 700 hPa, and panel (c) shows the wind shear anomaly of the U component between the boundary layer (925 hPa) and the free troposphere
(700 hPa). Panel (d) shows the RH anomaly in the boundary layer (925 hPa), and panel (e) shows EIS anomalies. Panel (f) shows the ridge-
regression-quantified contributions of selected CCFs and the sum of all others to the predicted CRESW.

saturated and clouds form, a positive association between
low clouds and free-tropospheric ascent has also been found
in subtropical regions of climatological subsidence (Myers
and Norris, 2013). The results from this exemplary compos-
ite analysis are indicative of the poleward and upward ver-

tical velocity phases of synoptic waves as well as midlati-
tude cyclones and the associated increase in cloudiness. The
ridge regression can reproduce the local CRESW anomalies
for these composites well (observed vs. predicted: Atlantic
−7.37 W m−2 vs. −6.36 W m−2, Pacific −12.74 W m−2 vs.
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Figure 10. Summary of the CRE sensitivity to V700 anomalies. (a) Zonal mean sensitivities of CRESW (solid line) and CRESW (dashed line)
point to strong sensitivities in the subtropics. (b–c) The CRESW anomaly against the V700 anomalies in the Northern (b) and Southern (c)
Hemisphere where the absolute value of the sensitivity exceeds 1.5 Wm−2 σ−1, with the color showing ω700 (blue: ascent, red: subsidence).

−12.28 W m−2), and the quantified contributions to the pre-
dicted CRESW anomalies (bottom panels g and h) show that,
indeed, the largest contributions come from ω and RH at dif-
ferent levels in the free troposphere and from V700. There are
two possible explanations for the CRE sensitivity to V700:
(1) the physical explanation is that the enhanced poleward
winds on the eastern side of the midlatitude cyclones could
be related to increased warm and moist advection, which
increases cloudiness. (2) The statistical explanation is that
V700 anomalies are correlated with large-scale ascent, which
is causing the clouds to form and additionally have a high
signal-to-noise ratio for such midlatitude synoptic variability.
By capturing this synoptic variability, V700 anomalies would
then encapsulate changes in a number of relevant CCFs (not
only ω700) related to the synoptic forcing and thereby be as-
signed the observed sensitivities. In this regard, it should be
noted that an anomaly pattern similar to that of ω700 can also
be found for ω at 500 and 300 hPa, showing that the dis-
turbance leads to vertically extended large-scale ascent. The
question is to what degree the V700 sensitivity and resultant
contributions are the result of a physical connection between
V700 and CRESW in the subtropical belts or of the correla-
tion of V700 with ascending motion that is driving cloudi-
ness. This question cannot directly be answered with this
approach, highlighting the challenge of trying to untangle
causality with statistical models and correlated inputs. The
coherent association of V700 anomalies and ω700 (see Fig. 10)
suggests that the composite analyses are likely representative
for other regions in the subtropical V700 sensitivity belt as
well.

3.4 Sensitivity patterns of CRESW and CRELW to
aerosol proxies

CRE sensitivities to three different aerosol proxies (log10s,
log10AI, and log10AOD) are described in the following. It
should be noted that changing a CCF (here: the aerosol
proxy) slightly changes other sensitivities as well. The mag-
nitude of these changes depends on the aerosol proxies com-
pared. Figure 12 shows the correlation of spatial sensitivity
patterns among individual CCFs for different aerosol proxy
combinations. It can be seen that when the two satellite-
derived aerosol proxies are compared, all other sensitivity
patterns stay nearly constant (average correlation 0.99 and
0.98 for CRESW and CRELW, respectively), and the de-
rived spatial sensitivity patterns of log10AOD and log10AI
are fairly strongly correlated as well. This is not surprising,
as AOD and AI are directly related. In sensitivity estimates
that use log10s as an aerosol proxy correlations amongst the
other CCF sensitivity patterns are lower (on average ≈ 0.92–
0.93), and the CRE log10s sensitivities are not strongly cor-
related with those of the satellite-derived aerosol proxies
(0.21–0.31). When comparing the sensitivity patterns of the
aerosol proxies in the following, the different nature of the
aerosol data sets should be kept in mind: the satellite-derived
AOD and AI are columnar retrievals, do not focus on a spe-
cific aerosol species, and suffer from retrieval biases close
to clouds (especially the AOD), while the sulfate concentra-
tion from the aerosol reanalysis focuses on a single species
at a level close to cloud base (for clouds forming in the ma-
rine boundary layer) and is expected to have reduced bi-
ases typical of satellite retrievals. However, the aerosol re-
analysis may introduce different model-based biases, which
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Figure 11. Composite analysis of anomalies in CCFs and CRESW when V700 in the southeastern Atlantic (left: at 27.5◦ S and 12.5◦W)
and in the South Pacific (right: at 22.5◦ S and 127.5◦W) > 1σ . From top to bottom, the panels show MSL anomalies and wind anomalies at
700 hPa, ω700 anomalies, observed CRESW anomalies, and ridge-regression-quantified contributions to the predicted CRESW anomaly.

