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Abstract. Machine learning (ML) models are becoming a meaningful tool for modeling air pollutant concen-
trations. ML models are capable of learning and modeling complex nonlinear interactions between variables, and
they require less computational effort than chemical transport models (CTMs). In this study, we used gradient-
boosted tree (GBT) and multi-layer perceptron (MLP; neural network) algorithms to model near-surface nitrogen
dioxide (NO2) and ozone (O3) concentrations over Germany at 0.1◦ spatial resolution and daily intervals.

We trained the ML models using TROPOspheric Monitoring Instrument (TROPOMI) satellite column mea-
surements combined with information on emission sources, air pollutant precursors, and meteorology as feature
variables. We found that the trained GBT model for NO2 and O3 explained a major portion of the observed con-
centrations (R2

= 0.68–0.88 and RMSE= 4.77–8.67 µgm−3; R2
= 0.74–0.92 and RMSE= 8.53–13.2 µgm−3,

respectively). The trained MLP model performed worse than the trained GBT model for both NO2 and O3
(R2
= 0.46–0.82 and R2

= 0.42–0.9, respectively).
Our NO2 GBT model outperforms the CAMS model, a data-assimilated CTM but slightly underperforms

for O3. However, our NO2 and O3 ML models require less computational effort than CTM. Therefore, we can
analyze people’s exposure to near-surface NO2 and O3 with significantly less effort. During the study period
(30 April 2018 and 1 July 2021), it was found that around 36 % of people lived in locations where the World
Health Organization (WHO) NO2 limit was exceeded for more than 25 % of the days during the study period,
while 90 % of the population resided in areas where the WHO O3 limit was surpassed for over 25 % of the study
days. Although metropolitan areas had high NO2 concentrations, rural areas, particularly in southern Germany,
had high O3 concentrations.

Furthermore, our ML models can be used to evaluate the effectiveness of mitigation policies. Near-surface
NO2 and O3 concentration changes during the 2020 COVID-19 lockdown period over Germany were indeed
reproduced by the GBT model, with meteorology-normalized near-surface NO2 having significantly decreased
(by 23± 5.3 %) and meteorology-normalized near-surface O3 having slightly increased (by 1± 4.6 %) over 10
major German metropolitan areas when compared to 2019. Finally, our O3 GBT model is highly transferable to
neighboring countries and locations where no measurements are available (R2

= 0.87–0.94), whereas our NO2
GBT model is moderately transferable (R2

= 0.32–0.64).
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1 Introduction

Air pollution is a major threat to human health and impacts
ecosystems (Bell et al., 2011; Lelieveld et al., 2015; Zhang
et al., 2019; Xie et al., 2019). Based on the source of the pol-
lution, air pollutants are classified as being primary (directly
emitted from anthropogenic or natural sources) or secondary
(formed through complex atmospheric chemical reactions).
Near-surface nitrogen oxide (NOx = NO+NO2) is a primary
air pollutant emitted largely by fossil-fuel-consuming sectors
such as vehicles, industries, and power plants, but there are
also natural sources such as lightning, soil emissions, and
biomass burning. Near-surface ozone (O3) is a secondary air
pollutant produced solely by the photolysis of NO2 (nitrogen
dioxide) in the presence of sunlight (Crutzen, 1988; Council,
1992).

Tropospheric NOx and O3 are chemically strongly cou-
pled via complex atmospheric chemical reactions (Jacob,
1999). The majority of NOx , from primary sources such as
fossil fuel combustion, is emitted in the form of nitric ox-
ide (NO), which rapidly converts to NO2 by reacting with
O3. In turn, O3 and NO are generated again by the photoly-
sis of NO2, thus forming a null cycle. Therefore, the amount
of sunlight present and the total concentration of NOx deter-
mine ozone production via this NOx null cycle. In addition,
the oxidation of volatile organic compounds (VOCs) can al-
ter the NO/NO2 ratio. The presence of the hydroxyl radical
(OH) initiates the VOC oxidation process, followed by the
formation of hydro- and organic peroxy radicals. These rad-
icals convert NO to NO2 and form additional O3, while also
converting HO2 back to OH, thus forming a catalytic cycle
known as the HOx catalytic cycle. However, ozone produc-
tion is nonlinear in relation to its precursors (NOx and VOC)
due to termination reactions that occur within the catalytic
cycle (Lin et al., 1988; Nussbaumer and Cohen, 2020; Pusede
and Cohen, 2012; Pusede et al., 2014). To that end, the re-
sponse of ozone production is categorized into three regimes,
namely NOx-saturated (high NOx with low VOC); NOx-
limited (low NOx with high VOC); and transitional (Sillman
et al., 1990; Sillman, 1999). In the NOx-saturated regime
(typically urban areas), ozone production is inversely pro-
portional to NOx concentration, whereas ozone production
is directly proportional to VOC concentration. However, in
NOx-limited regimes (typically rural areas), ozone produc-
tion is directly proportional to NOx concentration, whereas
VOCs have little effect on ozone production. This complex
ozone production vs. precursor emission response is also ev-
ident in real-time observations, such as urban weekend ozone
levels being higher than weekday levels (Sicard et al., 2020)
and high-ozone levels during public holidays and national
shutdowns (e.g., the COVID-19 lockdown), due to low NOx

emissions (Balamurugan et al., 2021, 2022b).
Chemical transport models (CTMs) are commonly used to

study air pollution and its drivers (Hu et al., 2016; Lou et al.,
2015), but these models are dependent on emissions as rep-

resented in emission inventories (Pisoni et al., 2018). Emis-
sion inventories are typically developed using the bottom-up
method, based on data such as economic activity, fuel con-
sumption, and traffic density (McDuffie et al., 2020; Osses
et al., 2022). However, bottom-up emission inventories can
be highly uncertain due to inaccuracies in the data used
in the bottom-up method, especially from unaccounted-for
sources (Chen et al., 2020; Crippa et al., 2019; Forstmaier
et al., 2023; Trombetti et al., 2018). Because of the signif-
icant computational effort and storage space requirements,
CTMs often perform at a coarse spatial resolution, making it
unable to solve fine transport and chemical mechanisms, par-
ticularly over complex topography (Singh et al., 2021). Ma-
chine learning (ML) models have been shown to be an effec-
tive complement to these computationally expensive CTMs
(Vlasenko et al., 2021). The performance of machine learn-
ing models for modeling air pollutants is promising (Balamu-
rugan et al., 2022a; Cheng et al., 2022; Lee et al., 2020; Li
et al., 2023; Liang et al., 2020; Liu et al., 2022; Zaini et al.,
2022; Zhao et al., 2023). Meteorological variables such as
solar radiation and temperature have been shown to be im-
portant parameters in near-surface ozone modeling using ma-
chine learning (Diao et al., 2021; Hu et al., 2021). Meteoro-
logical conditions influence the concentration of O3 both di-
rectly and indirectly. Solar UV radiation is responsible for the
photolysis of O3 precursors (NO2 and VOCs). Temperature
directly influences the photochemical reaction rate. Further-
more, meteorology influences biogenic and fuel-leak-related
VOC emissions (exponentially proportional to temperature),
which account for a significant portion of total VOC emis-
sions (Guenther et al., 1993). In addition to meteorology,
when the emission source information is included, ML mod-
els predict near-surface NO2 very well (Ghahremanloo et al.,
2021; De Hoogh et al., 2019).

