

Supplement of

Cyclones enhance the transport of sea spray aerosols to the high atmosphere in the Southern Ocean

Jun Shi et al.

Correspondence to: Jinpei Yan (jpyan@tio.org.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Fig. S2 The satellite cloud map of three events (a)event 1(b) event 2 (c) event 3. (LAADS DAAC data product MOD021KM. <u>https://ladsweb.modaps.eosdis.nasa.gov/</u>)

Fig. S3 Average sea ice concentrations in the Southern Ocean, Antarctica during event 3, (a) 2 March (b) 3 March.

Fig. S4 Correlation between Na⁺ and wind speed in regions of different latitude.

Fig S5. Temporal distributions of pressure during the cruise.

Fig. S6 The difference of wind stress between cyclonic and non-cyclonic periods

Fig. S7 The difference of wind stress and Sea-salt flux between cyclonic and non-cyclonic periods

Tab. S1 Correlation Coefficients Between element of Sea Spray Aerosol in the Atmospheric Aerosols Recorded in This Study.**Coefficients at 0.01 Significance Level, P < 0.01.

	Na^+	Mg^{2+}	\mathbf{K}^+	Ca^{2+}	SO4 ²⁻
Na^+	1	.997**	.950**	.597**	.892**
Mg^{2+}	.997**	1	.956**	$.598^{**}$.891**
K^+	.950**	.956**	1	.689**	.838**
Ca^{2+}	.597**	.598**	.689**	1	.496**
SO4 ²⁻	.892**	.891**	.838**	.496**	1

	Normal Event1		Event2		Event3		
Da(µm)		Non-cyclone	Cyclone	Non-cyclone	Cyclone	Non-cyclone	Cyclone
<1	16.9%	28.9%	16.3%	10.0%	6.2%	24.3%	19.1%
1.1-1.2	26.1%	20.8%	22.2%	15.8%	13.7%	19.8%	19.6%
1.3-1.4	24.8%	21.6%	26.9%	26.4%	25.2%	21.7%	24.1%
1.5-1.6	17.3%	15.2%	20.7%	23.0%	26.9%	16.2%	20.3%
1.7-1.8	9.0%	8.7%	10.6%	14.4%	17.2%	10.4%	11.2%
1.9-2.0	3.9%	3.5%	2.7%	7.1%	7.9%	4.9%	4.2%
> 2	2.1%	1.34%	0.5%	3.3%	3.0%	2.7%	3.1%

Tab. S2 Relative fraction of SSAs size distribution in different case during key events.