

Supplement of

Source apportionment study on particulate air pollution in two high-altitude Bolivian cities: La Paz and El Alto

Valeria Mardoñ

Correspondence to: Valeria Mardoñez (valeria.mardonez@univ-grenoble-alpes.fr)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Bolivian air quality guidelines¹

Pollutant	Concentration	Period/ statistic characterization
Carbon Monoxide (CO)	10 mg m ⁻³	8h mean
	40 mg m ⁻³	1h mean
Sulfur dioxide	80 µg m ⁻³	annual mean
(SO_2)	365 µg m ⁻³	24h mean
Nitrogen dioxide (NO ₂)	150 µg m ⁻³	24h mean
	$400 \ \mu g \ m^{-3}$	1h mean
Total suspended	260 µg m ⁻³	24h mean
particles (TSP)	75 μg m ⁻³	annual mean
Particles smaller than	150 µg m ⁻³	24h mean
$10 \ \mu m \ (PM_{10})$	50 µg m ⁻³	annual mean
Ozone (O3)	236 µg m ⁻³	1h mean
Lead (Pb)	1.5 μg m ⁻³	3-month mean

Figure S1. Photographs taken at the sampling sites (Left: El Alto sampling site; right: La Paz sampling site)

¹ The concentration values are referred to normal concentrations of pressure and temperature $(\bar{T} = 298 \text{ K}, \bar{P} = 1013.5 \text{ hPa})$

Figure S2. Sampling sites. ©OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA License

Table S2. Mean, median and standard deviation (sd) of the measured ambient concentrations (above the mean QL, after excluding outliers and samples collected during festivities or the day after, e.g. San Juan, Christmas and New Year). For STP concentrations, ambient concentrations in El Alto must be multiplied by a factor 1.52 and 1.46 for La Paz.

						El Alto (F	EA)			La Paz (LP)	
Group	Specie	Analysis	Units	mean QL	mean	median	sd	n	mean	median	sd	n
	particulate matter (PM)	gravimetry	[µg m ⁻³]		29.9	28.9	12.0	93	27.18	27.07	8.91	103
carbonaceous	organic carbon (OC)	thermal-optical	[µg m ⁻³]	0.21	3.51	3.48	1.57	93	3.85	3.68	1.78	103
aerosols	elemental carbon (EC)	analysis (Cavalli et al., 2010)	[µg m ⁻³]	0.02	1.46	1.41	0.60	93	1.59	1.57	0.78	103
polyhydric	arabitol	high performance	[ng m ⁻³]	0.77	2.09	1.79	1.08	83	3.75	3.18	2.28	100
alcohols	sorbitol	liquid	[ng m ⁻³]	0.79	9.13	5.34	10.77	75	13.88	7.75	17.38	87
	mannitol	(HPLC)	[ng m ⁻³]	0.77	3.82	3.37	2.67	88	6.73	5.30	4.53	97
monosaccharide	levoglucosan		[ng m ⁻³]	0.62	87.73	66.47	76.80	93	79.00	46.26	83.15	101
anhydrides	mannosan	$(\mathbf{D}; \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{r}) = (0, 1, 0)$	[ng m ⁻³]	0.77	7.52	4.32	9.02	89	7.46	3.33	10.08	98
	galactosan	(Plot et al., 2012)	[ng m ⁻³]	0.31	3.91	1.65	5.74	91	4.31	1.86	6.09	95
saccharides	glucose		[ng m ⁻³]	0.77	14.35	13.81	5.84	93	22.07	22.33	8.81	102
ions	methanesulfonic acid (MSA ⁻)	ionic	[ng m ⁻³]	0.06	3.93	3.57	1.87	93	4.38	4.05	2.48	88
	chloride (Cl ⁻)	(HPLC) (Piot et al., 2012) ionic chromatography (IC) (Jaffrezo et al., 2005)	[ng m ⁻³]	5.56	217.51	152.27	235.80	93	65.24	52.56	52.79	102
	nitrate (NO ₃ ⁻)	ionic chromatography (IC) (Jaffrezo et al., 2005)	[ng m ⁻³]	11.02	609.72	551.21	359.84	92	555.16	482.23	321.65	102
	sulfate (SO ₄ ²⁻)	(Piot et al., 2012) ionic chromatography (IC) (Jaffrezo et al., 2005)	[ng m ⁻³]	5.29	1247.06	1068.66	723.87	93	1252.77	1098.03	769.54	102
	oxalate (Ox ⁻)	(IC) (Jaffrezo et al., 2005)	[ng m ⁻³]	1.64	50.07	45.75	43.71	73	44.95	24.11	58.18	91
	sodium (Na ⁺)	- 2005)	[ng m ⁻³]	10.47	52.05	46.35	32.64	86	40.94	39.59	21.10	95
	ammonium (NH4 ⁺)	_	[ng m ⁻³]	8.74	511.29	451.65	399.06	93	403.81	333.12	308.04	102
	potassium (K ⁺)	_	[ng m ⁻³]	2.76	77.41	68.44	52.61	93	73.34	56.82	55.77	102
	magnesium (Mg ⁺)	_	[ng m ⁻³]	0.62	25.14	22.72	12.72	93	24.33	22.45	12.77	102
	calcium (Ca ⁺)	_	[ng m ⁻³]	3.53	362.51	312.20	201.63	93	256.30	222.58	136.51	102
metals	aluminum (Al)	inductively coupled	[µg m ⁻³]	0.003	1.681	1.582	0.928	93	1.133	1.035	0.563	101
	calcium (Ca)	plasma atomic	[µg m ⁻³]	0.001	0.428	0.386	0.218	93	0.350	0.328	0.181	101
	potassium (K)	spectrometry (ICP-	[µg m ⁻³]	0.001	0.529	0.527	0.287	93	0.394	0.361	0.196	101
	sodium (Na)	AES)	[µg m ⁻³]	0.001	0.137	0.135	0.078	93	0.110	0.106	0.060	101
	magnesium (Mg)	_	[µg m ⁻³]	0.001	0.160	0.156	0.083	93	0.125	0.125	0.059	101
	iron (Fe)	_	[µg m ⁻³]	0.001	0.932	0.900	0.501	93	0.669	0.590	0.357	101
	lithium (Li)	inductively coupled	[ng m ⁻³]	0.05	1.60	1.42	0.96	93	1.04	0.92	0.57	101
	beryllium (Be)	plasma mass	[ng m ⁻³]	0.05	0.10	0.10	0.02	49	0.08	0.08	0.02	27
	phosphor (P)	1	[ng m ⁻³]	0.05	37.08	34.43	17.91	93	25.48	22.66	11.94	101