In situ air quality measurements are sparse and concen-
trated primarily in urban areas. Recent advancements in
satellite remote sensing allow us to analyze urban and non-
urban air quality with adequate spatiotemporal coverage;
however, they typically only measure the total or tropo-
spheric column of specific air quality species, making it dif-
ficult to interpret people’s exposure to the near-surface air
pollutant concentration. Therefore, in this study, we trained
two ML models for near-surface NO2 and O3 concentra-
tions over Germany using available information on prox-
ies for near-surface air pollutants (satellite column measure-
ments) and emission sources, precursors of air pollutants, and
meteorology. Many recent studies, similar to ours, have at-
tempted to model near-surface NO2 and O3 concentrations
at national or regional scales (De Hoogh et al., 2019; Kang
et al., 2021; Kim et al., 2021; Li et al., 2020; Zhu et al.,
2022); there are, however, very few attempts over Germany.
To the best of the authors’ knowledge, only one study (Chan
et al., 2021) used the TROPOspheric Monitoring Instrument
(TROPOMI) satellite NO2 tropospheric column measure-
ments and other auxiliary information (e.g., meteorology) to
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model near-surface NO2 concentrations over Germany using
a multi-layer perceptron (MLP) model. Furthermore, previ-
ous studies have focused on a single pollutant (e.g., NO2),
whereas in this study, we model and analyze the spatiotem-
poral variations in both NO2 and O3, which are chemically
strongly coupled. In terms of anthropogenic emissions, we
also evaluate the ML model performance of NO2 and O3 dur-
ing the 2020 COVID-19 lockdown period, which serves as a
natural experiment period with significantly lower primary
anthropogenic emissions (Gensheimer et al., 2021).

2 Study region, data sets, model, and method

All data sets used in this study, and their spatial and temporal
resolutions, are summarized in Table 1.

2.1 Study region and near-surface NO2 and O3
measurements

We focused on the spatial domain of 5–15◦ E and 47–
55.5◦ N, particularly over Germany. Near-surface NO2 and
O3 data from measurement stations across Germany were
used in this study. However, not all measuring stations col-
lect data on both pollutants; there are fewer stations measur-
ing O3 than those measuring NO2. There were also temporal
gaps in the measurement data. Therefore, we only consid-
ered stations that had more than 80 % data coverage during
the study period. In the end, we considered 321 stations for
modeling NO2 and 256 stations for modeling O3. The se-
lected measurement stations are located throughout the en-
tire country and are situated in high-traffic, industrial, and
background locations (Fig. 1 and Table A1).

2.2 Predictor variables of ML model

Predictor variables or input features for the ML models in-
clude satellite column measurements of air pollutants and
meteorology and auxiliary data containing information on
the area of interest.

2.2.1 Satellite column measurements

Tropospheric column NO2, total column O3, and tropo-
spheric column formaldehyde (HCHO) data are used, which
are level-2 retrieval products from TROPOMI, which is
aboard the Sentinel-5P satellite. Sentinel-5P overpasses the
study area between 13:00 and 14:00 LST (local standard
time). The spatial resolution of TROPOMI data is 7km×
3.5km (increased to 5.5km× 3.5km after 6 August 2019).
We applied the data quality filtering described in the prod-
uct manual to each data product (S5P, 2022b, for NO2; S5P,
2022c, for O3; S5P, 2022a, for HCHO). Tropospheric col-
umn NO2 is used in the NO2 ML model because it can be
considered to be a proxy for near-surface NO2. Since NO2
is the precursor for O3, we also included the tropospheric

column NO2 in the O3 ML model. Because HCHO is an in-
termediate gas product of VOC oxidation, it can be used as a
proxy for VOC oxidation (Jin et al., 2017). Therefore, we in-
cluded tropospheric column HCHO in the O3 model. We also
considered the TROPOMI FNR (ratio of TROPOMI HCHO
and TROPOMI NO2) in the O3 ML model, which in previ-
ous studies has been shown to be a useful indicator of ozone
production regime (Jin et al., 2020; Wang et al., 2021). We
included total column O3 in the O3 ML model by considering
total column O3 as a proxy for near-surface O3.

2.2.2 Vegetation index

Normalized difference vegetation index (NDVI) and en-
hanced vegetation index (EVI) data were obtained from
MODIS (Moderate Resolution Imaging Spectroradiometer)
measurements aboard the Terra and Aqua satellites. We used
the MOD13A2 (16 d; 1 km) Vegetation Indices (VI) data
set, which contains NDVI and EVI data at 1 km spatial
resolution and 16 d temporal resolution. To generate daily
intervals, the NDVI and EVI data were linearly interpo-
lated. We considered these vegetation indexes in the O3 ML
model because vegetation contributes a considerable num-
ber of VOCs. We also considered these vegetation indexes in
the NO2 ML model as supplementary information to check
whether changes in vegetation cover have any implications
for changes in the NO2 concentration.

2.2.3 Meteorology

Meteorology has both direct and indirect effects (e.g., dis-
persion and photochemical reactions) on pollutant concen-
trations. Meteorological variables such as temperature (T ),
relative humidity (RH), wind speed (WS), and wind direc-
tion (WD) were obtained from the ERA5 reanalysis prod-
uct. These variables were derived from the lowest model
level (1000 hPa) of the ERA5 hourly data on pressure lev-
els data set. Downward UV solar radiation at the surface
(DUV), boundary layer height (BLH), surface pressure (SP),
and temperature of the air at 2 m above the surface (T2 m)
were derived from the ERA5 hourly data on single levels
data set. These meteorological data have a spatial resolution
of 0.25◦ and a temporal resolution of 1 h. In both the NO2
and O3 ML models, we took all meteorology variables into
account.

2.2.4 Proxy for NOx emission source

Because vehicle (transport sector) emissions are a significant
source of NOx emissions, considering a proxy for vehicle
emissions is crucial. Therefore, we used road density as a
proxy for the source of NOx emissions. We are aware that
traffic volume or density would be the ideal proxy, but data
on the traffic volume or density on a national or regional scale
are not available. The road density (RD) data were obtained
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Table 1. Data sets and related information used in this study.