are not well known. Findings from McCoy et al. (2017) in-
dicate that the variable spatial emissions of diffuse natural
sources of sulfate (e.g., marine biogenic dimethylsulfide) are
not as well captured by MERRA-2 as emissions from anthro-
pogenic source regions, leading to a spatial variability in the
quality of the MERRA-2 sulfate data. While sulfate aerosols
dominate the aerosol optical depth signal in many regions
of anthropogenic emissions, continental outflow regions, and
natural sources, they are not the main contributor in other re-

gions (e.g., Southern Ocean; Li et al., 2022). In the regions
where sulfate does not dominate CCN, log10s is not expected
to be a good proxy for CCN at cloud base.

The left-hand column of Fig. 13 shows CRESW sensi-
tivity to the three aerosol proxies. It is apparent that all
aerosol proxies feature a negative global weighted aver-
age sensitivity, with that of log10s being markedly smaller
in magnitude (−0.17 Wm−2 σ−1) than those of log10AI
(−0.25 Wm−2 σ−1) and log10AOD (−0.34 Wm−2 σ−1).
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Figure 12. Correlation of spatial sensitivity patterns of all individ-
ual CCFs estimated by ridge regression models for different aerosol
proxy pairs as noted in the legend. In this study only CRE sensitiv-
ities to meteorological CCFs from the log10s are shown.

Similar to the recent study by Wall et al. (2022), who ex-
plored the effects of log10s in a low-cloud-specific CCF
framework, and other recent global studies (e.g., Hasekamp
et al., 2019; Toll et al., 2019; Jia et al., 2021) sensi-
tivities are strongest in the Sc regime with CRESW sen-
sitivity to log10s of −0.43 Wm−2 σ−1, to log10AOD of
−0.70 Wm−2 σ−1, and to log10AOD of −0.66 Wm−2 σ−1.
A marked difference between the derived sensitivity patterns
is that in the Ta regime: the CRESW sensitivity to log10s is
negligible (−0.06 Wm−2 σ−1), whereas it is substantial for
log10AI (−0.27 W m−2 σ−1) and even larger for log10AOD
(−0.50 Wm−2 σ−1). In general, the finding of a stronger sen-
sitivity for the satellite-derived aerosol proxies is expected, in
particular in the case of AOD, due to the retrieval issues dis-
cussed in Sect. 2.1. While the ridge regression does control
for the large-scale meteorology, the sensitivity is still likely
to be confounded for the satellite-derived aerosol proxies, as
aerosol swelling can be expected to affect aerosol retrievals at
much smaller scales. Another reason for the weaker sensitiv-
ity of CRESW to log10s in the Ta regime, especially the trop-
ical Pacific, could be that in this region sulfate aerosols may
not dominate the total CCN budget as sea salt particles also
make a large contribution (Shinozuka et al., 2004) and that
in such remote oceanic regions the diffuse natural sources of
sulfate are unlikely to be perfectly represented in the aerosol
reanalysis, potentially leading to spatially inaccurate emis-
sions and concentrations (McCoy et al., 2017).

The right-hand column of Fig. 13 shows the sensitivity
patterns of CRELW to the different aerosol proxies, with
a positive global weighted mean sensitivity for all prox-
ies (log10s: 0.05 W m−2 σ−1, log10AI: 0.03 Wm−2 σ−1, and
log10AOD: 0.44 W m−2 σ−1). While the CRELW sensitivity
is much smaller than the CRESW sensitivity for log10s and