scandium (Sc)	spectrometry (ICP-	[ng m ⁻³]	0.05	0.24	0.21	0.13	35	0.20	0.20	0.09	25
titanium (Ti)	MS)	[ng m ⁻³]	0.05	80.15	74.41	44.71	93	55.83	50.55	27.76	101
vanadium (V)		[ng m ⁻³]	0.05	2.04	2.01	1.08	88	1.54	1.49	0.73	97
chromium (Cr)	(Querol et al., 2001)	[ng m ⁻³]	0.05	2.66	1.84	4.52	78	2.36	2.02	1.45	97
manganese (Mn)		[ng m ⁻³]	0.05	16.48	15.75	8.71	93	12.69	11.90	6.19	101
cobalt (Co)		[ng m ⁻³]	0.05	0.36	0.32	0.18	91	0.24	0.22	0.11	99
nickel (Ni)		[ng m ⁻³]	0.05	1.18	0.96	1.29	83	1.12	0.86	0.84	99
cupper (Cu)		[ng m ⁻³]	0.05	2.89	2.51	1.89	90	4.25	3.91	2.52	101
zinc (Zn)		[ng m ⁻³]	0.05	12.72	12.63	5.51	93	11.68	11.24	5.47	100
gallium (Ga)		[ng m ⁻³]	0.05	0.40	0.39	0.23	90	0.29	0.26	0.15	101
germanium (Ge)		[ng m ⁻³]	0.05	0.11	0.11	0.04	21	0.13	0.11	0.07	8
arsenic (As)		[ng m ⁻³]	0.05	1.81	1.53	1.07	93	1.03	0.98	0.46	101
selenium (Se)		[ng m ⁻³]	0.05	0.09	0.10	0.02	16	0.10	0.09	0.03	17
rubidium (Rb)		[ng m ⁻³]	0.05	3.12	2.88	1.76	93	2.11	1.88	1.10	101
strontium (Sr)		[ng m ⁻³]	0.05	3.45	3.36	1.90	93	2.64	2.42	1.33	101
yttrium (Y)		[ng m ⁻³]	0.05	0.43	0.42	0.23	83	0.37	0.31	0.26	85
zirconium (Zr)		[ng m ⁻³]	0.40	7.49	7.63	1.88	93	6.25	5.99	1.86	100
niobium (Nb)		[ng m ⁻³]	0.05	0.30	0.29	0.13	93	0.23	0.23	0.09	101
molibdene (Mo)		[ng m ⁻³]	0.05	1.21	1.09	0.74	49	1.39	1.00	1.13	29
cadmium (Cd)		[ng m ⁻³]	0.05	0.14	0.13	0.06	90	0.09	0.08	0.02	57
tin (Sn)		[ng m ⁻³]	0.05	0.58	0.44	0.43	92	0.40	0.36	0.22	101
antimony (Sb)		[ng m ⁻³]	0.05	1.05	0.80	0.83	91	0.95	0.78	0.67	101
cesium (Cs)		[ng m ⁻³]	0.05	0.34	0.29	0.19	90	0.22	0.21	0.12	97
barium (Ba)		[ng m ⁻³]	0.05	14.60	14.48	7.24	90	15.64	15.58	7.46	101
lanthanum (La)		[ng m ⁻³]	0.05	0.82	0.81	0.42	92	0.58	0.54	0.27	101
cerium (Ce)		[ng m ⁻³]	0.05	1.65	1.62	0.90	93	1.22	1.16	0.67	101
praseodymium (Pr)		[ng m ⁻³]	0.05	0.20	0.20	0.10	86	0.17	0.17	0.06	94
neodymium (Nd)		[ng m ⁻³]	0.05	0.75	0.73	0.41	92	0.52	0.49	0.25	101
samarium (Sm)		[ng m ⁻³]	0.05	0.15	0.15	0.07	79	0.11	0.12	0.04	73
europium (Eu)		[ng m ⁻³]	0.05	0.07	0.07	0.01	26	0.07	0.07		1
gadolinium (Gd)		[ng m ⁻³]	0.05	0.14	0.14	0.06	73	0.11	0.10	0.05	73
terbium (Tb)		[ng m ⁻³]	0.05	0.07	0.07	0.01	46	0.07	0.07	0.01	18
dysprosium (Dy)		[ng m ⁻³]	0.05	0.12	0.11	0.04	61	0.10	0.08	0.05	59
holmium (Ho)		[ng m ⁻³]	0.05	0.07	0.07	0.01	47	0.07	0.07	0.00	6

