Supplement of
Arctic spring and summertime aerosol optical depth baseline from longterm observations and model reanalyses - Part 1: Climatology and trend

Peng Xian et al.
Correspondence to: Peng Xian (peng.xian@nrlmry.navy.mil)

The copyright of individual parts of the supplement might differ from the article licence.

Discussion of Table 1 in terms of difference between FMF vs. SMF and arithmetic vs geometric statistics:

The CM AODs of Table 1 tend to be substantially higher than the values reported in AboelFetouh et al. (2020) for common sites of Barrow, Resolute Bay, Thule and Hornsund (MAM and JJA arithmetic averages of 0.031 and 0.016 vs $\sim$ geometric means of 0.02 and 0.002 respectively). Part of the reason for this is the difference between their SMF approach and our FMF approach (as per the next paragraph, our FMFs transform to larger SMFs) and the fact that they used geometric means as opposed to our arithmetic means. If we employ the average FMF to SMF (SDA to Aboel-Fetouh et al. change in FMF) we obtain a CM AOD decrease (averaged over the 4 common sites) of 0.012 and 0.015 for the MAM and JJA periods. If we employ the arithmetic to geometric statistics transformations given in Hesaraki et al. (2017) we obtain a mean reduction in our CM AOD of 0.012 and 0.008 for MAM and JJA respectively (again averaged over the four common sites). These substantial reductions in CM AOD would produce CM AOD values that were $\sim$ those in Aboel-Fetouh et al. (2020). The associated changes in FM AOD would be significantly less important in a relative sense. The reanalysis results of Table 1 would, of course, be subject to the same types of FMF to SMF and arithmetic to geometric transformations as the data.

Table S1. Geographical coordinates of AERONET sites used in this study, and seasonal mean total, FM and CM AOD at 550nm derived with SDA for MAM and JJA based on 2003-2019 daily data, in comparison with Table 1, in which 6-hrly data is used. " $n$ " represents the number of daily AERONET data.

| sites | latitude | longitude | elevation (m) | region | MAM (mean\|median|std) |  |  |  | MAM FMF |  | JJA (mean\|median|std) |  |  |  | JJA FMF |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | total AOD | FM AOD | CM AOD | n | mea | dian | total AOD | FM AOD | CM AOD | n | mean\|m | n |
| Hornsund | 77.0 N | 15.6 E | 12 | Svalbard | 0.10\|0.09|0.05 | 0.07\|0.06|0.04 | 0.03\|0.02|0.03 | 215 | 0.72 | 0.76 | 0.08\|0.06|0.07 | 0.06\|0.04|0.07 | 0.02\|0.01|0.02 | 302 | 0.76 | 0.81 |
| Thule | 76.5 N | 68.8 W | 225 | Greenland | 0.09\|0.07|0.05 | 0.06\|0.06|0.03 | 0.03\|0.01|0.04 | 324 | 0.76 | 0.81 | 0.07\|0.05|0.08 | 0.06\|0.04|0.08 | 0.01\|0.01|0.02 | 464 | 0.85 | 0.87 |
| Kangerlussuaq | 67.0 N | 50.6W | 320 | Greenland | 0.07\|0.06|0.03 | 0.05\|0.04|0.02 | 0.02\|0.02|0.02 | 295 | 0.69 | 0.72 | 0.07\|0.05|0.05 | 0.05\|0.04|0.04 | 0.01\|0.01|0.02 | 476 | 0.77 | 0.82 |
| Ittoqqortoormiit | 70.5 N | 21.0W | 68 | Greenland | 0.06\|0.06|0.03 | 0.04\|0.04|0.02 | 0.02\|0.01|0.03 | 193 | 0.72 | 0.78 | 0.06\|0.04|0.04 | 0.05\|0.03|0.04 | 0.01\|0.01|0.02 | 369 | 0.80 | 0.84 |
| Andenes | 69.3 N | 16.0 E | 379 | Norway | 0.09\|0.07|0.06 | 0.05\|0.04|0.04 | 0.03\|0.02|0.04 | 226 | 0.67 | 0.72 | 0.08\|0.06|0.05 | 0.06\|0.05|0.05 | 0.02\|0.01|0.02 | 331 | 0.75 | 0.79 |
| Resolute_Bay | 74.7 N | 94.9W | 35 | Canada | 0.10\|0.09|0.05 | 0.07\|0.06|0.03 | 0.03\|0.02|0.03 | 173 | 0.72 | 0.74 | 0.07\|0.05|0.09 | 0.06\|0.04|0.09 | 0.02\|0.01|0.02 | 371 | 0.78 | 0.83 |
| Barrow | 71.3 N | 156.7W | 8 | Alaska | 0.12\|0.09|0.10 | 0.08\|0.06|0.07 | 0.04\|0.02|0.06 | 158 | 0.69 | 0.74 | 0.09\|0.06|0.09 | 0.07\|0.05|0.09 | 0.02\|0.01|0.02 | 335 | 0.79 | 0.82 |
| Bonanza_Creek | 64.7 N | 148.3W | 353 | Alaska | 0.11\|0.07|0.09 | 0.06\|0.04|0.07 | 0.04\|0.02|0.04 | 297 | 0.64 | 0.65 | 0.18\|0.09|0.27 | 0.16\|0.06|0.26 | 0.02\|0.02|0.02 | 445 | 0.78 | 0.82 |
| Tiksi | 71.6 N | 129.0E | 17 | Siberia | 0.09\|0.10|0.03 | 0.07\|0.07|0.02 | 0.03\|0.02|0.02 | 13 | 0.73 | 0.78 | 0.13\|0.08|0.19 | 0.11\|0.07|0.18 | 0.02\|0.01|0.02 | 139 | 0.81 | 0.85 |
| Yakutsk | 61.7 N | 129.4E | 119 | Siberia | 0.15\|0.11|0.15 | 0.11\|0.08|0.13 | 0.04\|0.02|0.06 | 517 | 0.73 | 0.77 | 0.17\|0.09|0.23 | 0.14\|0.07|0.23 | 0.02\|0.01|0.03 | 748 | 0.81 | 0.84 |



Figure S1. MAN a) total AOD at 550nm for measurements made north of $70^{\circ} \mathrm{N}$ and between 2003-2019, and b) measurement date in the format of year-month-date. 6-hrly AOD data is used.


Figure S2. CALIOP mean climatological MAM (upper-left) and JJA (upper-right) AOD at 532 nm (2006-2019) and AOD trends (lower) derived with AOD=0 values retained in the CALIOP V4.2 L2 data analysis, to compare with CALIOP AOD seasonal climatology and trends derived with $\mathrm{AOD}=0$ values removed in Fig. 3 and Fig. 9. White area means lack of data.