Data source Data Temporal resolution Spatial resolution
(purpose)

Governmental in situ Near-surface NO2 and O3 1 h –
measurements (ground truth data)

TROPOMI satellite Tropospheric column NO2, Daily 7km× 3.5km
measurements total column O3 and total (5.5km× 3.5km,

column HCHO (input features) after 6 August 2019)

ERA5 (ECMWF Temperature, relative humidity, wind speed, wind direction, 1 h 0.25◦× 0.25◦

reanalysis) downwind UV solar radiation at surface, boundary layer,
height surface pressure, and temperature of air
at 2 m above the surface (input features)

U.S. Geological Surface elevation – 1km× 1km
Survey (input features)

GRIP global roads Road density – 8km× 8km
database (input features)

CAMS European air Near-surface NO2 and O3 1 h 0.1◦× 0.1◦

quality forecasts (for validation)

GEOS-Chem chemical Near-surface NO2 and O3 1 h 0.5◦× 0.625◦

transport model (for disentangling meteorology impacts)

Figure 1. Locations of near-surface NO2 (a) and O3 (b) measurement stations considered in this study. The color bar depicts the mean of
near-surface NO2 and O3 for each measurement station during the study period.

from the Global Roads Inventory Project (GRIP) database,
with a spatial resolution of 8 km.

2.2.5 Additional features

Additional supplementary data, such as surface elevation (E),
were obtained from the U.S. Geological Survey (USGS),
with a spatial resolution of 1 km. Surface elevation was taken
into account because it influences the tropospheric or to-
tal column value of measurements. We also considered the
DOW (day of the week) and season (season of the year)
information in both the NO2 and O3 models, since both
NO2 and O3 have distinct weekly and seasonal cycles. Be-

cause NO2 is an important precursor to O3, in addition to
TROPOMI NO2, we also included near-surface NO2 mod-
eled from the NO2 ML model as a feature variable in the O3
ML model.

2.3 Study period and data pre-processing

The study period was chosen to be between 30 April 2018
and 1 July 2021, which corresponds to the availability of
TROPOMI data retrievals with the same processing version.
Despite the fact that satellites pass over the study area be-
tween 13:00 and 14:00 LST, we found that the satellite data
represent the daily mean of air pollutants well. Therefore, we
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considered the daily 24 h mean for near-surface NO2 and the
daily maximum 8 h mean (i.e., the mean of the eight highest
hourly values during a day) for near-surface O3 as our vari-
ables of interest (dependent variables to model), as these are
commonly used metrics in air quality research (Hoffmann et
al., 2021).

Because each data set has a different spatiotemporal res-
olution, we resampled all of the data to the same spatial
(0.1◦× 0.1◦) and temporal (daily) resolution. The 0.1◦ (≈
10 km) resolution was chosen because it corresponds to the
resolution of the main features, such as road density (spa-
tial resolution of 8 km), TROPOMI satellite measurements
(spatial resolution of 7km× 3.5km), and concurrent high-
resolution (0.1◦) air quality forecasts from CAMS (Coperni-
cus Atmosphere Monitoring Service). We computed the daily
24 h mean for near-surface NO2 and the daily maximum 8 h
mean for near-surface O3 for each in situ measurement sta-
tion and then calculated the mean of all stations that fell
within the 0.1◦ grid. The mean of surface elevation, NDVI,
EVI, TROPOMI (NO2, HCHO, and O3), and road density
for each day were then calculated for the corresponding 0.1◦

grids. The surface elevation and road density were assumed
to be constant during the study period. The ERA5 meteo-
rology product was resampled to 0.1◦ resolution using the
nearest-neighbor method, and the 24 h mean was computed.

2.4 Machine learning model and evaluation strategies

We primarily used the gradient-boosted tree (GBT) machine
learning algorithm, XGBoost (Chen and Guestrin, 2016), to
model near-surface NO2 and O3 concentrations. The GBT al-
gorithm is a gradient-boosted decision-tree-based algorithm
that is expected to outperform deep-neural-network-based al-
gorithms for structured data (Lundberg et al., 2020). Further-
more, tree-based models are more interpretable and require
less time to train than deep neural network algorithms. How-
ever, for comparison, we also used the multi-layer percep-
tron (MLP; neural network) algorithm (Gardner and Dorling,
1998). The GBT and MLP algorithms were implemented
using scikit-learn, a Python module (https://scikit-learn.org/
stable/, last access: 10 March 2023). When training the MLP
model, we normalized the discrete feature variables between
0 and 1. The corresponding predictor variables and data flow
for the NO2 and O3 ML model is shown in Fig. 2.

To evaluate the ML model, we used the R2 (coefficient
of determination) and RMSE (root mean square error) met-
rics. We split the available data into training (70 % of the
data) and testing (the remaining 30 %). The training data set
was used to iteratively vary the hyperparameters (combina-
tions) and select the best set of hyperparameters using a 5-
fold CV (cross-validation). The hyperparameters used in this
study are shown in Tables A2 and A3. We also evaluated the
ML model using three different 5-fold CV testing strategies
(random 5-fold CV, time-leave-out 5-fold CV, and location-
leave-out 5-fold CV) with 100 % of the data (Meyer et al.,

2018). In the random 5-fold CV testing strategy, the data
were randomly split into five parts, four of which were used
for training and one for testing. This procedure was repeated
until all five parts had been used as test. The mean (and stan-
dard deviation) of R2 and RMSE from the 5-fold CV were
then computed. In the time-leave-out 5-fold CV testing strat-
egy, the 5-fold CV procedure was the same, but the data were
split based on time period (by date; i.e., from the start of
study period to the end of study period). Similarly, in the
location-leave-out 5-fold CV testing strategy, the data were
split based on location (by latitude). Figure A1 shows the first
1-fold step in a 5-fold CV for time-leave-out and location-
leave-out testing strategies. To interpret the importance of
feature variables in the fitted model, we use SHAP (SHap-
ley Additive exPlanations) values. The SHAP method (https:
//christophm.github.io/interpretable-ml-book/shap.html, last
access: 10 March 2023) is the most commonly used method
for interpreting ML model output, which calculates the con-
tribution of each feature variable to the final prediction. Thus,
higher SHAP values indicate greater feature importance.

2.5 CAMS model data

We obtained near-surface NO2 and O3 air quality forecasts
from CAMS in order to compare the performance of our
ML model to that of the chemical transport model. This data
set is based on a data assimilation technique that combines
real-time measurements with an ensemble of 11 air quality
models to provide air quality data with high spatial resolu-
tion (0.1◦) and 1 h temporal resolution over Europe; how-
ever, it is only available for 3 years in the rolling archive. We
used data from 17 July 2019 to 31 January 2020. We did not
use data after 31 January 2020 due to COVID-19 lockdown
restrictions, during which many anthropogenic emission ac-
tivities were limited, and CAMS had not adjusted the emis-
sion inventory for changes in emissions. This is because NO2
has a short lifetime, so the effect of assimilated observations
is minimal, and the CAMS-forecasted NO2 product mostly
reflects emissions prescribed in the inventory (Inness et al.,
2015).