	erbium (Er)		[ng m ⁻³]	0.05	0.07	0.07	0.01	35	0.07	0.07	0.01	34									
	thulium (Tm)	-	[ng m ⁻³]	0.05				0				0									
	ytterbium (Yb)	-	[ng m ⁻³]	0.05	0.07	0.07	0.01	34	0.07	0.07	0.02	57									
	lutetium (Lu)	-	[ng m ⁻³]	0.05				0				0									
	hafnium (Hf)	-	[ng m ⁻³]	0.40	0.40	0.40		1	0.42	0.41	0.01	9									
	tantalum (Ta)	-	[ng m ⁻³]	0.05				0				0									
	tungsten (W)	-	[ng m ⁻³]	0.05	0.24	0.16	0.23	84	0.20	0.13	0.15	81									
	thallium (Tl)		[ng m ⁻³]	0.05	0.07	0.07	0.01	2				0									
	lead (Pb)		[ng m ⁻³]	0.05	2.87	2.52	1.61	93	2.05	1.84	1.17	100									
	bismuth (Bi)		[ng m ⁻³]	0.05	0.26	0.12	0.46	29	0.19	0.12	0.19	19									
	thorium (Th)		[ng m ⁻³]	0.05	0.40	0.34	0.28	89	0.26	0.22	0.18	97									
	uranium (U)		[ng m ⁻³]	0.05	0.09	0.09	0.03	48	0.10	0.08	0.06	36									
polyaromatic	phenanthrene (Phe)	high performance	[ng m ⁻³]	0.008	0.036	0.032	0.021	88	0.045	0.040	0.025	100									
hydrocarbons (PAH)	anthracene (An)	liquid	[ng m ⁻³]	0.001	0.004	0.003	0.002	90	0.005	0.004	0.003	99									
(IAII)	fluoranthene (Fla)	(HPLC- Fluo)	[ng m ⁻³]	0.002	0.102	0.069	0.097	90	0.083	0.052	0.086	102									
	pyrene (Pyr)		[ng m ⁻³]	0.003	0.123	0.082	0.119	91	0.105	0.070	0.107	102									
	triphenylene (Tri)		[ng m ⁻³]	0.002	0.080	0.063	0.070	91	0.052	0.036	0.052	101									
	retene (Ret)	(Besombes et al.,	[ng m ⁻³]	0.000	0.103	0.039	0.152	87	0.045	0.019	0.054	91									
	benzo(a)anthracene (BaA)	2001)	[ng m ⁻³]	0.008	0.196	0.132	0.171	90	0.147	0.092	0.152	97									
	chrysene (Chr)		[ng m ⁻³]	0.004	0.235	0.200	0.182	91	0.165	0.115	0.165	102									
	benzo(e)pyrene (BeP)		[ng m ⁻³]	0.005	0.273	0.215	0.282	91	0.228	0.170	0.235	102									
	benzo(b)fluoranthene (BbF)		[ng m ⁻³]	0.005	0.250	0.221	0.164	90	0.202	0.165	0.162	102									
	benzo(k)fluoranthene (BkF)		[ng m ⁻³]	0.002	0.104	0.096	0.070	90	0.081	0.063	0.067	100									
	benzo(a)pyrene (BaP)		[ng m ⁻³]	0.002	0.122	0.094	0.108	90	0.124	0.085	0.116	101									
	benzo(g,h,i)perylene (BghiP)		[ng m ⁻³]	0.008	0.410	0.387	0.228	90	0.404	0.351	0.291	101									
	dibenzo(a,h)anthracene (DBahA)											[ng m ⁻³]	0.000	0.010	0.006	0.010	88	0.008	0.005	0.009	101
	indeno(1,2,3-cd)pyrene (IP)													[ng m ⁻³]	0.005	0.218	0.214	0.136	91	0.196	0.155
	coronene (Cor)		[ng m ⁻³]	0.002	0.251	0.237	0.143	91	0.268	0.216	0.190	100									
alkanes	C11	gas	[ng m ⁻³]	0.070	0.698	0.712	0.358	16	0.559	0.455	0.431	20									
	C12	chromatography–	[ng m ⁻³]	0.170	0.254	0.254	0.052	4	1.588	0.865	1.846	3									
	C13	(GS-MS)	[ng m ⁻³]	0.115	0.217	0.184	0.095	19	0.284	0.231	0.244	14									
	C14		[ng m ⁻³]	0.070	0.126	0.107	0.036	7	0.121	0.108	0.024	3									
	C15		[ng m ⁻³]	0.070	0.381	0.103	0.686	6	0.253	0.124	0.385	12									
	C16		[ng m ⁻³]	0.115	0.194	0.170	0.049	3	0.224	0.176	0.119	6									

