Supplement of

Cyclones enhance the transport of sea spray aerosols to the high atmosphere in the Southern Ocean

Jun Shi et al.
Correspondence to: Jinpei Yan (jpyan@tio.org.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Fig. S1 The cruise tracks of the observation.
(The black arrow shows the direction of the research ship)

Fig. S2 The satellite cloud map of three events (a)event 1(b) event 2 (c) event 3. (LAADS DAAC data product MOD021KM. https://ladsweb.modaps.eosdis.nasa.gov/)

Fig. S3 Average sea ice concentrations in the Southern Ocean, Antarctica during event 3, (a) 2 March (b) 3 March.

Fig. S4 Correlation between Na^{+}and wind speed in regions of different latitude.

Fig S5. Temporal distributions of pressure during the cruise.

Fig. S6 The difference of wind stress between cyclonic and non-cyclonic periods

Fig. S7 The difference of wind stress and Sea-salt flux between cyclonic and non-cyclonic periods

Tab. S1 Correlation Coefficients Between element of Sea Spray Aerosol in the Atmospheric Aerosols Recorded in This Study.**Coefficients at 0.01 Significance Level, $\mathbf{P}<\mathbf{0 . 0 1}$.

	Na^{+}	Mg^{2+}	K^{+}	Ca^{2+}	$\mathrm{SO}_{4}{ }^{2-}$
Na^{+}	1	$.997^{* *}$	$.950^{* *}$	$.597^{* *}$	$.892^{* *}$
Mg^{2+}	$.997^{* *}$	1	$.956^{* *}$	$.598^{* *}$	$.891^{* *}$
$\mathrm{~K}^{+}$	$.950^{* *}$	$.956^{* *}$	1	$.689^{* *}$	$.838^{* *}$
Ca^{2+}	$.597^{* *}$	$.598^{* *}$	$.689^{* *}$	1	$.496^{* *}$
$\mathrm{SO}_{4}{ }^{2-}$	$.892^{* *}$	$.891^{* *}$	$.838^{* *}$	$.496^{* *}$	1

Tab. S2 Relative fraction of SSAs size distribution in different case during key events.

	Normal	Event1		Event2		Event3	
$\operatorname{Da}(\mu \mathrm{m})$		Non-cyclone	Cyclone	Non-cyclone	Cyclone	Non-cyclone	Cyclone
<1	16.9%	28.9%	16.3%	10.0%	6.2%	24.3%	19.1%
$1.1-1.2$	26.1%	20.8%	22.2%	15.8%	13.7%	19.8%	19.6%
$1.3-1.4$	24.8%	21.6%	26.9%	26.4%	25.2%	21.7%	24.1%
$1.5-1.6$	17.3%	15.2%	20.7%	23.0%	26.9%	16.2%	20.3%
$1.7-1.8$	9.0%	8.7%	10.6%	14.4%	17.2%	10.4%	11.2%
$1.9-2.0$	3.9%	3.5%	2.7%	7.1%	7.9%	4.9%	4.2%
>2	2.1%	1.34%	0.5%	3.3%	3.0%	2.7%	3.1%