2.6 GEOS-Chem model data

In this study, GEOS-Chem (Goddard Earth Observing Sys-
tem with Chemistry; hereafter GC) chemical transport model
simulations were used to normalize the meteorology effects
when estimating the influence of the COVID-19 lockdown
restrictions on air pollutant concentration changes. The GC
simulations over the study area were obtained with a spa-
tial resolution of 0.5◦× 0.625◦ and 1 h temporal resolution
for the 2020 strict COVID-19 lockdown period (21 March
to 31 May) and the same period in 2019. Identical anthro-
pogenic emissions from the 2014 Community Emissions
Data System (CEDS) inventory were used for both 2020 and
2019 but with the corresponding meteorology, natural, and
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Figure 2. Predictor variables and data flow for the NO2 (a) and O3 (b) ML model.

fire emissions in the respective years. Therefore, the differ-
ence in GC-simulated species (X) concentrations between
2020 and 2019 results from changes in meteorology, natural,
and fire emissions between 2020 and 2019 (GC X2020–2019);
here, X refers to either NO2 or O3. Then, we subtracted the
GC X2020–2019 from the observed near-surface X2020–2019 to
estimate the changes in the concentrations of species X due
to changes in anthropogenic emissions in the 2020 lockdown
period (refer to the studies of Balamurugan et al., 2021; Qu
et al., 2021, for detailed descriptions of the method).

3 Results

3.1 ML model evaluation and feature importance

The trained GBT model with 70 % of the data (78 433)
for NO2 reproduced the observed NO2 concentration well
in the test case (33615), with an R2 of 0.88 and RMSE
of 4.77 µgm−3 (Fig. 3a and Table 2). The random 5-fold
CV results were in the same range (R2

= 0.89± 0.002 and
RMSE= 4.65±0.034 µgm−3). The other two testing strate-
gies (time-leave-out 5-fold CV and location-leave-out 5-fold
CV) showed slightly worse agreement (Table 2), indicating
that different validation strategies should be performed to in-
terpret the ML model capability. Otherwise, it may result in
an overoptimistic view of ML models (Meyer et al., 2018).
Furthermore, the worse agreement in the location-leave-out
5-fold CV testing strategy suggests that there is less confi-
dence in modeling the near-surface NO2 over new locations
that the GBT model has not been trained on before. However,
these results outperformed the MLP model trained by another
study (Chan et al., 2021; R = 0.8 and RMSE= 6.32 µgm−3

obtained for the testing strategy of the random split of 90 %
of the data used for training and 10 % of the data used for
testing) for near-surface NO2 over Germany. Feature impor-
tance, based on the SHAP values, indicates that road den-
sity is the most important feature in the fitted model for NO2
(Fig. 3c) because traffic is the main source of near-surface

NOx in urban areas. The next most important features were
TROPOMI NO2, boundary layer height, and elevation. Be-
cause the majority of NOx sources are present at the surface,
tropospheric column NO2 data play an important role in ex-
plaining near-surface NO2. Near-surface NO2 typically has
a negative correlation with the boundary layer height, as an
increasing BLH disperses more, and vice versa (Balamuru-
gan et al., 2021). Therefore, BLH is one of the most impor-
tant features. It is unexpected that elevation was an important
feature. The cause could be that the surface elevation varies
greatly across Germany, influencing the total tropospheric
column of NO2 and thus serving as a link between the tro-
pospheric column of NO2 and near-surface NO2. A previous
study (Chan et al., 2021) also found that elevation was an im-
portant feature in the fitted MLP model for near-surface NO2
over Germany.

The GBT model trained with 70 % of the data (65 705) for
O3 also had a good representation of the observed O3 con-
centrations in the test case (28 160), with an R2 of 0.92 and
RMSE of 8.53 µgm−3 (Fig. 3b). Similar to the NO2 GBT
model findings, time-leave-out 5-fold CV and location-leave-
out 5-fold CV testing strategies showed less agreement than
the random 5-fold CV testing strategy (Table 2). In compar-
ison to our NO2 GBT model, our O3 GBT model demon-
strated greater confidence in modeling near-surface O3 over
locations that the model was not trained on. According to
SHAP values, the five most important features were DUV,
T , RH, BLH, and season, with DUV having the greatest in-
fluence (Fig. 3d). Because ozone is formed in the atmosphere
from the photolysis of NO2, DUV plays a significant role in
the fitted model that explains near-surface O3. Temperature
is the second most important feature, which is also not sur-
prising, as it drives biogenic VOC emissions (an important
precursor to O3). Previous studies also show similar find-
ings (Diao et al., 2021; Hu et al., 2021). GBT-modeled near-
surface NO2 was the sixth most important feature in the fitted
model, according to the SHAP values, and it was also more
important than TROPOMI NO2.
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Figure 3. Comparison between the ground truth and GBT-simulated near-surface NO2 (a) and O3 (b). The feature importance (top 10) is
calculated based on SHAP (SHapley Additive exPlanations) values for NO2 (c) and O3 (d) in the GBT model. RD is for road density, BLH
is for boundary layer height, E is for surface elevation, T is for temperature, DOW is for day of the week, RH is for relative humidity, T2 m
is for temperature at 2 m height, DUV is for downwind UV radiation, WS is for wind speed, and WD is for wind direction.

Table 2. Evaluation metrics of our GBT model in different testing strategies.

Random Random Time leave out Location leave out
(1-fold) (5-fold) (5-fold) (5-fold)

NO2 GBT model
R2 0.88 0.89± 0.002 0.74± 0.07 0.68± 0.12

RMSE (µgm−3) 4.77 4.65± 0.034 6.77± 0.7 8.67± 1

O3 GBT model
R2 0.92 0.92± 0.001 0.74± 0.09 0.8± 0.06

RMSE (µgm−3) 8.53 9.36± 0.068 13.2± 1.1 12.45± 1.3

Figure A2 shows the results obtained from the MLP
model. Both the NO2 and O3 MLP models performed
worse than the NO2 and O3 GBT models, respectively (Ta-
ble A4 vs. Table 2). In particular, the MLP model findings
showed poorer agreement in the time-leave-out 5-fold CV
and location-leave-out 5-fold CV testing strategies. This sup-
ports previous studies (Heaton, 2020; Lundberg et al., 2020)
and shows that the MLP model is unlikely to outperform

tree-based models for tabular data. Because the GBT model
outperforms the MLP model, we only considered the GBT
model results in the following.

It is important to note that deep learning models are data
intensive, and their performance and generalization capabili-
ties tend to improve with larger amounts of data. In our study,
we utilized the simplest deep learning algorithm known as
MLP. However, it is essential to explore the capabilities of
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other deep learning algorithms, such as the CNN (convo-
lutional neural network) and LSTM (long short-term mem-
ory), in future studies to gain further insight. Additionally,
employing multiple ML models through bagging techniques
could potentially lead to improved performance, despite the
computational expense involved (He et al., 2022).