	C17	(Golly, 2014)	[ng m ⁻³]	0.138	0.228	0.219	0.061	33	0.236	0.229	0.058	20
	C18		[ng m ⁻³]	0.128	0.279	0.273	0.117	47	0.292	0.273	0.198	39
	C19		[ng m ⁻³]	0.109	0.571	0.548	0.404	62	0.449	0.376	0.271	55
	C20		[ng m ⁻³]	0.110	1.302	1.093	1.106	71	0.908	0.718	0.783	74
	C21		[ng m ⁻³]	0.339	2.375	1.691	2.056	75	1.674	0.923	1.611	93
	C22		[ng m ⁻³]	0.186	3.118	2.595	2.762	87	2.060	1.128	2.139	101
	C23		[ng m ⁻³]	0.314	3.149	2.634	2.552	86	2.482	1.398	2.443	100
	C24		[ng m ⁻³]	0.231	2.760	2.240	2.157	89	2.278	1.414	2.168	100
	C25		[ng m ⁻³]	0.598	2.849	2.265	1.889	83	2.500	1.692	1.991	97
	C26		[ng m ⁻³]	0.175	2.229	1.917	1.394	90	2.091	1.479	1.627	101
	C27		[ng m ⁻³]	0.580	2.678	2.148	1.847	84	2.714	1.982	2.255	100
	C28		[ng m ⁻³]	0.292	1.719	1.555	1.049	88	1.725	1.251	1.320	100
	C29		[ng m ⁻³]	0.841	2.891	2.306	2.015	83	2.920	1.861	3.077	93
	C30		[ng m ⁻³]	0.288	1.254	1.048	0.810	86	1.205	0.846	0.967	95
	C31		[ng m ⁻³]	0.570	2.348	1.647	1.785	82	2.300	1.429	2.464	83
	C32		[ng m ⁻³]	0.070	0.807	0.652	0.584	84	0.747	0.540	0.669	97
	C33		[ng m ⁻³]	0.070	0.755	0.658	0.538	84	0.825	0.577	0.830	89
	C34		[ng m ⁻³]	0.070	0.564	0.429	0.423	73	0.480	0.359	0.392	82
	C35		[ng m ⁻³]	0.070	0.629	0.429	0.556	68	0.484	0.293	0.474	77
	C36		[ng m ⁻³]	0.070	0.381	0.249	0.358	53	0.357	0.271	0.321	52
	C37		[ng m ⁻³]	0.070	0.394	0.255	0.468	36	0.198	0.166	0.151	24
	C38		[ng m ⁻³]	0.070	0.281	0.187	0.258	15	0.175	0.128	0.126	18
	C39		[ng m ⁻³]	0.070	0.351	0.224	0.362	17	0.164	0.114	0.122	24
	C40		[ng m ⁻³]	0.070	0.319	0.259	0.231	12	0.106	0.100	0.025	9
	Pristane		[ng m ⁻³]	0.070	0.189	0.147	0.164	25	0.258	0.163	0.204	24
	Phytane		[ng m ⁻³]	0.070	0.180	0.161	0.082	23	0.196	0.150	0.139	36
	2-methyl-naphthalene		[ng m ⁻³]	0.019				0				0
Methyl PAH	1-methyl-fluorene		[ng m ⁻³]	0.007				0	0.040	0.011	0.051	3
	3-methyl-phenanthrene		[ng m ⁻³]	0.025				0	0.125	0.125	0.141	2
	2-methyl-phenanthrene		[ng m ⁻³]	0.014				0	0.018	0.017	0.005	7
	2-methyl-anthracene		[ng m ⁻³]	0.014				0	0.041	0.041	0.035	2
	4/9-methyl-phenanthrene		[ng m ⁻³]	0.014				0	0.040	0.040		1
	1-methyl-phenanthrene		[ng m ⁻³]	0.007	0.010	0.010		1	0.022	0.013	0.029	9
	4-methyl-pyrene		[ng m ⁻³]	0.007	0.019	0.015	0.012	25	0.022	0.015	0.015	32