log10AI, this is not the case for log10AOD, especially in the
Ta regime, where the sensitivity is large (0.87 Wm−2 σ−1).
This is likely due to the (largely spurious) relationships be-
tween AOD and cloud fraction (Gryspeerdt et al., 2016;
Andersen et al., 2017; Christensen et al., 2017) as well as
cloud-top temperature (Gryspeerdt et al., 2014) that domi-
nate the CRELW signal. It is notable that while log10AI pro-
duces a similar overall sensitivity pattern (correlation 0.57;
see Fig. 12), the magnitude is lower by a factor of 17 in
the Ta regime. Overall, CRELW sensitivity to aerosol proxies
is large where the CRESW is large as well (correlations are
−0.49 for log10s, −0.53 for log10AI, −0.69 for log10AOD),
indicating that a large fraction of the quantified aerosol sen-
sitivity is from the cloud adjustments that influence both
CRESW and CRELW. In that sense it is expected that the
correlation between the CRESW and CRELW sensitivity is
particularly large for log10AOD, as it is particularly sensi-
tive to aerosol swelling (thus spuriously relating AOD and
cloud fraction). In the future, to better understand the differ-
ences in aerosol proxy–CRE relationships, a decomposition
into cloud amount and radiative property changes in clouds
may be helpful.

4 Summary and conclusions

In this study, a regime-independent CCF framework was pre-
sented to predict near-global CRESW and CRELW. A regu-
larized linear statistical learning technique (ridge regression)
was used to quantify sensitivities of CRESW and CRELW to
28 CCFs, including three different aerosol proxies. The quan-
tified sensitivities are investigated for selected CCFs and in
regions of four broad cloud regimes. The most relevant find-
ings are described in the following.

1. The statistical models are shown to be able to skillfully
predict CRESW (global average R2

= 0.63) and CRELW
(R2
= 0.72) in independent test data. Model skills are

highest in the tropics and lower at high latitudes, in par-
ticular the Southern Ocean.

2. The sensitivity of CREs to the two most dominant low-
cloud controls, SST and EIS, is most pronounced in the
shortwave. It is strongest in regions where stratocumu-
lus clouds dominate and largely consistent with other
studies, suggesting an increase in low clouds with in-
creasing EIS and decreasing SST. However, the sensi-
tivity of CRESW to changes in SST is more spatially
uniform than found in Scott et al. (2020), suggesting
a possible underestimation of low-cloud feedback with
planetary warming by Myers et al. (2021).

3. In the tropics, ω300 is the most important CCF, influenc-
ing CRESW and CRELW in such a way that the effects
of ω300 nearly cancel out.

4. Zonal winds in the free troposphere are shown to be im-
portant proxies for synoptic variability relevant for sub-
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Figure 13. Sensitivity of CRESW (a, c, e) and CRELW (b, d, f) to log10s (a, b), log10AI (c, d), and log10AOD (e, f). Note that a smaller
sensitivity range is shown compared to the other sensitivity maps.

tropical CREs. U700 anomalies are shown to be a good
proxy for changes in vertical wind shear between the
boundary layer and the free troposphere and thus the
generation of turbulence at cloud top, leading to the de-
pletion of low clouds. Vertical wind shear should thus
be included and explored in CCF frameworks, in partic-
ular in low-cloud studies.

5. CRE is shown to be sensitive to V700 in the subtropics,
where poleward V700 anomalies are linked to increased
cooling from clouds. It is unclear, though, to what de-
gree the V700 sensitivity is related to warm, moist merid-
ional advection that may increase cloudiness or may be
driven by the correlation of V700 with large-scale ascent
in the region, which may lead to nonphysical statistical
associations.

6. The CRE sensitivities to the three aerosol proxies
(log10s, log10AI, and log10AOD) share the average sign
(negative for CRESW and positive for CRELW) and
have some qualitative similarities (CRESW sensitivity

strongest in the stratocumulus regime). However, CREs
are much more sensitive to log10AI and log10AOD in
the tropics than to log10s. Differences between the sen-
sitivities of CRE to the three aerosol proxies can be ex-
plained by retrieval biases (confounded relationships)
and the varying contributions of log10s to CCN glob-
ally.

The statistical framework suggested here and the derived sen-
sitivity patterns can be used in future cloud feedback analy-
ses and to compare relationships between CCFs and CREs in
global climate model output.

Atmos. Chem. Phys., 23, 10775–10794, 2023 https://doi.org/10.5194/acp-23-10775-2023



H. Andersen et al.: Controls of cloud radiative effects 10789

Appendix A

Figure A1. Sensitivity of CRESW to SST (a) and EIS (b) with λ set to 0 (OLS). The regression models are overfitting to the training data,
resulting in much larger, noisy, and (in the case of SST) physically inconsistent sensitivity patterns.
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