3.2 GBT model performance compared to CAMS

To evaluate how well our GBT model performs compared to
CAMS, we compared the high-resolution near-surface NO2
and O3 forecasts from CAMS with observations and GBT-
simulated near-surface NO2 and O3 with observations for
the period between 17 July 2019 and 31 January 2020 (i.e.,
CAMS comparison period; Fig. 4). Please note this time pe-
riod was not used for training the GBT model for this com-
parison. Our NO2 GBT model reproduced the observed near-
surface NO2 concentrations well during this comparison pe-
riod, with an R2 of 0.82 and RMSE of 5.76 µgm−3, while
CAMS NO2 forecasts showed poor representation (R2

=

0.37 and RMSE= 14.96 µgm−3). However, CAMS O3 fore-
casts agreed slightly better with the observed concentrations
(R2
= 0.93 and RMSE of 9.2 µgm−3) when compared to our

O3 GBT model (R2
= 0.85 and RMSE= 13 µgm−3). Our

NO2 GBT model outperforms CAMS due to the fact that the
effect of the data assimilation on the CAMS NO2 forecast
product is minimal, with CAMS simulations mostly reflect-
ing the emissions provided in the inventory. Additionally, it
should be noted that our GBT model requires less computa-
tional effort than the CAMS model.

3.3 Spatiotemporal changes in near-surface NO2 and
O3 over the study domain

After the discussed model evaluation, we trained the GBT
model using 100 % of the data and modeled the near-surface
NO2 and O3 concentrations over the study domain at 0.1◦

resolution and daily (24 h mean for NO2 and 8 h maximum
mean for O3) intervals. The averaged GBT-modeled near-
surface NO2 concentrations over the study domain during
the study period are shown in Fig. 5a. The spatial variabil-
ity in the near-surface NO2 correlates with Germany’s pop-
ulation density, and the main hotspots correspond to Ger-
many’s major metropolitan areas (Fig. A3). The study do-
main’s main hotspot is western Germany (North Rhine-
Westphalia; a federal state of Germany), which is Ger-
many’s industrial heartland. The number of days (%) that
exceeded the 2021 World Health Organization (WHO) NO2
limit (24h mean > 25µgm−3) over major metropolitan ar-
eas in Germany was more than 50 %, with western Germany
(North Rhine-Westphalia) experiencing the most days of ex-
ceedance during the study period (Fig. 7). Around 36 % of
people live in locations where more than 25 % of the days
exceed the WHO NO2 limit during the study period (Fig. 8).
The GBT-simulated near-surface O3 showed a distinct spa-

tial variability compared to NO2, with high O3 concentra-
tions over southern Germany and low O3 concentrations over
northern Germany (Fig. 6). This could be due to the fact that
O3 is a secondary pollutant that is primarily driven by pho-
tochemical reactions influenced by meteorology, DUV, and
temperature values, which were the factors with the most
influence on photochemical reactions; accordingly, the most
important features fitted in the O3 GBT model were higher
in southern Germany than northern Germany (Fig. A4). Dur-
ing the study period, more than 50 % of the study days in
southern Germany exceeded the 2021 WHO O3 limit (maxi-
mum 8h mean > 100µgm−3). Nearly 90 % of people live in
locations where more than 25 % of the study days exceed the
WHO O3 limit (Fig. 8). Another interesting fact is that south-
ern metropolitan areas and high NOx regions have fewer days
that exceeded the WHO O3 limit than southern rural regions
(Fig. 7). It is a well-known fact that rural regions have higher
ozone levels than urban regions (Malashock et al., 2022). It
could be because NO is a significant O3 scavenger in higher
NOx (NO2 is a proxy for NOx) regions or because NO is in a
NOx-saturated regime. Furthermore, it is due to the fact that
rural regions are the downwind locations of emission plumes
and are the primary source of biogenic VOC emissions (Zong
et al., 2018).

We also evaluated the model’s capability to capture the ex-
ceedance events (above the WHO limit) using time-leave-out
evaluation strategy. The exceedances of NO2 and O3 events
simulated by the GBT model were compared with ground
truth events in each iteration. This allows us to assess the
model’s ability to reproduce the exceedance events that have
not been used in the training process. In total, 82 % of the
WHO NO2 and O3 exceedance events in the whole data set
(ground truth) were correctly identified as WHO NO2 and
O3 exceedance events (true positives) in both the NO2 and
O3 GBT models (Table A5). This indicates that our GBT
model might slightly underestimates the exceedance events
for both NO2 and O3. It could be due to unknown drivers
that are not included in the model. However, we also noted
that 6.6 % and 7.3 % of the data were incorrectly identified as
exceedance events (false positives) by our NO2 and O3 GBT
models, respectively.

The GBT-simulated near-surface NO2 showed seasonal
variations, as expected, with higher values in the winter sea-
son (Fig. 5). This is because of the high residential heat-
ing demand and favorable meteorology (e.g., a low bound-
ary layer height) for pollutant accumulation and less NO2
photolysis due to low solar radiation in the winter. The near-
surface NO2 hotspots were the same in all seasons, as seen
in the overall study period average. In contrast, near-surface
O3 showed strong seasonal variations, with high values in the
spring and summer due to high solar radiation (Fig. 6). It is
worth noting that, as seen in the overall study period average,
O3 values in southern Germany were significantly higher in
spring and summer than in northern Germany. Because near-
surface O3 is mainly driven by meteorology (DUV and tem-
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Figure 4. The top panels show the comparison between ground truth near-surface NO2 and CAMS forecasts of near-surface NO2 (a) and O3
(b) for the period between 17 July 2019 and 31 January 2020. The bottom panels show the comparison between ground truth near-surface
NO2 and GBT-simulated near-surface NO2 (c) and O3 (d) values for the period between 17 July 2019 and 31 January 2020. The dotted line
represents a 1 : 1 line, while the solid line represents a linear fit.

Figure 5. (a) Averaged GBT-simulated daily near-surface NO2 concentrations over the study domain for the study period between 30 April
2018 and 1 July 2021. (b–e) Averaged GBT-simulated daily near-surface NO2 concentrations for each season during the study period. Winter
comprises the months of December, January, and February. Spring comprises the months of March, April, and May. Summer comprises the
months of June, July, and August. Autumn comprises the months of September, October, and November.

perature, which drive photochemical reactions and precur-
sor emissions), the spatiotemporal variability is attributed to
changes in meteorology. We also compared the spatial vari-
ability in the GBT-simulated near-surface NO2 and O3 to
the CAMS forecasts product for the period between 17 July

2019 and 31 January 2020 (Figs. A5 and A6). The spatial
variability in the GBT-simulated near-surface NO2 and O3
agreed well with the CAMS model. This implies that the ML
model can supplement or replace the computationally expen-
sive chemical transport models.

https://doi.org/10.5194/acp-23-10267-2023 Atmos. Chem. Phys., 23, 10267–10285, 2023



10276 V. Balamurugan et al.: Spatiotemporal modeling of air pollutant concentrations in Germany

Figure 6. (a) Averaged GBT-simulated daily near-surface O3 concentrations over the study domain for the study period between 30 April
2018 and 1 July 2021. (b–e) Averaged GBT-simulated daily near-surface O3 concentrations for each season during the study period. Winter
comprises the months of December, January, and February. Spring comprises the months of March, April, and May. Summer comprises the
months of June, July, and August. Autumn comprises the months of September, October, and November.