	1-methyl-pyrene
	1+3-Methyl-fluorene
	Methyl-fluorene/pyrene
	1-methylfluoranthene
	3-methyl-chrysene
	Methyl-chrysene/BenzoAnthracene
thiophens	DBT (DiBenzoThiophen)
	PheT(4,5) (Phenanthro(4,5
	bcd)Thiophen)
	BNT(2,1) (Benzo(b)Naphto(2,1 d)Thiophen)
	BNT(1,2) (Benzo(b)Naphto(1,2
	d)Thiophen)
	BNT(2,3) (Benzo(b)Naphto(2,3
	d)Thiophen)
	DNT(2,1) (Dinaphto (2,1) Thiophen)
	BPT(2,1)
	(Benzo(b)Phenanto(2,1d)thiophen)
hopanes	HP1 (Trisnorneohopane)
	HP2 (17α(H)-Trisnorhopane)
	HP3 (17α(H)-21β(H)-Norhopane)
	HP4 (17α(H)-21β(H)-Hopane)
	HP5 (17α(H)-21β(H)-22S-
	Homohopane)
	HP6 (17α(H)-21β(H)-22R-
	Homohopane)
	ΗΡ7 (17α(Η)-21β(Η)-228-
	Bishomohopane)
	HP8 (17α(H)-21β(H)-22 R -
	Bishomohopane)
	HP9 (17α(H)-21β(H)-22S-
	Trishomohopane)
	HP10 (17 α (H)-21 β (H)-22R-
	DMDT ((10.14 trimethed 2
	Divir 1 (6,10,14-trimethyl-2-
mothownhonala	Vanillin
memoxyphenois	
	Cusional agatang
	Coniferylaldehyde

	[ng m ⁻³]	0.007	0.024	0.017	0.016	27	0.025	0.017	0.018	37
-	[ng m ⁻³]	0.007	0.016	0.015	0.005	13	0.017	0.014	0.006	14
-	[ng m ⁻³]	0.007	0.015	0.011	0.008	20	0.016	0.016	0.007	21
-	[ng m ⁻³]	0.007	0.017	0.015	0.009	21	0.020	0.014	0.013	26
-	[ng m ⁻³]	0.008	0.034	0.031	0.022	32	0.039	0.026	0.037	54
-	[ng m ⁻³]	0.007	0.016	0.014	0.008	28	0.022	0.016	0.016	39
-	[ng m ⁻³]	0.007	0.011	0.011	0.003	4	0.024	0.013	0.022	7
-	[ng m ⁻³]	0.007	0.012	0.011	0.004	4	0.016	0.011	0.016	16
-	[ng m ⁻³]	0.027	0.027	0.027	0.006	7	0.040	0.039	0.020	14
	[ng m ⁻³]	0.007	0.009	0.010	0.001	3	0.016	0.010	0.009	9
-	[ng m ⁻³]	0.007	0.010	0.010	0.002	12	0.017	0.015	0.009	12
-	[ng m ⁻³]	0.007	0.014	0.011	0.008	3	0.014	0.012	0.006	3
-	[ng m ⁻³]	0.007				0				0
-	[ng m ⁻³]	0.012	0.060	0.041	0.048	46	0.074	0.049	0.065	64
-	[ng m ⁻³]	0.013	0.047	0.038	0.031	54	0.056	0.039	0.044	94
-	[ng m ⁻³]	0.007	0.143	0.097	0.122	87	0.215	0.147	0.183	99
-	[ng m ⁻³]	0.011	0.179	0.119	0.150	83	0.255	0.168	0.212	99
-	[ng m ⁻³]	0.007	0.077	0.050	0.064	77	0.109	0.069	0.093	98
-	[ng m ⁻³]	0.007	0.059	0.035	0.053	72	0.081	0.050	0.074	99
-	[ng m ⁻³]	0.007	0.057	0.036	0.053	73	0.077	0.043	0.072	100
-	[ng m ⁻³]	0.007	0.042	0.026	0.034	66	0.058	0.037	0.051	94
-	[ng m ⁻³]	0.007	0.044	0.023	0.043	68	0.057	0.031	0.055	89
-	[ng m ⁻³]	0.007	0.038	0.024	0.028	57	0.043	0.024	0.039	77
-	[ng m ⁻³]	0.055	0.749	0.524	0.637	89	0.984	0.631	1.345	102
-	[ng m ⁻³]	0.017	0.199	0.162	0.119	22	0.172	0.144	0.101	22
-	[ng m ⁻³]	0.055	0.280	0.236	0.169	27	0.272	0.095	0.520	16
-	[ng m ⁻³]	0.057	0.239	0.226	0.117	15	0.161	0.143	0.086	14
-	[ng m ⁻³]	0.056	0.260	0.224	0.137	4	0.352	0.281	0.199	4

