

Supplement of

Arctic spring and summertime aerosol optical depth baseline from longterm observations and model reanalyses – Part 1: Climatology and trend

Peng Xian et al.

Correspondence to: Peng Xian (peng.xian@nrlmry.navy.mil)

The copyright of individual parts of the supplement might differ from the article licence.

- 1 Discussion of Table 1 in terms of difference between FMF vs. SMF and arithmetic vs geometric
- 2 statistics:
- 3 The CM AODs of Table 1 tend to be substantially higher than the values reported in Aboel-
- 4 Fetouh et al. (2020) for common sites of Barrow, Resolute Bay, Thule and Hornsund (MAM and
- 5 JJA arithmetic averages of 0.031 and 0.016 vs ~ geometric means of 0.02 and 0.002
- 6 respectively). Part of the reason for this is the difference between their SMF approach and our
- 7 FMF approach (as per the next paragraph, our FMFs transform to larger SMFs) and the fact that
- 8 they used geometric means as opposed to our arithmetic means. If we employ the average FMF
- 9 to SMF (SDA to Aboel-Fetouh et al. change in FMF) we obtain a CM AOD decrease (averaged
- 10 over the 4 common sites) of 0.012 and 0.015 for the MAM and JJA periods. If we employ the
- arithmetic to geometric statistics transformations given in Hesaraki et al. (2017) we obtain a
 mean reduction in our CM AOD of 0.012 and 0.008 for MAM and JJA respectively (again
- averaged over the four common sites). These substantial reductions in CM AOD would produce
- 14 CM AOD values that were ~ those in Aboel-Fetouh et al. (2020). The associated changes in FM
- AOD would be significantly less important in a relative sense. The reanalysis results of Table 1
- 16 would, of course, be subject to the same types of FMF to SMF and arithmetic to geometric
- 17 transformations as the data.
- **Table S1.** Geographical coordinates of AERONET sites used in this study, and seasonal mean
- total, FM and CM AOD at 550nm derived with SDA for MAM and JJA based on 2003-2019
- 20 daily data, in comparison with Table 1, in which 6-hrly data is used. "n" represents the number
- 21 of daily AERONET data.

sites	latitude	longitude	elevation (m)	region	MAM (mean median std)				MAM FMF		JJA (mean median std)				JJA FMF	
					total AOD	FM AOD	CM AOD	n	mean	median	total AOD	FM AOD	CM AOD	n	mean r	nediar
Hornsund	77.0N	15.6E	12	Svalbard	0.10 0.09 0.05	0.07 0.06 0.04	0.03 0.02 0.03	215	0.72	0.76	0.08 0.06 0.07	0.06 0.04 0.07	0.02 0.01 0.02	302	0.76	0.81
Thule	76.5N	68.8W	225	Greenland	0.09 0.07 0.05	0.06 0.06 0.03	0.03 0.01 0.04	324	0.76	0.81	0.07 0.05 0.08	0.06 0.04 0.08	0.01 0.01 0.02	464	0.85	0.87
Kangerlussuaq	67.0N	50.6W	320	Greenland	0.07 0.06 0.03	0.05 0.04 0.02	0.02 0.02 0.02	295	0.69	0.72	0.07 0.05 0.05	0.05 0.04 0.04	0.01 0.01 0.02	476	0.77	0.82
Ittoqqortoormiit	70.5N	21.0W	68	Greenland	0.06 0.06 0.03	0.04 0.04 0.02	0.02 0.01 0.03	193	0.72	0.78	0.06 0.04 0.04	0.05 0.03 0.04	0.01 0.01 0.02	369	0.80	0.84
Andenes	69.3N	16.0E	379	Norway	0.09 0.07 0.06	0.05 0.04 0.04	0.03 0.02 0.04	226	0.67	0.72	0.08 0.06 0.05	0.06 0.05 0.05	0.02 0.01 0.02	331	0.75	0.79
Resolute_Bay	74.7N	94.9W	35	Canada	0.10 0.09 0.05	0.07 0.06 0.03	0.03 0.02 0.03	173	0.72	0.74	0.07 0.05 0.09	0.06 0.04 0.09	0.02 0.01 0.02	371	0.78	0.83
Barrow	71.3N	156.7W	8	Alaska	0.12 0.09 0.10	0.08 0.06 0.07	0.04 0.02 0.06	158	0.69	0.74	0.09 0.06 0.09	0.07 0.05 0.09	0.02 0.01 0.02	335	0.79	0.82
Bonanza_Creek	64.7N	148.3W	353	Alaska	0.11 0.07 0.09	0.06 0.04 0.07	0.04 0.02 0.04	297	0.64	0.65	0.18 0.09 0.27	0.16 0.06 0.26	0.02 0.02 0.02	445	0.78	0.82
Tiksi	71.6N	129.0E	17	Siberia	0.09 0.10 0.03	0.07 0.07 0.02	0.03 0.02 0.02	13	0.73	0.78	0.13 0.08 0.19	0.11 0.07 0.18	0.02 0.01 0.02	139	0.81	0.85
Yakutsk	61.7N	129.4E	119	Siberia	0.15 0.11 0.15	0.11 0.08 0.13	0.04 0.02 0.06	517	0.73	0.77	0.17 0.09 0.23	0.14 0.07 0.23	0.02 0.01 0.03	748	0.81	0.84

22 23

24

25

trend (AOD/decade)
 Figure S2. CALIOP mean climatological MAM (upper-left) and JJA (upper-right) AOD at 532

nm (2006-2019) and AOD trends (lower) derived with AOD=0 values retained in the CALIOP

- 36 V4.2 L2 data analysis, to compare with CALIOP AOD seasonal climatology and trends derived
- with AOD=0 values removed in Fig. 3 and Fig. 9. White area means lack of data.
- 38