Figure 7. Number of days (%) that exceeded the WHO 24 h mean NO2 (a) and maximum 8 h mean O3 (b) limits over the study domain
during the study period based on GBT model simulations. White circles represent major metropolitan areas. The metropolitan area of Munich
and its surroundings (rectangular box) are enlarged to illustrate the urban vs. rural gradient. The administrative boundaries of Munich are
marked in black in the insets.

3.4 Influence of COVID-19 lockdown restrictions on
near-surface NO2 and O3 changes

Due to the COVID-19 outbreak, many nations, including
Germany, announced a lockdown in the spring of 2020. Dur-

ing that time period, various anthropogenic emission ac-
tivities were restricted, particularly affecting traffic-related
emissions. To estimate the influence of the lockdown restric-
tions on air pollutant concentration changes, we compared
the GBT-simulated 2020 lockdown concentration with the
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Figure 8. The population distribution in terms of the number of days (%) that exceeded the WHO 24 h mean NO2 (a) and maximum 8 h
mean O3 (b) limits over the study domain during the study period based on GBT model simulations.

same period in 2019. The 2020 lockdown period measure-
ments were not used for GBT model training in this compar-
ison. This can also be regarded as the critical performance
evaluation of the GBT model.

When comparing different time periods, it is crucial to
normalize the meteorology effects when estimating the im-
pact of anthropogenic emission reductions (i.e., lockdown
effects) on changes in air pollutant concentrations. There-
fore, as described in Sect. 2, we used GC simulations to
normalize the meteorology effects from GBT-simulated con-
centrations. After normalizing the meteorology effects, it
is noticeable that high near-surface NO2 levels decreased
primarily over the previously observed hotspots (Fig. 9).
The near-surface O3 increased over western Germany, while
decreasing elsewhere, particularly over low NOx regions.
We already observed that western Germany was a NOx

hotspot, possibly due to being a NOx-saturated regime, so
a reduction in NOx increases ozone. Also, we could see
that changes in near-surface O3 were either negligible or
slightly increased over metropolitan areas. The meteorology-
normalized mean lockdown near-surface NO2 decreased
by about 23 % (± 5.3 %), while the meteorology-normalized
mean lockdown near-surface O3 increased by 1 % (± 4.6 %),
over 10 major metropolitan areas (Berlin, Bremen, Cologne,
Dresden, Düsseldorf, Frankfurt, Hamburg, Hanover, Mu-
nich, and Stuttgart) when compared to 2019. It increased
by about 9 % in the Cologne and Düsseldorf metropoli-
tan areas (located in western Germany) and slightly in-
creased or decreased (between −3 % and +2 %) in other
metropolitan areas when compared to 2019. This finding is
consistent with other studies that found a decrease in the
meteorology-normalized lockdown near-surface NO2 and
the small increase in the lockdown near-surface O3 over Ger-
man metropolitan areas when compared to 2019, using in
situ measurements (Balamurugan et al., 2021, 2022b). We
also evaluated our GBT model’s ability to represent differ-
ent emission scenarios by comparing weekends and week-

days; typically, anthropogenic NOx emissions on weekends
are lower than on weekdays due to reduced vehicle trans-
portation. Our GBT model was also able to distinguish be-
tween the weekend and weekday emission scenarios; week-
end near-surface NO2 was lower than weekday near-surface
NO2, and as expected, there were no or only slight changes
in weekend near-surface O3 when compared to weekdays,
with slight increases particularly over metropolitan areas
(Fig. A7).

3.5 Transferability of our GBT model

Although our study domain also covered parts of other Euro-
pean countries, we trained our GBT model using data from
German measurement stations only. Therefore, comparing
our trained GBT model simulations with measurements in
other countries demonstrates how well our GBT model can
model near-surface NO2 and O3 concentrations in neighbor-
ing parts of the world (similar to the location-leave-out test-
ing strategy). We chose five major cities (Salzburg, Prague,
Strasbourg, Liège, and Groningen) in different European
countries covered by our study domain and compared their
measured NO2 and O3 concentrations with GBT-modeled
NO2 and O3 concentrations (Fig. 10 and Table A6).

Our trained NO2 GBT model based on German mea-
surement stations explained 32 %–64 % (R2 ranges between
0.32 and 0.64; RMSE ranges between 9.76 and 13 µgm−3)
of the near-surface NO2 measured in five metropolitan ar-
eas located outside of Germany, while the O3 GBT model
simulations agreed well with the observations (R2 ranges
between 0.87 and 0.94; RMSE ranges between 9.55 and
14.32 µgm−3). Since near-surface O3 is mainly driven by
meteorology, the O3 GBT model trained using German mea-
surement stations explains a large portion of near-surface O3
in other locations. The worse agreement between the NO2
GBT model predictions and NO2 observations in other Eu-
ropean countries suggests that information is lacking in the
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Figure 9. Absolute changes in GBT-simulated near-surface NO2 and O3 concentrations in 2020 lockdown period compared to the same
period in 2019 after meteorology normalization.

Figure 10. Comparison between ground truth and GBT-simulated near-surface NO2 (a) and O3 (b) for five different European metropolitan
areas.

NO2 GBT model to enable better representations of other lo-
cations, similar to location-leave-out 5-fold CV, which also
showed poorer agreement for the NO2 GBT model when
modeling new locations (Table 2). Differences in the vehi-
cle fleet composition and emission standards across different
countries and locations would have an impact on our NO2
GBT model predictions when applied to other countries or
locations. In future work, other features and proxies besides
road density could be considered to represent traffic emis-
sion.

4 Conclusion

This study simulated near-surface NO2 and O3 concentra-
tions using an ML model over Germany at 0.1◦ resolution
and daily intervals. The ML model was used to link satel-
lite column measurements (proxies for near-surface air pol-
lutants), meteorology, and proxies for emission source in-
formation to near-surface NO2 and O3 concentrations. The
ML models are extremely effective at learning the complex

nonlinear relationships between variables. Therefore, in this
study, we explored the capabilities of the ML models with
respect to the spatiotemporal prediction of air pollutants. In
addition, we investigated three aspects of the ML model,
namely (1) how well our ML model performs compared to
the chemical transport model, (2) how well our ML model
can be used to assess the effectiveness of mitigation initia-
tives, and (3) how well our ML model can be transferred to
locations where measurements are unavailable.