	Vanillic acid		[ng m ⁻³]	0.018	0.577	0.423	0.449	46	0.713	0.533	0.723	40
	Homovanillic acid	-	[ng m ⁻³]	0.014	0.218	0.175	0.079	3	0.087	0.087	0.034	2
	Syringol	-	[ng m ⁻³]	0.006				0	0.066	0.066		1
	4-methylsyringol	-	[ng m ⁻³]	0.006				0	0.032	0.032		1
	4-propenylsyringol	_	[ng m ⁻³]	0.028				0	0.093	0.093		1
	Acetosyringone	_	[ng m ⁻³]	0.028	0.398	0.353	0.227	33	0.420	0.409	0.220	31
	Syringyl acetone	_	[ng m ⁻³]	0.017	0.181	0.181		1	0.089	0.089		1
	Sinapyl aldehyde	_	[ng m ⁻³]	0.056	0.160	0.160		1	0.348	0.348	0.204	2
	Syringic acid	_	[ng m ⁻³]	0.018	0.322	0.283	0.182	34	0.442	0.331	0.328	33
sterols	Cholesterol	_	[ng m ⁻³]	0.056	2.300	1.926	1.412	11	1.534	1.413	0.858	22
methyl-	3methylcatechol		[ng m ⁻³]	0.070				0	0.133	0.133		1
nitricatechols	4-methylcatechol		[ng m ⁻³]	0.084				0				0
	4nitroguaiacol		[ng m ⁻³]	0.300	0.414	0.414		1				0
	4nitrocatechol		[ng m ⁻³]	0.140	1.001	0.806	0.601	14	1.602	1.458	1.130	22
	3-methyl-6-nitrocatechol		[ng m ⁻³]	0.124				0				0
	4-methyl-5-nitrocatechol	-	[ng m ⁻³]	0.140	0.236	0.248	0.022	3	0.381	0.334	0.165	12
	3-methyl-5-nitrocatechol		[ng m ⁻³]	0.070	0.355	0.292	0.122	3	0.523	0.581	0.245	13
	3methyl4nitrocatechol		[ng m ⁻³]	0.124	0.195	0.195		1	0.925	0.281	1.096	7

Table S3. Species analyzed from fuel samples collected at La Paz and El Alto

	Sample#	Al	Cr	Mn	Fe	Со	Ni	Cu	Zn	As	Ag	Cd	Pb
		mg/l	mg/l										
gasoline	1	13.7	3.96	63.0	2.81	0.05	0.23	0	0.85	4.00	0.12	0.002	0.10
gasoline	2	8.23	3.84	67.3	0.00	0.03	0.10	0	1.68	3.47	0.09	0.003	0.10
gasoline	3	8.54	3.51	61.7	0.00	0.03	0.07	0	1.71	3.07	0.01	0.004	0.10
diesel	4	14.9	9.82	0.66	0.00	0.02	0.13	0	7.85	4.00	0.01	0.005	0.25
diesel	5	15.8	8.81	0.41	0.00	0.02	0.13	0	6.55	3.74	0.00	0.007	0.27
diesel	6	35.0	10.2	0.91	11.6	0.02	0.11	0	7.49	4.36	0.01	0.011	0.28

Figure S3. Monthly variation of major contributor species to PM₁₀, crustal material comprises: Al, Fe, Ti, Ca, Mg, K, Mn, P; metals comprises: Co, Ni, Cu, Zn, As, Rb, Sr, Cd, Sn, Sb, Pb; PAHs is the sum of: Phe, An, Fla, Pyr, Tri, Ret, BaA, Chr, BeP, BbF, BkF, BaP, BghiP, DBahA, IP, Cor; alkanes are the sum of C20-C31, hopanes the sum of HP3 and HP4; and n is the number of filters collected in the corresponding month at each site.

Figure S4. Chemical profile of single-site sources of PM₁₀

El Alto

Figure S5. Percentage contribution of sources to total ambient PM (single site approach)

Table S4. Bootstrap mapping of single site solution El Alto

	Waste burning + Lubricant oil	Dust	Biomass burning	Traffic 1	Non- exhaust emissions	Primary Biogenic Aerosols	Secondary nitrate	Traffic 2	Secondary sulfate	MSA-rich	Unmapped
Boot Factor 1	98	0	0	2	0	0	0	0	0	0	0
Boot Factor 2	0	100	0	0	0	0	0	0	0	0	0
Boot Factor 3	0	0	100	0	0	0	0	0	0	0	0
Boot Factor 4	5	0	0	95	0	0	0	0	0	0	0
Boot Factor 5	0	0	0	0	98	1	0	0	1	0	0
Boot Factor 6	2	0	0	0	0	98	0	0	0	0	0
Boot Factor 7	0	0	0	0	0	0	100	0	0	0	0
Boot Factor 8	20	3	0	8	2	0	5	61	1	0	0
Boot Factor 9	0	0	0	0	0	0	0	0	100	0	0
Boot Factor 10	0	0	0	0	0	0	0	0	0	100	0

Table S5. Bootstrap mapping of single site solution La Paz

	Traffic 2 +								Primary		Unmapped
	Non-	Biomass		Secondary		Secondary	Waste		Biogenic	Lubricant	
	exhaust	Burning	Traffic 1	nitrate	MSA-rich	sulfate	burning	Dust	Aerosols	oil	
Boot Factor 1	84	1	3	1	1	0	4	3	0	3	0
Boot Factor 2	0	100	0	0	0	0	0	0	0	0	0
Boot Factor 3	11	0	80	0	0	1	5	1	0	2	0
Boot Factor 4	0	0	0	99	0	0	0	0	0	1	0
Boot Factor 5	0	0	0	0	100	0	0	0	0	0	0
Boot Factor 6	0	0	0	0	0	100	0	0	0	0	0
Boot Factor 7	2	0	2	0	0	0	94	1	0	1	0
Boot Factor 8	0	0	0	0	0	0	1	98	0	1	0
Boot Factor 9	0	0	0	0	0	0	0	0	100	0	0
Boot Factor 10	3	0	1	0	0	0	3	1	0	92	0

Table S6. Spearman correlations between chloride and each of the resolved sources of PM. Strongest correlations are found between Cl- and Waste burning, secondly with TR1 and Non-exhaust.

		Waste burning	Sec. sulfate	TR1	MSA- rich	Lubricant	BB	Dust	Sec. Nitrate	Non- Exhaust	PBA	TR2
Spearman	CI- EA	0.75	-0.22	0.57	0.34	0.28	0.47	0.59	-0.24	0.67	-0.19	0.25
	CI- LP	0.67	0.01	0.61	0.39	0.49	0.53	0.45	0.19	0.57	-0.25	0.44

Test of Similarity of Chemical Profiles

In source apportionment studies, factors are labeled according to their chemical profile and its similarity to what was previously reported in the literature. Although the source identification is based on the specific tracers of the different sources, the exact chemical profile of sources with the same name could vary from site to site. Thus, a metric to quantitively evaluate the similarity between two factors was proposed by Belis et al. 2015 and Pernigotti & Belis, 2018. Two parameters are considered to establish given similarity: the Pearson distance (PD) and the similarity Identity distance (SID), defined as follows:

 $PD = 1 - r^2 \ [S1]$

$$SID = \frac{\sqrt{2}}{m} \sum_{j=1}^{m} \frac{|x_j - y_j|}{x_j + y_j} \quad [S2]$$

Where m is the number of common species existing between the two compared profiles and, x and y are the relative mass of the species j in each factor profile. According to Pernigotti & Belis, 2018, PD < 0.4 and SID < 1 are considered as acceptable criteria for profile similarity.

This method was used to evaluate the similarity of the resolved factors in La Paz-El Alto with what was found in France by Borlaza et al., 2021 and Weber et al., 2019 (Figure S6). From the 11 resolved sources, only 8 were comparable with was obtained from the French-sites source apportionment, out of which 4 resulted to be significantly similar to what was observed in France: primary biogenic aerosols, biomass burning, secondary sulfate and traffic 2. Although waste burning was not among the identified sources in France, this factor was compared to the industrial emissions observed in France. The disparities between the remaining factors (dust, secondary nitrate, MSA-rich and traffic 1) was largest in the PD parameter, which is highly sensitive to variation in the major mass fractions of the PM, and will be discussed below.