The following four different testing strategies were per-
formed to evaluate the ML model’s spatiotemporal predic-
tions: (1) random split of data (70 % for training and 30 % for
testing); (2) random 5-fold CV; (3) time-leave-out 5-fold CV;
and (4) location-leave-out 5-fold CV. The gradient-boosted
tree (GBT) model trained for NO2 explained about 68 %–
88 % of the observed NO2 concentrations in Germany, with
RMSE values of 4.77–8.67 µgm−3, whereas the GBT model
trained for O3 performed even better, with an R2 of 0.74–
0.92 and RMSE of 8.53–13.2 µgm−3. The evaluation met-
rics of the GBT model for different testing strategies differed
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significantly. This points out the importance of performing
different testing strategies to interpret the true capability of
the ML model. The road NOx emission source proxy (road
density) and TROPOMI tropospheric column NO2 were the
most important features in the fitted NO2 GBT model. For
O3, the most important features were downward UV radia-
tion at the surface and temperature. Since the multi-layer per-
ceptron (MLP) model performed worse than the GBT model,
the latter was used in further investigations in our study.

We also showed that our NO2 GBT model outperforms
the CAMS model, while slightly underperforming for near-
surface O3. The CAMS model forecast data set uses real-
time observations with an ensemble of 11 air-quality mod-
els through data assimilation techniques, which are expected
to be more computationally expensive than our GBT model.
Therefore, the spatiotemporal variability in the near-surface
NO2 and O3 concentrations and human exposure at a lo-
cations where no measurements are available can be stud-
ied with lower computational effort when using our GBT
model. Near-surface NO2 hotspots were found over German
metropolitan areas, particularly in western Germany. The
near-surface NO2 hotspot locations did not change with the
seasons but had high values in the winter. However, near-
surface O3 showed high seasonal variability, with high val-
ues in the spring and summer and no definite hotspots. Over-
all, southern Germany experiences higher ozone levels than
northern Germany due to higher downward UV radiation
and temperatures in southern Germany compared to north-
ern Germany. Even though metropolitan areas were the NO2
hotspots, rural regions, particularly in southern Germany, had
higher O3 concentrations than metropolitan areas. It is be-
cause rural areas are dominated by meteorology-driven bio-
genic VOC emissions and are generally situated downwind
of the emission plume. About 36 % of people live in loca-
tions where the WHO NO2 limit exceeds more than 25 % of
the days during the study period. Meanwhile, 90 % of people
live in areas where the WHO O3 limit is exceeded for more
than 25 % of the study days.

Our study also demonstrated the GBT model’s capabil-
ity to assess the efficacy of mitigation strategies. For ex-
ample, our GBT model reproduced the observations that,
during the 2020 COVID-19 lockdown period, meteorology-
normalized near-surface NO2 was significantly reduced,
while meteorology-normalized near-surface O3 was slightly
increased or decreased over metropolitan and industrial ar-
eas over Germany when compared to 2019. These findings
agreed with those of other studies that used in situ measure-
ments.

Our GBT ML model’s transferability is assessed by com-
paring simulations from our GBT model trained with mea-
surements in Germany to measurements in other European
countries. Our NO2 GBT model showed moderate agree-
ment with observations from other countries (R2 ranges
between 0.32 and 0.64, and RMSE ranges between 9.76
and 13 µgm−3), implying a lack of information in the GBT

model when modeling near-surface NO2 over other coun-
tries, which may have different vehicle fleet composition
and emissions standards. However, our O3 GBT model per-
formed well (R2 ranges between 0.87 and 0.94, and RMSE
ranges between 9.55 and 14.32 µgm−3), indicating that our
O3 GBT model can be used to model the O3 concentrations
in other countries, at least in neighboring European countries.

Appendix A

Table A1. Different types of stations (%) considered in this
study (based on locations specified by the European Environment
Agency).

Traffic Industrial Background

Near-surface NO2 37.1 % 5.3 % 57.6 %
Near-surface O3 2.7 % 5.8 % 91.4 %

Table A2. The hyperparameters of the GBT model for each pollu-
tant used in the study.

Hyperparameters NO2 model O3 model

Max_depth 10 10
Learning_rate 0.3 0.3
reg_lambda 12 4
reg_alpha 18 26
gamma 20 8
min_child_weight 16 8
n_estimators 2500 2500

Table A3. The hyperparameters of the MLP model for each pollu-
tant used in the study.

Hyperparameters NO2 model O3 model

Hidden_layers 3 4
(neurons in each layer) (200,100,50) (350,150,75,37)
activation Tanh Tanh
alpha 0.04 0.1
learning rate Adaptive Adaptive
solver SGD L-BFGS
Max_iter 2000 1500

L-BFGS is the limited-memory Broyden–Fletcher–Goldfarb–Shanno. SGD is the
stochastic gradient descent.
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Table A4. Evaluation metrics of our MLP model in different testing strategies.

Random Random Time leave out Location leave out
(70 %/30 %) (5-fold) (5-fold) (5-fold)

NO2 MLP model
R2 0.79 0.82± 0.006 0.54± 0.29 0.46± 0.25

RMSE (µgm−3) 4.77 5.9± 0.11 8.6± 1.76 13.2± 1.07

O3 MLP model
R2 0.83 0.9± 0.001 0.42± 0.37 0.71± 0.13

RMSE (µgm−3) 12.15 9.6± 0.027 20.1± 7.3 14.9± 3.2

Table A5. Comparison between the WHO NO2 and O3 exceedance events in the ground truth data set and GBT-simulated WHO NO2 and
O3 exceedance events using time-leave-out testing strategy.

Ground truth Correct detection as exceedance Correct detection as exceedance
exceedance by NO2 GBT model by O3 GBT model

(true positives) (false positives)

Near-surface NO2 36 772 30 125 7439
Near-surface O3 35 860 29 396 6924

Table A6. Metropolitan areas in other European cities considered for the evaluation of GBT model. The evaluation metrics (comparison
between GBT simulations and in situ measurements) for NO2 and O3 shown in last two columns for each city.

Metropolitan area (country) Coordinates R2 and RMSE R2 and RMSE
(µgm−3) for NO2 (µgm−3) for O3

Salzburg (Austria) 47.80◦ N, 13.05◦ E 0.32 and 12.52 0.87 and 12.43
Prague (Czech Republic) 50.07◦ N, 14.43◦ E 0.43 and 10.05 0.79 and 14.32
Strasbourg (France) 48.57◦ N, 7.75◦ E 0.47 and 13 0.94 and 9.55
Liège (Belgium) 50.63◦ N, 5.56◦ E 0.64 and 11.9 0.88 and 12.04
Groningen (Netherlands) 53.21◦ N, 6.56◦ E 0.34 and 9.76 0.87 and 11.33

Figure A1. A first 1-fold step in 5-fold CV is illustrated for time-leave-out (a) and location-leave-out (b) testing strategies. In time-leave-out
5-fold CV, the data were divided into five parts based on the time period (date-wise), with four parts used for training and one part being
tested. This process is repeated until each part (a total of five) has been tested. Similarly, in location-leave-out 5-fold CV, the data were
divided into five parts based on location (latitude), with four parts used for training and one part being tested. This process is repeated until
each part (a total of five) has been tested.
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Figure A2. Comparison between ground truth and MLP-simulated near-surface NO2 (a) and O3 (b). The dotted line represents a 1 : 1 line,
while the solid line represents a linear fit.

Figure A3. Population density for the year 2020 (a) and the locations of major German metropolitan areas (b).

Figure A4. Averaged downward UV radiation at the surface (a) and temperature (b) over the study domain during the study period.
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Figure A5. Averaged GBT-simulated near-surface NO2 concentrations (a) and CAMS forecast near-surface NO2 concentrations (b) over
the study domain for the period between 17 July 2019 and 31 January 2020.

Figure A6. Averaged GBT-simulated near-surface O3 concentrations (a) and CAMS forecast near-surface O3 concentrations (b) over the
study domain for the period between 17 July 2019 and 31 January 2020.

Figure A7. The difference in GBT-simulated near-surface NO2 (a) and O3 (b) concentrations between weekends and weekdays during the
study period.
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V., Proietti, C., Coulibaly, F., and De Marco, A.:
Ozone weekend effect in cities: Deep insights for ur-
ban air pollution control, Environ. Res., 191, 110193,
https://doi.org/10.1016/j.envres.2020.110193, 2020.

Sillman, S.: The relation between ozone, NOx and hydrocarbons
in urban and polluted rural environments, Atmos. Environ., 33,
1821–1845, 1999.

Sillman, S., Logan, J. A., and Wofsy, S. C.: The sensitivity of ozone
to nitrogen oxides and hydrocarbons in regional ozone episodes,
J. Geophys. Res.-Atmos., 95, 1837–1851, 1990.

Singh, J., Singh, N., Ojha, N., Sharma, A., Pozzer, A., Kiran Ku-
mar, N., Rajeev, K., Gunthe, S. S., and Kotamarthi, V. R.: Ef-
fects of spatial resolution on WRF v3.8.1 simulated meteorology
over the central Himalaya, Geosci. Model Dev., 14, 1427–1443,
https://doi.org/10.5194/gmd-14-1427-2021, 2021.

Trombetti, M., Thunis, P., Bessagnet, B., Clappier, A., Couvidat, F.,
Guevara, M., Kuenen, J., and López-Aparicio, S.: Spatial inter-
comparison of Top-down emission inventories in European urban
areas, Atmos. Environ., 173, 142–156, 2018.

Vlasenko, A., Matthias, V., and Callies, U.: Simulation of chem-
ical transport model estimates by means of a neural net-
work using meteorological data, Atmos. Environ., 254, 118236,
https://doi.org/10.1016/j.atmosenv.2021.118236, 2021.

Wang, W., van der A, R., Ding, J., van Weele, M., and Cheng,
T.: Spatial and temporal changes of the ozone sensitivity in
China based on satellite and ground-based observations, At-
mos. Chem. Phys., 21, 7253–7269, https://doi.org/10.5194/acp-
21-7253-2021, 2021.

Xie, X., Wang, T., Yue, X., Li, S., Zhuang, B., Wang, M., and Yang,
X.: Numerical modeling of ozone damage to plants and its effects
on atmospheric CO2 in China, Atmos. Environ., 217, 116970,
https://doi.org/10.1016/j.atmosenv.2019.116970, 2019.

Zaini, N., Ean, L. W., Ahmed, A. N., Abdul Malek, M., and
Chow, M. F.: PM2.5 forecasting for an urban area based on deep
learning and decomposition method, Sci. Rep.-UK, 12, 17565,
https://doi.org/10.1038/s41598-022-21769-1, 2022.

Zhang, J., Chen, Q., Wang, Q., Ding, Z., Sun, H., and Xu, Y.: The
acute health effects of ozone and PM2.5 on daily cardiovascu-
lar disease mortality: A multi-center time series study in China,
Ecotox. Environ. Safe., 174, 218–223, 2019.

Zhao, Z., Wu, J., Cai, F., Zhang, S., and Wang, Y.-G.: A hybrid
deep learning framework for air quality prediction with spatial
autocorrelation during the COVID-19 pandemic, Sci. Rep.-UK,
13, 1015, 2023.

Zhu, Q., Bi, J., Liu, X., Li, S., Wang, W., Zhao, Y., and Liu, Y.:
Satellite-Based Long-Term Spatiotemporal Patterns of Surface
Ozone Concentrations in China: 2005–2019, Environ. Health
Persp., 130, 027004, https://doi.org/10.1289/EHP9406, 2022.

Zong, R., Yang, X., Wen, L., Xu, C., Zhu, Y., Chen, T., Yao, L.,
Wang, L., Zhang, J., Yang, L., Wang, X., Shao, M., Tong, Z.,
Xue, L., and Wang, W.: Strong ozone production at a rural site
in the North China Plain: Mixed effects of urban plumesand bio-
genic emissions, J. Environ. Sci., 71, 261–270, 2018.

https://doi.org/10.5194/acp-23-10267-2023 Atmos. Chem. Phys., 23, 10267–10285, 2023

https://doi.org/10.5194/essd-14-1359-2022
https://doi.org/10.5194/essd-14-1359-2022
https://doi.org/10.5194/acp-12-8323-2012
https://doi.org/10.5194/acp-14-3373-2014
https://doi.org/10.5194/acp-14-3373-2014
https://doi.org/10.1029/2021GL092783
https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-Formaldehyde-Readme.pdf
https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-Formaldehyde-Readme.pdf
https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-Formaldehyde-Readme.pdf
https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Nitrogen-Dioxide-Level-2-Product-Readme-File
https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Nitrogen-Dioxide-Level-2-Product-Readme-File
https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Nitrogen-Dioxide-Level-2-Product-Readme-File
https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-Readme-OFFL-Total-Ozone.pdf
https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-Readme-OFFL-Total-Ozone.pdf
https://doi.org/10.1016/j.envres.2020.110193
https://doi.org/10.5194/gmd-14-1427-2021
https://doi.org/10.1016/j.atmosenv.2021.118236
https://doi.org/10.5194/acp-21-7253-2021
https://doi.org/10.5194/acp-21-7253-2021
https://doi.org/10.1016/j.atmosenv.2019.116970
https://doi.org/10.1038/s41598-022-21769-1
https://doi.org/10.1289/EHP9406

	Abstract
	Introduction
	Study region, data sets, model, and method
	Study region and near-surface NO2 and O3 measurements
	Predictor variables of ML model
	Satellite column measurements
	Vegetation index
	Meteorology
	Proxy for NOx emission source
	Additional features

	Study period and data pre-processing
	Machine learning model and evaluation strategies
	CAMS model data
	GEOS-Chem model data

	Results
	ML model evaluation and feature importance
	GBT model performance compared to CAMS
	Spatiotemporal changes in near-surface NO2 and O3 over the study domain
	Influence of COVID-19 lockdown restrictions on near-surface NO2 and O3 changes
	Transferability of our GBT model

	Conclusion
	Appendix A
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