It was observed that the largest difference between the dust profiles, was the relative abundance of EC, OC, sulfate and nitrate assigned to the factors. The abundance of such species in the dust profiles in France was considerably higher compared to La Paz. In contrast, the relative concentrations of Al and Fe were generally higher for LP-EA. This shows that not only the composition of dust but the aging of the air masses carrying it are different. Similarly, for secondary nitrate, the OC and EC relative concentrations found in the secondary nitrate factor in LP-EA was generally higher than in France. This is likely because the main source of secondary-nitrate precursors in LP-EA are vehicular gaseous emissions and since the process through which secondary nitrate is formed is a relatively fast chemical process, the PMF was not able to fully separate both factors. On the other hand, nitrate relative concentrations were 2 to 4 times higher than what was observed in LP_EA. The largest difference observed in the MSA-rich chemical profiles, that led to high PD values, were the relative abundances of OC, sulfate, Al and Fe. Specifically, OC and sulfate where repeatedly higher in France, which gives an idea of the aging processes that secondary marine organic aerosols undergo. In contrast, in LP-EA, Al and Fe relative masses were significantly higher than in France. This is likely due to the mixing that takes place during the transport of this secondary aerosols across the Altiplano until reaching the

metropolis. Traffic 1 had noticeably higher concentrations of Al and Fe in LP-EA but lower OC, sulfates and nitrates. In contrast, high OC relative concentrations in traffic 2, primary biogenic emissions, secondary sulfate and biomass burning, in both LP-EA and France pull the PD towards lower values.

Figure S7. Polar plot showing the mean concentrations attributed to open waste burning and the associated wind speed (m s⁻¹) and wind direction.

References

Belis, C. A., Pernigotti, D., Karagulian, F., Pirovano, G., Larsen, B. R., Gerboles, M., and Hopke, P. K.: A new methodology to assess the performance and uncertainty of source apportionment models in intercomparison exercises, Atmos. Environ., 119, 35–44, https://doi.org/10.1016/j.atmosenv.2015.08.002, 2015.

Besombes, J. L., Maître, A., Patissier, O., Marchand, N., Chevron, N., Stoklov, M., and Masclet, P.: Particulate PAHs observed in the surrounding of a municipal incinerator, Atmos. Environ., 35, 6093–6104, https://doi.org/10.1016/S1352-2310(01)00399-5, 2001.

Borlaza, L. J. S., Weber, S., Uzu, G., Jacob, V., Cañete, T., Micallef, S., Trébuchon, C., Slama, R., Favez, O., and Jaffrezo, J. L.: Disparities in particulate matter (PM₁₀) origins and oxidative potential at a city scale (Grenoble, France) - Part 1: Source apportionment at three neighbouring sites, Atmos. Chem. Phys., 21, 5415–5437, https://doi.org/10.5194/acp-21-5415-2021, 2021.

Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J. P.: Toward a standardized thermal-optical protocol for measuring atmospheric organic and elemental carbon:

The eusaar protocol, Atmos. Meas. Tech., 3, 79–89, 2010.

Golly, B.: Etude des sources et de la dynamique atmosphérique de polluants organiques particulaires en vallées alpines : apport de nouveaux traceurs organiques aux modèles récepteurs, 292, 2014.

Jaffrezo, J. L., Aymoz, G., and Cozic, J.: Size distribution of EC and OC in the aerosol of Alpine valleys during summer and winter, Atmos. Chem. Phys., 5, 2915–2925, https://doi.org/10.5194/acp-5-2915-2005, 2005.

Pernigotti, D. and Belis, C. A.: DeltaSA tool for source apportionment benchmarking, description and sensitivity analysis, Atmos. Environ., 180, 138–148, https://doi.org/10.1016/j.atmosenv.2018.02.046, 2018.

Piot, C., Jaffrezo, J. L., Cozic, J., Pissot, N., El Haddad, I., Marchand, N., and Besombes, J. L.: Quantification of levoglucosan and its isomers by High Performance Liquid Chromatography-Electrospray Ionization tandem Mass Spectrometry and its applications to atmospheric and soil samples, Atmos. Meas. Tech., 5, 141–148, https://doi.org/10.5194/amt-5-141-2012, 2012.

Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Mantilla, E., and Ruiz, C. R.: Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources, Atmos. Environ., 35, 845–858, https://doi.org/10.1016/S1352-2310(00)00387-3, 2001.

Weber, S., Salameh, D., Albinet, A., Alleman, L. Y., Waked, A., Besombes, J. L., Jacob, V., Guillaud, G., Meshbah, B., Rocq, B., Hulin, A., Dominik-Sègue, M., Chrétien, E., Jaffrezo, J. L., and Favez, O.: Comparison of PM10 sources profiles at 15 french sites using a harmonized constrained positive matrix factorization approach, Atmosphere (Basel)., 10, 1–22, https://doi.org/10.3390/atmos10060310, 2019.